Способ получения 1,1-бис-[n-(пероксиметил)-n-ариламино]циклоалканов

Изобретение относится к области органической химии, в частности к способу получения 1,1-бис[N-(пероксиметил)-N-ариламино]циклоалканов общей формулы (I), которые могут найти применение в качестве препаратов, обладающих противомалярийной активностью. Сущность способа заключается во взаимодействии ариламинов (о-толуидин м-, n-хлоранилин, м-, n-фторанилин, о-, м-броманилин, м-нитроанилин) с формальдегидом и 1,1-дигидропероксициклоалканами, где циклоалкан - циклопентан, циклогексан, циклогептан, циклооктан, в H2O при комнатной температуре и атмосферном давлении в течение 1-3 ч. Выход 1,1-бис[N-(пероксиметил)-N-ариламино]циклоалканов составляет 73-99%. Технический результат – разработан новый способ селективного получения 1,1-бис[N-(пероксиметил)-N-ариламино]циклоалканов общей формулы (I). 1 табл., 1 пр.

 

Предлагаемое изобретение относится к области органической химии, конкретно, к способу получения 1,1-бис-[N-(пероксиметил)-N-ариламино]циклоалканов (1):

N-Содержащие пероксиды применяются в медицине в качестве препаратов, обладающих противомалярийной активностью (Jonathan L. Vennerstrom // J. Med. Chem. - 1989. - Vol. 32. - p. 64-67; Yanging Tang, Yuxiang Dong, Jonathan L. Vennerstrom // Med. Res. Rev. - 2004, Vol. 24. - p. 425-448).

Известен способ (Sundar N., Jacob V.T., Sujata V. Bhat, Neena Valecha and Sukla Biswas // Biorg. Med. Chem. Lett. - 2001. - Vol. 11. - p. 2269-2272) получения t-бутилпероксиметил аминов формулы (2) взаимодействием вторичных аминов с формальдегидом и t-бутилгидропероксидом в метаноле при температуре 4°C по схеме:

Известный способ не позволяет получать 1,1-бис[N-(пероксиметил)-N-ариламино]циклоалканы общей формулы (1).

Таким образом, в литературе отсутствуют сведения о селективном получении 1,1-бис-[N-(пероксиметил)-N-ариламино]циклоалканов формулы (1).

Предлагается новый способ селективного получения 1,1-бис-(пероксиметилариламино)циклоалканов общей формулы (1).

Сущность способа заключается во взаимодействии первичных ариламинов (о-толуидин, м-, n-хлоранилин, м-, n-фторанилин, о-, м-броманилин, м-нитроанилин) с формальдегидом и 1,1-дигидропероксициклоалканами (-циклопентан, -циклогексан, -циклогептан, -циклооктан), взятыми в мольном соотношении ариламин : формальдегид : 1,1-дигидропероксициклоалкан =10:20:10, при комнатной температуре (~20°C) и атмосферном давлении в H2O в качестве растворителя в течение 1-3 ч, предпочтительно 2 ч. Выход 1,1-бис-[N-(пероксиметил)-N-ариламино]циклоалканов (1) составляет 73-99%. Реакция протекает по схеме:

1,1-Бис-[N-(пероксиметил)-N-ариламино]циклоалканы (1) образуются только лишь с участием ариламинов (о-толуидин м-, n-хлоранилин, м-, n-фторанилин, о-, м-броманилин, м-нитроанилин) и 1,1-дигидропероксициклоалканов (-циклопентан, -циклогексан, -циклогептан, -циклооктан), взятых в стехиометрическом соотношении. В присутствии других первичных аминов (например, алкиламины, гетариламины) целевые продукты (1) не образуются. Реакция протекает в Н2О в качестве растворителя. При использовании других растворителей (например, ТГФ, CH2Cl2) снижается селективность реакции. Реакции проводили при температуре 20°C. При температуре выше 20°C (например, 60°C) снижается селективность реакции и увеличиваются энергозатраты, а при температуре ниже 20°C (например, -10°C) снижается скорость реакции.

Существенные отличия предлагаемого способа.

В известном способе реакция идет с участием в качестве исходных соединений вторичных аминов, t-бутилгидропероксида и формальдегида. Способ не позволяет получать 1,1-бис[N-(пероксиметил)-N-ариламино]циклоалканы (1).

В предлагаемом способе в качестве исходных реагентов применяются первичные ариламины, формальдегид и 1,1-дигидропероксициклалканы, в качестве растворителя применяется Н2О. В отличие от известных способов предлагаемый способ позволяет синтезировать индивидуальные 1,1-бис-[N-(пероксиметил)-N-ариламино]циклоалканы (1).

Способ поясняется следующими примерами.

ПРИМЕР 1. В сосуд Шленка, установленный на магнитной мешалке, при температуре ~20°C помещают 5 мл H2O, 1.46 мл (20 ммоль) водного раствора (37%) формальдегида и 1.48 г (10 ммоль) 1,1-дигидропероксициклогексана, перемешивают в течение 30 мин, добавляют 1.27 г (10 ммоль) м-хлоранилина. Реакционную смесь перемешивают при температуре ~20°C в течение 2 ч, экстрагируют хлороформом, выделяют 1,1-бис-[N-(пероксиметил)-N-м-хлорфениламино]циклогексан с выходом 85%.

Другие примеры, подтверждающие способ, приведены в табл. 1.

Все опыты проводили в H2O в качестве растворителя при комнатной температуре (~20°C).

Спектральные характеристики 1,1-бис-[N-(пероксиметил)-N-о-метилфениламино)циклогексана: δН (400 MHz, DMSO-d6, 25°C) 1.30-1.38 (m, 6Н, Н2С), 1.64-1.65 (m, 4Н, Н2С), 3.74 (s, 6Н, СН3), 5.15 (d, 4Н, J 10 Hz, Н2С), 6.14 (t, 2Н, J 10 Hz, НС), 6.65 (t, 2Н, J 10 Hz, НС), 6.76 (t, 2H, J 10 Hz, НС), 6.84 (d, 2H, J 10 Hz, HC); δC (100 MHz, DMSO-d6, 25°C) 22.44 (CH2CH2), 25.32 (CH2), 30,54 (CH2CH2), 55.86 (CH3), 78.66 (NCH2O), 109.16, 111.42, 118.10, 121.31, 135.84, 146.91 (Ar). MALDI TOF, m/z: 298.274 [M-H]+ (100%).

Спектральные характеристики 1,1-бис-[N-(пероксиметил)-N-м-бромфениламино)циклогептана: δН (400 MHz, DMSO-d6, 25°C) 1.32-1.40 (m, 6Н, Н2С), 1.67-1.69 (m, 4Н, Н2С), 5.12 (d, 4Н, J 10 Hz, Н2С), 6.56-70.22 (m, 4Н, НС); δС (100 MHz, DMSO-d6, 25°C) 22.44 (СН2СН2), 25.30 (СН2), 30.57 (СН2СН2), 78.44 (NCH2O), 112.65, 114.52, 115.79, 121.89, 122.65, 131.12, 148.70 (Ar).

Спектральные характеристики 1,1-бис-[N-пероксиметил)-N-м-хлорфениламино)циклооктана: δН (400 MHz, DMSO-d6, 25°C) 1.24-1.29 (m, 4Н, Н2С), 1.42-1.50 (m, 4Н, Н2С), 1.75-1.78 (m, 4Н, Н2С), 2.30-2.33 (m, 4Н, Н2С), 4.98 (s, 4Н, J 10 Hz, Н2С), 6.80-7.20 (m, 8Н, НС); δС (100 MHz, DMSO-d6, 25°C) 24.80 (СН2СН2), 25.57 (СН2СН2), 27.14 (СН2СН2), 41.80 (СН2СН2), 66.61 (NCH2O), 111.77, 115.77, 116.42, 120.06, 130.81, 149.93 (Ar).

Спектральные характеристики 1,1-бис-[N-(пероксиметил)-N-м-фторфениламино)циклопентана: δH (400 MHz, DMSO-d6, 25°C) 1.52-1.56 (m, 4Н, Н2С), 1.75-1.78 (m, 4Н, Н2С), 5.13 (d, 4Н, J 10 Hz, Н2С), 6.42 (t, 2Н, J 10 Hz, НС), 6.57 (t, 2Н, J 10 Hz, НС), 7.12 (d, 2H, J 10 Hz, НС), 7.25 (t, 2H, J 10 Hz, HC); δC (100 MHz, DMSO-d6, 25°C) 24.27 (CH2CH2), 33.90 (CH2CH2), 78.47 (NCH2O); 99.85, 100.10 (J 25 Hz); 104.07, 104.28 (J 21 Hz); 109.75; 120.21; 130.07; 149.11; 160.47, 164.89 (J 442 Hz).

Способ получения 1,1-бис[N-пероксиметил)-N-ариламино]циклоалканов общей формулы (1):

отличающийся тем, что ариламины (o-толуидин м-, n-хлоранилин, м-, n-фторанилин, o-, м-броманилин, м-нитроанилин) подвергают взаимодействию с формальдегидом и 1,1-дигидропероксициклоалканами, где циклоалкан - циклопентан, циклогексан, циклогептан, циклооктан, взятыми в мольном соотношении ариламин:формальдегид:1,1-дигидропероксициклоалкан = 10:20:10, при комнатной температуре (~20°C) и атмосферном давлении в H2O в качестве растворителя в течение 1-3 ч.



 

Похожие патенты:

Изобретение относится к способу получения раствора диалкилпероксидикарбоната в жидком органическом растворителе (S). Способ осуществляют, по меньшей мере, частично, в присутствии жидкого органического растворителя (S), и он включает по меньшей мере одну стадию, во время которой алкилгалоформиат вводят в реакцию с неорганической перекисью в среде, содержащей воду и растворитель (S).
Изобретение относится к получению гидропероксида изопропил-м-ксилола, который может быть использован для совместного получения ксиленола и ацетона. Предложен способ получения гидропероксида изопропил-м-ксилола жидкофазным окислением изопропил-м-ксилола кислородом воздуха при атмосферном давлении, температуре процесса 120-130°C, в течение 1,5-2 часов, в присутствии в качестве катализатора N-гидроксифталимида в количестве 1-3 мас.%.

Изобретение относится к области промышленного органического синтеза, точнее к реактору для получения гидропероксида кумола, используемому для получения фенола и ацетона кумольным способом, а также фенола, метилэтилкетона и циклогексанона.

Изобретение относится к способу непрерывного или полунепрерывного получения фенола из кумола через кумолгидропероксид (КГП), а также к установке для его осуществления.

Изобретение относится к способу извлечения моноалкилбензола из газового потока, содержащего кислород и моноалкилбензол. При этом газовый поток, содержащий кислород и моноалкилбензол, вступает в контакт с жидким потоком, включающим полиалкилбензол, соединение, содержащее две фенильные группы, соединенные между собой через алкиленовый мостик C1-С3, или их смесь.
Настоящее изобретение относится к способу окисления кислородом циклических насыщенных углеводородов, таких как циклогексан, циклооктан, циклододекан и декалин для получения алкилгидропероксида.

Настоящее изобретение относится к способу выделения моноалкилбензола из газового потока, включающего кислород и моноалкилбензол, в котором газовый поток, включающий кислород и моноалкилбензол, вступает в контакт с жидким потоком, включающим нафталиновое соединение.
Изобретение относится к эмульсии, включающей жирную фазу, диспергированную в водной фазе, где указанная жирная фаза включает, по меньшей мере, 53 мас.% одного или более органических пероксидов, более чем 50% которых имеют содержание молекулярного активного кислорода, по меньшей мере, 7,00 мас.%, при этом указанная эмульсия удовлетворяет классификационным испытаниям для органического пероксида типа F.
Настоящее изобретение относится к способу получения алкилгидропероксида, получаемого окислением кислородом циклического насыщенного углеводорода, выбранного из группы, содержащей циклогексан, циклооктан, циклодекан, декалин.

Настоящее изобретение относится к области химии органических пероксидов, а именно к способу получения [1,2-бис(трет-бутилперокси)этил] бензолов общей формулы (I), приведенной ниже, в которой R=H или Me.
Изобретение относится к нефтехимической промышленности, в частности к получению гидропероксида этилбензола (ГПЭБ) в процессе совместного получения стирола и оксида пропилена гидропероксидным методом. Более конкретно, оно относится к первой стадии этого процесса, на которой вырабатывают ГПЭБ жидкофазным окислением этилбензола молекулярным кислородом воздуха. В соответствии с изобретением получение гидропероксида этилбензола осуществляют жидкофазным каталитическим окислением этилбензола кислородом воздуха при повышенной температуре в присутствии катализатора и инициирующей добавки. В качестве катализатора и инициирующей добавки используют сконденсировавшуюся часть потока отработанного воздуха со стадии окисления этилбензола, обработанную гидроокисью аммония, или поток, образующийся при отмывке и нейтрализации продуктов реакции от кислых примесей гидроокисью аммония до рН 4-8. Избыточный неокисленный этилбензол отделяют вакуумной ректификацией при условии подачи в куб колонны воздуха, разбавленного азотом до содержания 8-12 об.% кислорода, а в укрепляющую часть ректификационной колонны - острого водяного пара. Технический эффект: содержание гидропероксида этилбензола в оксидате до 45 мас.% при селективности его образования более 90 мол.%. 2 пр.
Наверх