Шунгит как модификатор для алюминиево-кремниевых сплавов

Изобретение относится к области металлургии и может быть использовано при получении литых доэвтектических, эвтектических и заэвтектических алюминиево-кремниевых сплавов (силуминов). При выплавке указанных сплавов в качестве модификатора используют шунгит. Техническим результатом изобретения является повышение механических и эксплуатационных характеристик отливок, изготавливаемых из этих сплавов, за счет уменьшения размеров дендритов алюминия, α-твердого раствора, эвтектики и первичных кристаллов кремния. 2 ил.

 

Изобретение относится к области металлургии и может быть использовано при приготовлении литых доэвтектических, эвтектических и заэвтектических алюминиево-кремниевых сплавов (силуминов), применяемых для получения отливок с целью повышения их качества.

Известен способ модифицирования (патент RU №2439166, МПК C21C 1/00, C21C 21/02 д.п. 10.01.2012), модифицирование металлов выполняют ультрадисперсным порошком (УДП) в виде смеси, содержащей карбидоподобную фазу FeAlCn, оксид алюминия Al2O3 и гидрооксид алюминия Al(OH)3 с размером частиц 102-103 нм, измельчают смесь в постоянном магнитном поле напряженностью 0,1-0,5Тс, преимущественно 0,2-0,3 Тс и вводят полученный порошок в расплав. Ультрадисперсный порошок, полученный из сплава в виде фаз Al2O3, Al2C4 и FeAlCn, перед введением в расплав подвергают механическому воздействию и пропусканию через вальцы грохота с регулируемой щелью и индуктивную катушку, которая позволяла достичь напряженности магнитного поля ≈ 0,3 Тс, а затем смешивают со струей жидкого металла при заливке в форму.

Недостатками метода являются технологическая сложность получения модификатора, требующего наложения магнитного поля; возможность загрязнения сплава оксидными включениями. Модифицирующий эффект действует только на α-твердый раствор, не оказывая значительного воздействия на первичные кристаллы Si; область применения ограничена только доэвтектическими силуминами.

Известен модификатор для алюминиевых сплавов (патент UA 57584, МПК C22C 1/06, 2013), включающий, смесью порошком: при соотношении компонентов, мас. %: обеспечивается присутствием в модификаторе серы, карбоната натрия 20-40%, ультрадисперсного карбида кремния 12-20% и электролитического титана 3-8%, сера – остаток.

Недостатками метода является трудоемкость получения порошка, область применения ограничена только доэвтектическими силуминами.

Известен модификатор для алюминиевых сплавов (патент BY 18103, МПК C22C 1/05 д.п. 30.04.2014), включающий, смесью порошком: при соотношении компонентов, мас. %: карбид кремния 3-8%; фосфористая медь 3-6%; карбонат бария 3-5%; алюминий - остальное.

При этом размер частиц карбида кремния составляет 10-100 мкм, фосфористой меди - 0,1-1,0 мм, карбоната бария - 20-50 мкм, алюминия -0,2-1,0 мм.

Недостатками метода является трудоемкость получения порошка, область применения ограничена только заэвтектическими силуминами.

Технический результат выражается в повышении механических и эксплуатационных характеристик отливок, изготавливаемых из этих сплавов, за счет уменьшения размеров дендритов алюминия, α-твердого раствора, эвтектики и первичных кристаллов кремния.

Технический результат достигается тем, что природный минерал шунгит применяется в качестве модификатора при получении отливок из алюминиево-кремниевых сплавов.

Изобретение поясняется рисунками, где:

Фиг. 1 - Расплав необработанный - эталонный образец;

Фиг. 2 - расплав модифицированный шунгитом.

Отличительной особенностью применение шунгита в качестве модификатора является то, что шунгит вводится в расплав в свободном виде и служит комплексным модификатором, который модифицирует как α-твердого раствора, эвтектики и первичных кристаллов кремния.

Экспериментальные работы получения алюминиево-кремниевых сплавов показали, что при вводе шунгита в расплав наблюдается измельчение первичных кристаллов кремния, α-твердого раствора, эвтектики.

В качестве примера можно привести структуру заэвтектического алюминиево-кремниевого сплава АК18, при вводе шунгита в сплав наблюдается (фиг. 2) измельчение структурных составляющих (первичных кристаллов кремния, эвтектики и а-твердого раствора). Измельчение составило более чем в 2,5-3 раза, по сравнению с эталонным образцом (фиг. 1).

Применение шунгита в качестве модификатора при получении отливок из алюминиево-кремниевых сплавов приводит к изменению механизмов кристаллизации расплава, сопровождающиеся изменением поверхностного натяжения на поверхности границ зерен и химическими реакциями (образования химических связей с химическими элементами шунгита) сопровождается образованием новых центров кристаллизации. В результате наблюдается модифицирующий эффект как на чистом алюминии, так и на всех группах алюминиево-кремниевых сплавах (силуминах).

Применение природного минерала шунгит в качестве модификатора при получении отливок из алюминиево-кремниевых сплавов.



 

Похожие патенты:
Изобретение относится к области металлургии и может быть использовано при приготовлении литых алюминия, доэвтектических, эвтектических и заэвтектических алюминиево-кремниевых сплавов (силуминов).

Изобретение относится к области металлургии, в частности к бор-содержащим алюмоматричным композиционным материалам, и может быть использовано при получении изделий, к которым предъявляются требования низкого удельного веса в сочетании, в частности, с высоким уровнем поглощения при нейтронном излучении.

Изобретение относится к многослойной трубе и ее применению. Многослойная труба включает металлическую трубу с внутренней поверхностью и внешней поверхностью, первый полимерный слой, связанный с внешней поверхностью, и, предпочтительно, второй полимерный слой, связанный с внутренней поверхностью, и при этом металлическая труба изготовлена из алюминиевого сплава, содержащего, вес.%: Si от 1,5 до 2,45, Fe от 0,5 до 1,2, Mn от 0,5 до 1,2, Cu от 0,3 до 1, Mg от 0,04 до 0,3, Ti<0,25, Zn<1,2 и другие примеси или случайные элементы <0,05 каждого, включая Cr<0,05 и Zr<0,05, всего <0,25, а остальное - алюминий.

Изобретение относится к литейному и металлургическому производству, в частности к получению псевдолигатуры для модифицирования алюминиевых сплавов. Способ включает смешивание в планетарной мельнице полученного по технологии самораспространяющегося высокотемпературного синтеза ультрадисперсного порошка карбида титана, содержащего соли хлорида калия и натрия, с порошком основы, содержащим алюминий и медь, в соотношении 9:1, и прессование полученной композиции.
Изобретение относится к металлургии литейных сплавов, в частности к антифрикционным сплавам на основе алюминия, работающим в условиях трения скольжения. Антифрикционный сплав на основе алюминия содержит основные компоненты в следующем соотношении, мас.%: кремний - 12-15, медь - 3-5, алюминий - остальное, и имеет структуру, содержащую кристаллы эвтектического кремния глобулярной формы размером от 2 до 8 мкм.
Изобретение относится к области цветной металлургии и может быть использовано для получения изделий литьем, в частности к модифицированию заэвтектических силуминов.
Изобретение относится к металлургии литейных сплавов на основе алюминия и может быть использовано при изготовлении конструкционных материалов для машиностроения и электрической промышленности.

Изобретение относится к области металлургии легких сплавов и может быть использовано для получения слитков из алюминиевых сплавов повышенного качества при изготовлении изделий атомной, авиакосмической и автомобильной промышленности.

Изобретение относится к области получения алюминиевых сплавов и может быть использовано для изготовления изделий электротехнического назначения. .
Изобретение относится к литейному производству, в частности к модифицированию литейных алюминиево-кремниевых сплавов доэвтектического состава. .

Изобретение может быть использовано в составе порошковых проволок, покрытых электродов и флюсов для сварки и наплавки. Модификатор содержит нанопорошок тугоплавкого соединения, выбранного из группы, включающей карбид, нитрид, оксид, карбонитрид, оксикарбонитрид металла, в качестве инокулятора и протектор.

Изобретение относится к области специальной металлургии, в частности к получению литых шихтовых заготовок электродов из высоколегированных сплавов на основе алюминидов никеля, и может быть использовано для центробежной атомизации материала электродов и получения гранул для применения в аддитивных 3D-технологиях с целью получения сложнопрофильных изделий из жаропрочных металлических материалов.

Изобретение относится к области металлургии и может быть использовано для получения композиционных литых материалов для деталей транспортных средств, машин и оборудования.

Изобретение относится к порошковой металлургии с использованием технологии быстрой кристаллизации, в частности к получению заготовок из алюминиевых сплавов. Предложенный способ включает приготовление алюминиевого расплава, центробежное литье гранул, их охлаждение и последующую ступенчатую вакуумную дегазацию в герметичных технологических капсулах, затем ведут компактирование гранул в герметичных технологических капсулах без дополнительного нагрева в контейнере пресса, нагретом до температуры не менее 400°C, и механическую обточку скомпактированных брикетов с получением компактных заготовок.

Изобретение относится к области металлургии цветных металлов, в частности к получению сплава алюминия с редкоземельными металлами, и может быть использовано для получения алюминиевого сплава с 0,2-0,4 мас.

Изобретение относится к области металлургии, в частности к технологии приготовления модифицирующих лигатур алюминий-титан, которые применяются при приготовлении алюминиевых сплавов для измельчения структуры отливаемых из них изделий.

Группа изобретений относится к горному делу и может быть применена для разрушаемого скважинного инструмента. Разрушающаяся трубная заанкеривающая система содержит элемент в форме конической призмы; втулку по меньшей мере с одной первой поверхностью, радиально изменяющейся в ответ на продольное перемещение элемента в форме конической призмы относительно втулки, причем первая поверхность может взаимодействовать со стенкой конструкции; уплотнение по меньшей мере с одной второй радиально изменяющейся поверхностью и гнездо, имеющее контактную площадку, взаимодействующую с уплотнением со съемной пробкой, спускаемой на нее враспор.

Группа изобретений относится к горному делу и может быть применена для разрушаемого скважинного инструмента. Элемент в форме конической призмы включает в себя металлический композит, который имеет сотовую наноматрицу, содержащую материал наноматрицы с металлическими свойствами; металлическую матрицу, размещенную в сотовой наноматрице; и первый участок в форме конической призмы.

Изобретение относится к области электротехники и нанотехнологии, в частности к нанокомпозитному материалу на основе меди (Cu) для производства силовых разрывных электрических контактов в переключателях мощных электрических сетей и вакуумных дугогасительных камерах и способу его получения.

Изобретение относится к области металлургии, а именно к материалу на основе объемных металлических стекол на основе циркония, и может быть использовано для производства деталей микромашин и механизмов с требованиями высокой износостойкости и прочности.

Группа изобретений относится к композитному материалу для землебурильного долота. Способ изготовления композитного материала включает смешивание первой составляющей твердой фазы в виде карбида со связующим веществом, второй составляющей твердой фазы в виде пористого карбида, имеющего пористость по меньшей мере 1% и содержащего от 0,1 мас. % до 50 мас. % связующего вещества, и метилцеллюлозы с получением смеси, загрузку указанной смеси в форму, добавление порошка карбида металла в указанную форму, добавление пропитывающего сплава в указанную форму, перегрев указанного пропитывающего сплава с обеспечением распада указанной второй составляющей твердой фазы в указанном пропитывающем сплаве с получением дисперсии первой составляющей твердой фазы и распавшейся второй составляющей твердой фазы в указанном пропитывающем сплаве и охлаждение указанной дисперсии с получением композитного материала. Землебурильное долото содержит корпус, выполненный из композитного материала. Обеспечивается повышение устойчивости к эрозии композитного материала. 3 н. и 23 з.п. ф-лы, 10 ил., 2 пр.
Наверх