Способ получения нанокапсул вакцины "кс" от чумы свиней в натрий карбоксиметилцеллюлозе

Изобретение относится к способу получения нанокапсул вакцины «КС» от чумы свиней. Указанный способ характеризуется тем, что вакцину «КС» растворяют в петролейном эфире, затем диспергируют в суспензию натрий карбоксиметилцеллюлозы в петролейном эфире в присутствии препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают бутилхлорид, выпавший осадок нанокапсул отфильтровывают и сушат при комнатной температуре. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул вакцины «КС», а также увеличение их выхода по массе. 1 ил., 3 пр.

 

Изобретение относится к области нанотехнологии и ветеринарии.

Вакцина «КС» против классической чумы свиней - живая лиофилизированная вакцина из аттенуированного штамма представляет собой сухую пористую массу белого или розового цвета.

Ранее были известны способы получения микрокапсул.

В пат. 2173140, МПК A61K 009/50, A61K 009/127, Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами.

Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения вакцины «КС», отличающимся тем, что в качестве оболочки нанокапсул используется натрий карбоксиметилцеллюлоза, а в качестве ядра - вакцина «КС» при получении нанокапсул методом осаждения нерастворителем с применением бутилхлорида в качестве осадителя.

Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием бутилхлорида в качестве осадителя, а также использование натрий карбоксиметилцеллюлозы в качестве оболочки и вакцины «КС» - в качестве ядра.

Результатом предлагаемого метода является получение нанокапсул вакцины «КС» в оболочке натрий карбоксиметилцеллюлозы.

ПРИМЕР 1. Получение нанокапсул вакцины «КС», соотношение ядро:оболочка 1:5

55 мг вакцины «КС» растворяют в 3 мл петролейного эфира и диспергируют полученную смесь в суспензию натрий карбоксиметилцеллюлозы в петролейном эфире, содержащем указанного 275 мг полимера в присутствии 50 мг препарата E472c (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами, свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 1000 об/мин. Далее приливают 5 мл бутилхлорида. Выпавший осадок отфильтровывают и сушат при комнатной температуре.

Получено 0,33 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 2. Получение нанокапсул вакцины «КС», соотношение ядро:оболочка 1:10

55 мг вакцины «КС» растворяют в 3 мл петролейного эфира и диспергируют в суспензию натрий карбоксиметилцеллюлозы в петролейном эфире, содержащем указанного 550 мг полимера в присутствии 60 мг препарата E472c в качестве поверхностно-активного вещества при перемешивании 1000 об/мин. Далее приливают 5 мл бутилхлорида. Выпавший осадок отфильтровывают и сушат при комнатной температуре.

Получено 0,605 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 3. Определение размеров нанокапсул методом NTA.

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834.

Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level=16, Detection Threshold=10 (multi), Min Track Length:Auto, Min Expected Size: Auto, длительность единичного измерения 215s, использование шприцевого насоса.

Способ получения нанокапсул вакцины «КС» от чумы свиней в натрий карбоксиметилцеллюлозе, характеризующийся тем, что вакцину «КС» растворяют в 3 мл петролейного эфира и диспергируют в суспензию натрий карбоксиметилцеллюлозы в петролейном эфире в присутствии 50-60 мг препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают 5 мл бутилхлорида, выпавший осадок отфильтровывают и сушат при комнатной температуре.



 

Похожие патенты:

Изобретение относится к способу получения нанокапсул аминогликозидного антибиотика, выбранного из канамицина, амикацина или сульфата гентамицина. Указанный способ характеризуется тем, что в качестве оболочки нанокапсул используется геллановая камедь, при этом аминогликозидный антибиотик порциями добавляют в суспензию геллановой камеди в бутаноле, содержащую препарат Е472с, при массовом соотношении аминогликозидный антибиотик:геллановая камедь 1:1 или 1:3, смесь перемешивают, затем добавляют метиленхлорид, полученную суспензию нанокапсул отфильтровывают, промывают метиленхлоридом и сушат, процесс осуществляют в течение 15 минут.

Изобретение относится к способу получения нанокапсул резвератрола. Указанный способ характеризуется тем, что резвератрол добавляют в суспензию геллановой камеди в бутаноле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты при перемешивании 1000 об/мин, далее приливают этилацетат, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение оболочка : ядро в нанокапсулах составляет 3:1 или 1:5.

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул унаби. Способ характеризуется тем, что в качестве ядра используется унаби, а качестве оболочки альгинат натрия, при осуществлении способа порошок ягод унаби добавляют в суспензию альгината натрия в петролейном эфире в присутствии Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, далее приливают 5 мл четыреххлористого углерода в качестве осадителя, при этом массовое соотношение ядро:оболочка при пересчете на сухое вещество составляет 1:1 или 1:3, полученную суспензию отфильтровывают и сушат при комнатной температуре.

Изобретение относится к способу получения нанокапсул экстракта зеленого чая. Указанный способ характеризуется тем, что экстракт зеленого чая добавляют в суспензию хитозана в петролейном эфире в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, далее приливают ацетон, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро/оболочка в нанокапсулах составляет 1:3, 1:1 или 1:5.

Изобретение относится к области нанотехнологий и нанохимии, а точнее к цитратам металлов, и может быть использовано в парфюмерной, пищевой промышленности, в медицине, в сельском хозяйстве, в биологии и в других областях науки, промышленности и экологии.

Изобретение относится к нанотехнологии, а именно к способу получения наноразмерных порошков карбида кремния, покрытых углеродной оболочкой. Способ заключается в том, что смесь прекурсоров: моносилана, аргона и ацетилена, в которую ацетилен вводят в количестве 2,5-15 об.%, при начальном давлении Р0=0,105 МПа и начальной температуре Τ0=170°С подвергают термическому разложению в процессе адиабатического сжатия до образования целевого продукта.

Одноразовый многослойный полимерный предварительно заполненный контейнер для автомобильного топлива включает корпус, горловину с герметичной крышкой и средством для предотвращения повторного заполнения контейнера, устройство для переливания топлива в бак автомобиля.

Изобретение относится к материаловедению и может быть использовано в различных областях современной электроники, альтернативной энергетике, машиностроении и т.д. Способ получения нанокомпозитного металл-керамического покрытия с заданным значением микротвердости на поверхности полированной ситалловой пластины включает нанесение ионно-лучевым распылением покрытия с необходимым процентным соотношением металлической и керамической фаз, при этом процентное соотношение металлической и керамической фаз определяют с помощью нейронной сети, для чего наносят покрытия с заданным шагом процентного соотношения фаз металл-керамика, изменяющимся в покрытии от нуля до максимума, определяют значения микротвердости нанесенных покрытий, затем на основании полученных данных создают искусственную нейронную сеть, проводят ее обучение, тестируют полученную нейросетевую модель путем последовательного исключения из статистической выборки, которая использовалась для ее обучения, экспериментально измеренных факторов нейросетевой модели, включающих микротвердость металлического покрытия, микротвердость керамического покрытия, концентрацию металлической фазы в композите и микротвердость нанокомпозитного покрытия в качестве выходного параметра модели, с последующим их определением при помощи полученной нейросетевой модели и сравнения полученных теоретических данных с исходными экспериментальными значениями, затем в искусственную нейронную сеть вводят значения микротвердости металлического и керамического покрытия, их процентное соотношение в получаемом покрытии и при помощи искусственной нейронной сети рассчитывают значение микротвердости металл-керамического нанокомпозитного покрытия при введенном процентном соотношении металлической и керамической фаз.

Изобретение относится к машиностроению и может быть использовано при изготовлении пружин из стали горячей навивкой. Способ включает нагрев заготовки до температуры выше точки АС3, выдержку заготовки при температуре выше точки АС3, навивку заготовки в спираль при температуре выше точки АС3, охлаждение спирали до температуры мартенситного превращения и отпуск.

Изобретение относится к области огнегасящих порошков, выполненных в виде нанопорошка. Сущность заявляемого устройства заключается в том, что в огнетушителе порошковом, содержащем корпус, заполненный огнетушащим порошком, устройство его вытеснения и подачи в очаг пожара, запорно-пусковое устройство и устройство распыления порошка в контролируемой зоне, огнетушащий порошок выполнен в виде нанопорошка.

Изобретение относится к способу получения нанокапсул аминогликозидного антибиотика, выбранного из канамицина, амикацина или сульфата гентамицина. Указанный способ характеризуется тем, что в качестве оболочки нанокапсул используется геллановая камедь, при этом аминогликозидный антибиотик порциями добавляют в суспензию геллановой камеди в бутаноле, содержащую препарат Е472с, при массовом соотношении аминогликозидный антибиотик:геллановая камедь 1:1 или 1:3, смесь перемешивают, затем добавляют метиленхлорид, полученную суспензию нанокапсул отфильтровывают, промывают метиленхлоридом и сушат, процесс осуществляют в течение 15 минут.

Изобретение относится к способу получения нанокапсул резвератрола. Указанный способ характеризуется тем, что резвератрол добавляют в суспензию геллановой камеди в бутаноле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты при перемешивании 1000 об/мин, далее приливают этилацетат, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение оболочка : ядро в нанокапсулах составляет 3:1 или 1:5.

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул унаби. Способ характеризуется тем, что в качестве ядра используется унаби, а качестве оболочки альгинат натрия, при осуществлении способа порошок ягод унаби добавляют в суспензию альгината натрия в петролейном эфире в присутствии Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, далее приливают 5 мл четыреххлористого углерода в качестве осадителя, при этом массовое соотношение ядро:оболочка при пересчете на сухое вещество составляет 1:1 или 1:3, полученную суспензию отфильтровывают и сушат при комнатной температуре.

Изобретение относится к способу получения нанокапсул экстракта зеленого чая. Указанный способ характеризуется тем, что экстракт зеленого чая добавляют в суспензию хитозана в петролейном эфире в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, далее приливают ацетон, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро/оболочка в нанокапсулах составляет 1:3, 1:1 или 1:5.

Изобретение относится к способу получения нанокапсул аденина. Указанный способ характеризуется тем, что к каррагинану в бензоле добавляют сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества, полученную смесь перемешивают, добавляют порошок аденина, после образования самостоятельной твердой фазы медленно добавляют петролейный эфир, полученную суспензию нанокапсул отфильтровывают, промывают петролейным эфиром и сушат, при этом соотношение ядро/оболочка в нанокапсулах составляет 1:3, 1:1 или 5:1.

Изобретение относится к области инкапсуляции. Описан способ получения нанокапсул L-аргинина или норвалина.

Группа изобретений относится к области медицины, в частности к онкологии, и описывает биосовместимый наноматериал и способ его получения. Предлагаемый биосовместимый наноматериал представляет собой гибридные ассоциаты коллоидных квантовых точек CdS средними размерами 2-4 нм с катионами метиленового голубого (МВ+) в концентрации 10-1-10-4 (νкрасит/νCdS).

Изобретение относится к способу получения нанокапсул адаптогена. Указанный способ характеризуется тем, что экстракт элеутерококка или женьшеня добавляют в суспензию каррагинана в изопропаноле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, далее приливают гексан, полученную суспензию нанокапсул отфильтровывают и сушат, при этом соотношение ядро/оболочка в нанокапсулах составляет 1:3 или 5:1.

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул сухого экстракта шпината в натрий карбоксиметилцеллюлозе. Способ включает диспергирование сухого экстракта шпината в раствор натрий карбоксиметилцеллюлозы в бензоле в соотношении 1:1-3 в присутствии E472c в качестве поверхностно-активного вещества при перемешивании со скоростью 1000 об/сек.

Изобретение относится к способу получения нанокапсул танина. Указанный способ характеризуется тем, что 1 г танина добавляют в суспензию 1 г низкоэтерифицированного яблочного пектина в петролейном эфире в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты при перемешивании 1000 об/мин, далее приливают 6 мл этилацетата, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре.

Группа изобретений относится к области фармацевтики. Описана твердая лекарственная форма имипрамина, представляющая собой драже.
Наверх