Расходомерное устройство для измерения параметра потока, образованного из текучей среды

Данное изобретение относится к расходомерному устройству для измерения параметра потока, образованного из текучей среды и текущего в трубопроводе в основном направлении потока. Расходомерное устройство содержит первый участок трубопровода для направления текучей среды из основного направления потока; второй участок трубопровода для направления текучей среды обратно в основном направлении потока; соединительный участок трубопровода для соединения первого участка трубопровода со вторым участком трубопровода, по меньшей мере одно ультразвуковое устройство для испускания и/или приема ультразвуковых волн; и блок обработки для выполнения измерения разницы времени прохождения и для определения указанного параметра, причем обеспечено наличие по меньшей мере одного вихреобразующего устройства для образования вихря, которое расположено после указанного первого участка трубопровода так, что образованный вихрь направлен в направлении, противоположном направлению вихря, имеющегося после первого участка трубопровода и перед вихреобразующим устройством. Технический результат – обеспечение улучшенной воспроизводимости измерения различных экземпляров конструктивно идентичного расходомерного устройства, уменьшения его чувствительности к воздействиям срывов в потоке. 7 з.п. ф-лы, 3 ил.

 

Данное изобретение относится к расходомерному устройству для измерения параметра потока, образованного из текучей среды и текущего в трубопроводе в основном направлении потока.

Для определения скорости протекания текучей среды в трубопроводе, предпочтительно, в трубе, существует, кроме различных физических принципов, применение ультразвуковых волн, испускаемых в трубопроводе. Так, посредством способа, основанного на разнице времени прохождения, можно определять параметры текущей текучей среды и, таким образом, потока.

При этом ультразвуковые волны испускаются и принимаются парой ультразвуковых устройств, в частности ультразвуковых преобразователей, причем данные ультразвуковые устройства расположены напротив друг друга на стенке трубопровода на концах измерительного контура с наклоном к основному направлению потока или, точнее, к потоку текучей среды.

Проходящие через текучую среду ультразвуковые волны ускоряются в направлении потока и тормозятся против направления потока. Возникающую в результате разницу времени прохождения рассчитывают с геометрическими величинами с получением средней скорости текучей среды, из которой определяют параметры текущей текучей среды, например, объемный расход при эксплуатации или другой подобный параметр.

Важной и сложной областью применения являются газовые счетчики для трубопроводов природного газа, в которых вследствие огромных транспортируемых объемов газа и стоимости сырья малейшие отклонения в измерительной точности соответствуют значительно ощутимым значениям. При этом вышеуказанные расходомерные устройства все больше применяются при транспортировании газа и хранении газа в указанной области техники, связанной с измерением больших объемов газа, вследствие своей точности, удобства технического обслуживания и возможностей самодиагностики.

Поскольку ультразвуковой измерительный контур считывает скорость потока только в определенных положениях, в конечном счете получают с приближением среднюю скорость потока по всему поперечному сечению потока. Таким образом, высокие точности могут быть достигнуты только при хорошем воспроизведении потока или если поток содержит невозмущенный профиль потока, или когда множество измерительных контуров может разрешать неоднородности. Для достижения высоких точностей можно целенаправленно воздействовать на профиль потока, например, посредством выпрямителей потока или длинных прямых впускных участков. Однако выпрямители ограничены в возможности выравнивания потока, для удлиненных прямых впускных участков необходимо монтажное пространство, и, кроме этого, указанные участки не всегда имеются в наличии. Кроме этого, измерение на множестве измерительных контуров требует соответственно сложных измерительных приборов с высокими производственными затратами.

Кроме ультразвуковой технологии для измерения газа применяются механические турбинные счетчики или ротационно-поршневые счетчики.

Для механического измерения структура потока в целом не имеет значения, так что возмущение первоначального потока и направления потока может быть просто учтено. С другой стороны, в случае ультразвуковых счетчиках всегда необходимо стремиться к монтажу данных счетчиков только после длинного и предпочтительно прямого успокаивающего участка, так чтобы поток мог выровняться, и это дополнительного поддерживают посредством выпрямителей потока. Кроме этого, сами ультразвуковые счетчики смонтированы и выполнены так, что текучая среда может протекать максимально свободно и невозмущенно.

Для преодоления указанных ограничений в патентном документе ЕР 2375224 А1 раскрыто расходомерное устройство, выполненное в соответствии с ограничительной частью пункта 1 формулы изобретения, в котором текучая среда отводится из основного направления потока в трубопроводе, например, в штуцерообразную насадку. Это достигается посредством специальной направляющей потока, содержащей колено с углом 180°, которое, в свою очередь, повернуто на угол 45° относительно его вертикальной оси. Посредством этого поток может быть измерен независимо от участков трубопровода выше по потоку от расходомерного устройства и, таким образом, с высокой воспроизводимостью.

Таким образом, обеспечено компактное расходомерное устройство с по существу высокой устойчивостью к возмущениям поля потока.

При протекании через отдельные участки колена текучая среда испытывает многократные повороты потока, которые могут вызывать одно или более отрывов текучей среды от стенки трубопровода, так называемые сорванные пузыри. Данные сорванные пузыри очень чувствительно реагируют на предшествующие изменения поля потока и могут воздействовать на последующее поле потока.

Задача данного изобретения заключается в том, чтобы улучшить расходомерное устройство по ограничительной части п. 1 формулы изобретения таким образом, чтобы обеспечить улучшенную воспроизводимость измерения различных экземпляров конструктивно идентичного расходомерного устройства и, таким образом, уменьшение его чувствительности к воздействиям срывов в потоке.

В соответствии с изобретением указанную задачу решают посредством расходомерного устройства с признаками п. 1 формулы изобретения.

Расходомерное устройство для измерения параметра потока, образованного из текучей среды и текущего в трубопроводе в основном направлении потока, содержит: первый участок трубопровода для направления текучей среды из основного направления потока; второй участок трубопровода для направления текучей среды обратно в основном направлении потока; соединительный участок трубопровода для соединения первого участка трубопровода со вторым участком трубопровода; по меньшей мере одно ультразвуковое устройство для испускания и/или приема ультразвуковых волн; и блок обработки для выполнения измерения разницы времени прохождения и для определения указанного параметра, причем обеспечено наличие по меньшей мере одного вихреобразующего устройства для образования вихря, которое расположено после указанного первого участка трубопровода таким образом, что образованный вихрь направлен в направлении, противоположном направлению вихря, имеющегося после указанного первого участка трубопровода и перед указанным вихреобразующим устройством.

Это решение согласно изобретению имеет то преимущество, что посредством простого и недорогого изменения внутри расходомерного устройства улучшена воспроизводимость потока перед местоположением измерения. Кроме этого, простым образом может быть достигнуто улучшенное выравнивание поля потока.

В соответствии с предпочтительным вариантом осуществления изобретения вихреобразующее устройство имеет цилиндрический корпус и множество расположенных внутри данного корпуса лопаток, причем данные лопатки зафиксированы относительно корпуса.

В соответствии с другим предпочтительным вариантом осуществления изобретения вихреобразующее устройство расположено после первого участка трубопровода и перед соединительным участком трубопровода.

В соответствии с другим предпочтительным вариантом осуществления изобретения ультразвуковое устройство расположено после вихреобразующего устройства в направлении потока текучей среды.

В соответствии с другим предпочтительным вариантом осуществления изобретения соединительный участок трубопровода выполнен в виде колена с углом 180° и образует вместе с первой и второй прямыми частями трубопровода U-образный канал, при этом первая прямая часть трубопровода расположена между первым участком трубопровода и соединительным участком трубопровода и вторая прямая часть трубопровода расположена между соединительным участком трубопровода и вторым участком трубопровода.

В соответствии с другим предпочтительным вариантом осуществления изобретения вихреобразующее устройство расположено в первой прямой части трубопровода, а ультразвуковое устройство расположено во второй прямой части трубопровода.

В соответствии с другим предпочтительным вариантом осуществления изобретения U-образный канал закреплен с возможностью съема с первого участка трубопровода и второго участка трубопровода. Посредством этого обеспечивается то преимущество, что часть расходомерного устройства с вихреобразующим устройством и ультразвуковым устройством можно быстро и просто отделить от частей расходомерного устройства, которые только направляют текучую среду, для замены, при необходимости, вихреобразующего устройства или ультразвукового устройства.

В соответствии с другим предпочтительным вариантом осуществления изобретения вихреобразующее устройство выполнено с возможностью направления текучей среды на внутреннюю стенку первой прямой части трубопровода.

Предпочтительные усовершенствования и дополнительные варианты осуществления, а также дополнительные преимущества изобретения следуют из зависимых пунктов формулы изобретения, а также из нижеследующего описания и чертежей.

Изобретение описано детально ниже посредством вариантов осуществления со ссылками, в частности, на чертежи, на которых:

на фиг. 1 показан схематичный вид известного расходомерного устройства в рабочем положении;

на фиг. 1а показан внешний вид в аксонометрии известного расходомерного устройства в соответствии с фиг. 1;

на фиг. 2 показан вид в аксонометрии в продольном разрезе по плоскости А-А расходомерного устройства согласно изобретению без входного или выходного участков;

на фиг. 3 показан вид спереди в аксонометрии предпочтительного варианта осуществления вихреобразующего устройства в соответствии с изобретением;

на фиг. 3а показан вид сзади в аксонометрии вихреобразующего устройства в соответствии с фиг. 3.

На фиг. 1 показана схематичная расположение известного расходомерного устройства 1 в трубопроводе L для текучей среды с целью определения, в рабочем состоянии, параметра потока, образованного текучей средой F и находящегося в трубопроводе L.

Расходомерное устройство 1 содержит первый участок L1 трубопровода и второй участок L2 трубопровода. Первый участок L1 трубопровода впускает притекающую текучую среду F из основного направления потока в расходомерное устройство 1 и, таким образом, по существу служит в качестве входного участка расходомерного устройства 1. Второй участок L2 трубопровода направляет текучую среду F из расходомерного устройства 1 обратно в основном направлении потока в трубопроводе L и, таким образом, служит по существу в качестве выходного участка расходомерного устройства 1.

Соединительный участок LV трубопровода служит для соединения первого участка L1 трубопровода со вторым участком L2 трубопровода. При этом соединительный участок LV трубопровода предпочтительно выполнен в виде колена с углом 180° и образует вместе с первой и второй прямыми частями LS1 и LS2 трубопровода, описанными более подробно ниже, U-образный канал расходомерного устройства 1.

При прохождении текучей среды F от основного направления потока из трубопровода L через расходомерное устройство 1 и обратно снова в основном направлении потока в трубопроводе L определяют параметры текучей среды F или потока посредством по меньшей мере одного ультразвукового устройства 2, которое расположено на стороне, противоположной показанному блоку 2а обработки, на внутренней стенке второй прямой части LS2 трубопровода и испускает и/или принимает ультразвуковые волны и блок 2а обработки которого выполняет измерение разницы времени прохождения. Ультразвуковое устройство 2 расположено, в частности, во второй прямой части LS2 трубопровода U-образного канала таким образом, что перед так называемым измерительным контуром, в котором расположено ультразвуковое устройство 2, поток текучей среды может быть выровнен для минимизации возмущений измерения, в частности точности измерения.

При помощи фиг. 1а подробно описано прохождение текучей среды F через расходомерное устройство 1. При этом на фиг. 1а показан внешний вид в аксонометрии известного расходомерного устройства 1.

Прохождение текучей среды F через расходомерное устройство 1 схематично показано линиями со стрелками.

На первом участке L1 трубопровода текучую среду отклоняют на 90° вбок из преобладающего в трубопроводе L основного направления потока. Сразу после этого отклонения текучую среду F отводят перпендикулярно основному направлению потока вверх в первой прямой части LS1 трубопровода. Таким образом, текучая среда F выполняет спиралеобразное перемещение начиная со входа в первый участок L1 трубопровода до выхода из первого участка L1 трубопровода.

После протекания через первую прямую часть LS1 трубопровода текучую среду F отклоняют в колене с углом 180° в противоположное направление, в котором текучая среда протекает через вторую прямую часть LS2 трубопровода, расположенную параллельно первой части LS1 трубопровода. Таким образом, первая и вторая прямые части LS1 и LS2 трубопровода образуют вместе с коленом с углом 180° соединительного участка LV трубопровода U-образный канал расходомерного устройства 1.

После второй прямой части LS2 трубопровода текучая среда F течет во второй участок L2 трубопровода, при этом текучую среду, равным образом посредством спиралеобразного перемещения, снова направляют обратно в основном направлении потока в трубопровод L.

Посредством многократного поворота потока текучей среды F на первом участке L1 трубопровода расходомерного устройства 1 и, в частности, посредством спиралеобразного перемещения текучей среды F после ее выхода из первого участка L1 трубопровода происходит образование вихря DR1 в потоке текучей среды F.

Многократный поворот и, в частности, имеющийся вихрь DR1 после первого участка L1 трубопровода вызывает, в частности, образование сорванного пузыря (не показан) на расположенной изнутри внутренней стенке первой части LS1 трубопровода непосредственно после первого участка L1 трубопровода и на расположенной изнутри внутренней стенке второй части LS2 трубопровода непосредственно после соединительного участка LV трубопровода.

Как показано на фиг.2, в соответствии с данным изобретением используется по меньшей мере одно вихреобразующее устройство DE для образования вихря DR2 перед выпрямителем G. Выпрямитель G служит, помимо прочего, в качестве вихревого разрушителя и обеспечения, в местах расположения измерительных контуров, преобладания максимально возможного однородного потока. Таким образом, на фиг. 2 показан вид в аксонометрии в продольном разрезе по плоскости А-А расходомерного устройства 1 без первого и второго участков L1 и L2 трубопровода.

В соответствии с показанным предпочтительным вариантом осуществления изобретения вихреобразующее устройство DE расположено после первого участка L1 трубопровода и перед соединительным участком LV трубопровода, в частности, на переходной части между первым участком L1 трубопровода и первой прямой частью LS1 трубопровода.

В соответствии с изобретением вихреобразующее устройство DE расположено после первого участка L1 трубопровода таким образом, что образованный вихрь DR2 направлен в направлении R2, противоположном направлению R1 вихря DR1, имеющегося после первого участка L1 трубопровода и перед вихреобразующим устройством DE.

Иными славами, как показано для предпочтительного варианта осуществления изобретения, направление R1 вихря DR1, имеющегося после первого участка L1 трубопровода, ориентировано по часовой стрелке. Посредством данной конфигурации вихреобразующего устройства DE указанное направление R1 имеющегося вихря DR1 отклоняют и направляют в противоположное направление таким образом, что образованный вихрь DR2 имеет направление R2, ориентированное против часовой стрелки.

Посредством этого предотвращают или устраняют по меньшей мере один сорванный пузырь.

Ультразвуковое устройство 2 предпочтительно расположено в направлении потока текучей среды F после вихреобразующего устройства DE во второй прямой части LS2 трубопровода. Посредством этого поток по измерительному контуру предпочтительно выравнивается перед ультразвуковым устройством 2, при этом в нем устраняются или уменьшаются срывы, возмущающие процесс измерения расходомерного устройства 1.

Таким образом, вихреобразующее устройство DE предпочтительно расположено в первой прямой части LS1 трубопровода, при этом ультразвуковое устройство 2 расположено во второй прямой части LS2 трубопровода.

Как показано на фигурах 3 и 3а, вихреобразующее устройство DE имеет цилиндрический корпус 11 и множество расположенных внутри данного корпуса 11 лопаток 12.

При этом лопатки 12 зафиксированы относительно корпуса 11 таким образом, что лопатки 12 захватывают имеющийся вихрь DR1 потока на выходе из первого участка L1 трубопровода и, в соответствии с ориентацией лопаток 12, отклоняют его, согласно изобретению, в направлении R2, противоположном первоначальному направлению R1. Таким образом, в результате, после вихреобразующего устройства DE образован вихрь DR2 с противоположным направлением R2.

Указанные лопатки 12 соединены друг с другом в центре цилиндрического корпуса 11 посредством втулки 13. При этом втулка 13 выступает из цилиндрического корпуса 11 в противоположном потоку текучей среды F направлении, так что с текучей средой F сначала контактирует втулка 13.

Таким образом, втулка 13 с лопатками 12 по существу соответствует направляющему аппарату турбины, или вихреобразующее устройство DE функционирует в качестве вихревого генератора.

Кроме того, вихреобразующее устройство DE сконструировано в зависимости от характера потока текучей среды в трубопроводе L. Иными словами, в частности, на основании интенсивности расхода, давления, агрегатного состояния текущей текучей среды F и/или установки расходомерного устройства 1 в трубопроводе L соответствующее вихреобразующее устройство DE сконструировано таким образом, что выбираются форма лопаток 12 и/или количество лопаток 12.

На фиг. 3а показан, в соответствии с предпочтительным вариантом осуществления изобретения, вид сзади в аксонометрии вихреобразующего устройства DE, содержащего девять лопаток 12, так что цилиндрический корпус 11 разделен на девять сегментов.

Предпочтительно количество лопаток 12 и размеры вихреобразующего устройства DE можно подбирать в зависимости от размеров расходомерного устройства 1.

Кроме этого, в соответствии с предпочтительным вариантом осуществления изобретения U-образный канал расходомерного устройства 1, содержащий соединительный участок LV трубопровода и две прямые первую и вторую части LS1 и LS2 трубопровода, закреплен с возможностью съема с первого участка L1 трубопровода и второго участка L2 трубопровода.

Посредством этого U-образный канал расходомерного устройства 1 или область измерения расходомерного устройства 1, которая воздействует на профиль потока и измеряет его, могут быть отделены простым образом от износостойких первого и второго участков L1 и L2 трубопровода, так что техническое обслуживание, ремонт или замена U-образного канала расходомерного устройства 1 могут быть выполнены просто и недорого.

Кроме этого, вихреобразующее устройство DE может быть простым образом вставлено в расходомерное устройство 1 или извлечено из него.

Список номеров позиций

1 Расходомерное устройство
2 Ультразвуковое устройство
Блок обработки
11 Цилиндрический корпус
12 Лопатки
13 Втулка
DE Вихреобразующее устройство
DR1 Имеющийся вихрь
DR2 Образованный вихрь
F Текучая среда
G Выпрямитель
L1 Первый участок трубопровода / Входной участок
L2 Второй участок трубопровода / Выходной участок
LV Соединительный участок трубопровода
LS1 Первая прямая часть трубопровода
LS2 Вторая прямая часть трубопровода
R1, R2 Направление вихря

1. Расходомерное устройство (1) для измерения параметра потока, образованного из текучей среды (F) и текущего в трубопроводе (L) в основном направлении потока, содержащее

первый участок (L1) трубопровода для направления текучей среды из основного направления потока,

второй участок (L2) трубопровода для направления текучей среды обратно в основном направлении потока,

соединительный участок (LV) трубопровода для соединения первого участка (L1) трубопровода со вторым участком (L2) трубопровода,

по меньшей мере одно ультразвуковое устройство (2) для испускания и/или приема ультразвуковых волн,

блок (2а) обработки для выполнения измерения разницы времени прохождения и для определения указанного параметра, отличающееся

по меньшей мере одним вихреобразующим устройством (DE) для образования вихря, расположенным после первого участка (L1) трубопровода так, что образованный вихрь (DR2) направлен в направлении (R2), противоположном направлению (R1) вихря (DR1), имеющегося после указанного первого участка (L1) трубопровода и перед указанным вихреобразующим устройством (DE).

2. Устройство (1) по п. 1, отличающееся тем, что вихреобразующее устройство (DE) имеет цилиндрический корпус (11) и множество расположенных внутри корпуса (11) лопаток (12), причем данные лопатки (12) зафиксированы относительно корпуса (11).

3. Устройство (1) по п. 1 или 2, отличающееся тем, что вихреобразующее устройство (DE) расположено после первого участка (L1) трубопровода и перед соединительным участком (LV) трубопровода.

4. Устройство (1) по п. 1 или 2, отличающееся тем, что ультразвуковое устройство (2) расположено после вихреобразующего устройства (DE) в направлении потока текучей среды (F).

5. Устройство (1) по п. 1, отличающееся тем, что соединительный участок (LV) трубопровода выполнен в виде колена с углом 180° и образует вместе с первой и второй прямыми частями (LS1, LS2) трубопровода U-образный канал, при этом первая прямая часть (LS1) трубопровода расположена между первым участком (L1) трубопровода и соединительным участком (LV) трубопровода и вторая прямая часть (LS2) трубопровода расположена между соединительным участком (LV) трубопровода и вторым участком (L2) трубопровода.

6. Устройство (1) по п. 5, отличающееся тем, что вихреобразующее устройство (DE) расположено в первой прямой части (LS1) трубопровода и ультразвуковое устройство (2) расположено во второй прямой части (LS2) трубопровода.

7. Устройство (1) по п. 5 или 6, отличающееся тем, что U-образный канал закреплен с возможностью съема с первого участка (L1) трубопровода и второго участка (L2) трубопровода.

8. Устройство (1) по п. 5 или 6, отличающееся тем, что вихреобразующее устройство (DE) выполнено с возможностью направления текучей среды (F) на внутреннюю стенку первой прямой части (LS1) трубопровода.



 

Похожие патенты:

Предложены устройство и способ ультразвукового измерения расхода вязких текучих сред. В одном примере осуществления изобретения ультразвуковая система измерения расхода содержит ультразвуковой расходомер, стабилизатор потока и сужающий переходник.

Изобретение относится к способу сварки корпуса измерительного преобразователя с корпусом измерительного устройства для установки и герметизации измерительных преобразователей в ультразвуковых расходомерах.

Данное изобретение относится к скважинному инструменту для определения скорости потока текучей среды во внутреннем объеме ствола скважины или обсадной колонны ствола скважины.

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода жидкостей в трубопроводах, в частности, при трубопроводной транспортировке нефтепродуктов и сжиженных газов.

Предлагаемое изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами. Техническим результатом заявляемого технического решения является упрощение процедуры измерения концентрации и повышение точности измерения.

Устройство и способ мониторинга работы расходомерной системы. В одном варианте реализации расходомерная система содержит расходомер, первый и второй датчики давления, стабилизатор потока и устройство для мониторинга состояния.

Предложены устройство и способы проверки результатов измерения температуры в ультразвуковом расходомере. Ультразвуковая система измерения расхода содержит канал для протекания текучей среды, датчик температуры, ультразвуковой расходомер и устройство обработки данных о расходе.

Изобретение относится к ультразвуковым расходомерам, которые могут быть использованы для измерения объемного расхода жидкостей, газов, газожидкостных смесей и жидкостей, содержащих нерастворенные твердые частицы.

Настоящее изобретение относится к способам и устройствам изучения смешанного потока газа, жидкости и твердых частиц. Газ и жидкость могут быть представлены водой, паром и различными фракциями углеводородов.

Предложенный способ модернизации диафрагменного расходомера включает обеспечение тела диафрагменного фитинга, имеющего канал и выполненный с возможностью размещения в нем диафрагмы, множество выпускных отверстий и множество датчиков давления, установленных в указанном множестве выпускных отверстий.

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения массового расхода жидкостей в трубопроводах. В частности, при трубопроводной транспортировке нефтепродуктов, сжиженных газов, продуктов химического производства, в том числе химически агрессивных сред. Радиоволновой расходомер содержит генератор СВЧ, первый циркулятор, соединенную с ним первую приемо-передающую антенну, направленную через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока, первый смеситель, соединенный с выходом первого циркулятора, и вычислительный блок, соединенный с выходом первого смесителя. Дополнительно устройство содержит делитель мощности на четыре, входом соединенный с выходом генератора СВЧ, второй циркулятор, соединенную с ним вторую приемопередающую антенну, направленную через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока и расположенную на расстоянии L от первой вдоль оси трубопровода, второй смеситель, своим входом соединенный с выходом второго циркулятора, а выходом - с вычислительным блоком, при этом выходы делителя мощности последовательно соединены с входами первого смесителя, первого циркулятора, второго циркулятора и второго смесителя. Технический результат – повышение точности. 3 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения массового расхода жидкостей в трубопроводах. В частности, при трубопроводной транспортировке нефтепродуктов, сжиженных газов, продуктов химического производства, в т.ч. химически агрессивных сред. Cпособ измерения массового расхода жидких сред заключается в том, что радиоволна с частотой направляется через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока, отраженные волны смешиваются с частью падающей волны и выделяется доплеровский сигнал их разности x(t) со средней частотой . Дополнительно часть мощности радиоволны с частотой направляется через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока на расстоянии L по его оси от первой волны, отраженные волны смешиваются с частью падающей волны и выделяется доплеровский сигнал их разности y(t) со средней частотой , массовый расход определяется по времени максимума взаимно-корреляционной функции сигналов x(t) и y(t) и по частоте максимума их взаимного спектра плотности мощности. Технический результат – повышение точности. 3 ил.

Изобретение относится к химической метрологии, в частности к расходометрии выбросов углекислого газа. Способ для определения коэффициента выбросов СO2 факельными газовыми установками содержит этапы, на которых измеряют скорость звука в факельном газе, регистрируют фракции N2, СO2 и Н2O, вычисляют максимальную скорость звука в факельном газе при допущении, что углеводородная фракция факельного газа состоит только из алканов с длиной цепи i, вычисляют минимальную скорость звука при допущении, что углеводородная фракция факельного газа состоит только из алканов с длиной цепи i+1, варьируют длину цепи i до тех пор, пока измеренная скорость звука не будет находиться между вычисленными минимальной и максимальной скоростями звука, варьируют фракции алканов с найденной длиной цепи i и длиной цепи i+1 до тех пор, пока вычисленная при указанных фракциях скорость звука не будет находиться внутри заданной разницы по отношению к измеренной скорости звука, вычисляют эквивалентную длину цепи, вычисляют коэффициент выбросов. Также способ предполагает итеративный расчет длины цепи и фракций. Расход газа определяют посредством ультразвукового расходомера, за счет измерения разности времени прохождения ультразвуков по потоку и против потока. Плотность факельного газа рассчитывают на основе измеренной скорости звука. Технический результат – повышение точности измерений. 2 н. и 6 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике, а именно к способам измерения расхода жидкостей и газов в трубопроводах без контакта с контролируемой средой. Ультразвуковой расходомер содержит два акустических канала по потоку и против потока, коммутатор, АЦП и микроконтроллер. Причем в него введены генератор сигналов с линейно-частотной модуляцией, полосовой фильтр, смеситель, блок измерения задержки со следующими соединениями: выход генератора связан информационной шиной с коммутатором и со вторым входом смесителя, входы-выходы первого и второго пьезоэлектрических элементов соответственно первого и второго акустических канала через коммутатор последовательно соединены с АЦП, полосовым фильтром, смесителем и блоком измерения задержки с сигнальным входом микроконтроллера, причем его управляющий выход шиной задания параметров соединен с входом генератора ЛЧМ, а его информационный выход является выходом расходомера. Технический результат - повышение точности измерения и удобства системы в эксплуатации. 6 ил.

Изобретение относится к способу распознавания наличия жидкости (50) в газовом потоке, текущем в трубопроводе, с применением ультразвукового расходомерного устройства (10), причем попарно имеются измерительные контуры, вертикально сдвинутые на одинаковое заданное расстояние относительно центральной оси так, что один лежит в верхней зоне над центральной осью, а другой лежит в нижней зоне под центральной осью, при этом на первом этапе (102) проверяют, выдает ли самый нижний измерительный контур (30) достоверное измеряемое значение скорости течения газа, на втором этапе (104) вычисляют значение турбулентности для каждого измерительного контура (30, 36; 32, 34) пары и устанавливают отношение обоих значений турбулентности и на третьем этапе (106) на обоих измерительных контурах (30, 36; 32, 34) пары вычисляют соответствующую скорость (SoS) звука и устанавливают отношение обеих скоростей (SoS) звука, причем выводят предупреждающий сигнал о жидкости: если на первом этапе выдают недостоверное измеряемое значение, или если на втором этапе отношение значений турбулентности отличается от 1 более чем на заданное допустимое значение, или если на третьем этапе отношение скоростей звука отличается от 1 более чем на заданное допустимое значение. Технический результат – повышение чувствительности распознавания жидкости в трубопроводе. 2 н. и 9 з.п. ф-лы, 5 ил.

Изобретение относится к области измерительной техники, а именно к способам определения термической стабильности жидких однофазных и двухфазных, а также гетерогенных систем. Изобретение предназначено для определения максимальной скорости газовыделения (Wmax), температуры начала экзотермических процессов (Тн), индукционного периода (Тинд), суммарных объемов выделившихся газов (Vг) при атмосферном давлении и может быть использовано в химической и нефтехимической промышленности на любых предприятиях и заводах, где возможно попадание горючих веществ в смеси с окислителем на высокотемпературные операции. Предложен прибор для определения параметров газовыделения, содержащий воздушный термостат с электронагревателем и терморезистором. Внутрь термостата установлены две ячейки из нержавеющей стали, выполненные с возможностью заливания в них жидких образцов, при этом ячейки снабжены герметично закрывающимися крышками, в которые вмонтированы термопары. Крышки имеют отверстия для соединения с трубками газоотвода, которые соединены с ультразвуковыми измерителями скорости истечения газа с установленными пьезоэлементами и газовым переключателем на выходе. Термопары подключены к входу аналого-цифрового преобразователя, выход которого подключен к входу контроллера, выход которого подключен через интерфейс RS232/USB к персональному компьютеру, а терморезистор подключен к входам аналого-цифрового преобразователя и ПИД-регулятора, выход которого соединен с электронагревателем. Ультразвуковой измеритель скорости истечения газа подключен через интерфейс RS232/USB к персональному компьютеру, который выполнен на базе процессора, выполненного с возможностью: визуализации данных эксперимента в реальном времени, регистрации данных в файл, просмотра файлов экспериментов. Технический результат - повышение точности одновременного измерения скорости потоков газовых продуктов, а также возможность одновременного отбора как жидких, так и газовых проб. 3 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода диэлектрических жидкостей в трубопроводах, в частности при трубопроводной транспортировке нефтепродуктов, сжиженных газов. Способ измерения массового расхода жидких сред заключается в том, что радиоволну с частотой направляют через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока, отраженную волну с частотой смешивают с частью падающей волны, выделяют сигнал их разности и вычисляют спектральную плотность этого сигнала. Дополнительно к этому частоту генератора модулируют по симметричному пилообразному закону от до спектральные плотности сигнала разностной частоты вычисляют отдельно на растущем - и падающем участке несущей частоты - вычисляют их взаимно-корреляционную функцию и модуль разности массовый расход определяют по частотному сдвигу, соответствующему максимуму взаимно-корреляционной функции, и по частоте вычисляемой из условия равенства где b - диапазон частот, определяемый из возможной полосы частот сигнала. Технический результат - повышение точности. 5 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода диэлектрических жидкостей в трубопроводах. В частности, при трубопроводной транспортировке нефтепродуктов, сжиженных газов. Устройство для измерения расхода жидких сред содержит передающую и приемную антенны на измерительном участке трубопровода, модулятор частоты, генератор СВЧ, смеситель, при этом модулятор частоты первым выходом соединен с управляющим входом генератора СВЧ, выход которого соединен с первым входом смесителя и с передающей антенной, а второй вход смесителя соединен с приемной антенной. Дополнительно устройство содержит коммутирующий блок, первый и второй блок спектральной обработки, блок вычисления взаимной корреляции, блок вычисления диэлектрической проницаемости, вычислительный блок, при этом основной вход коммутирующего блока соединен с выходом смесителя, а управляющий вход со вторым выходом модулятора частоты, первые входы блока взаимной корреляции и блока вычисления диэлектрической проницаемости соединены с первым выходом блока коммутации через первый блок спектральной обработки, вторые входы этих блоков соединены со вторым выходом блока коммутации через второй блок спектральной обработки, выходы блоков вычисления диэлектрической проницаемости и блока взаимной корреляции соединены с вычислительным блоком. Технический результат - повышение точности. 5 ил.

Изобретение относится к измерительной технике, а именно к устройствам для измерения объема газа, и может быть использовано, например, для измерений объемного расхода и объема газа на входе автомобильных газонаполнительных компрессорных станций (АГНКС) при рабочих условиях и расчетом потребленного объема газа, приведенного к стандартным условиям. Сущность изобретения состоит в том, что в измерительной системе для учета газа, поставляемого на АГНКС, выполненной с возможностью учета двунаправленных потоков и состоящей из связанных между собой измерительного и регистрирующего узлов, измерительный узел состоит из ультразвукового расходомера и преобразователей давления и температуры, причем ультразвуковой расходомер выполнен из соединенных между собой электронного блока с вычислителем расхода и ультразвукового преобразователя расхода, корпус которого содержит измерительный отрезок трубы с отверстиями в местах установки ультразвуковых приемопередатчиков и, по меньшей мере, четыре пары ультразвуковых приемопередатчиков, расположенных под углом к направлению потока, с возможностью образования по меньшей мере четырех измерительных лучей, а преобразователи давления и температуры соединены с электронным блоком расходомера. Технический результат - увеличение динамического диапазона и повышение точности измерений объемного расхода газа, увеличение скорости получения результирующего объема газа, поставленного на АГНКС, и радиуса расположения регистрирующего узла. 8 з.п. ф-лы, 20 ил.

Изобретение относится к блокам преобразователей с кабельными блоками, используемыми для инструментального контроля процессов текучей среды. Кабельный блок для присоединения преобразователя содержит тело гнездовой детали, имеющее переднюю часть с передним концом, заднюю часть с задним концом, противоположным переднему концу, и средство для удержания кабеля, расположенное ближе к заднему концу. Кроме того, кабельный блок содержит кабель, имеющий первый конец, второй конец, проводник сигналов и гибкий фиксирующий элемент. Часть гибкого фиксирующего элемента размещена в средстве для удержания кабеля и проходит по меньшей мере частично вокруг тела гнездовой детали для ограничения перемещения первого конца кабеля относительно тела гнездовой детали. Технический результат - создание кабельного блока, который предназначен для установки в расходомере и в котором преобразователь и кабельный соединитель снабжены покрытием или иным образом используются в относительно небольшом пространстве, а также имеющем конструктивные особенности, которые упрощают сборку блоков преобразователей или расходомеров или которые упрощают изготовление, сборку или транспортировку этих блоков. 3 н. и 19 з.п. ф-лы, 9 ил.
Наверх