Протонное облучение с использованием сканирования пятном

Группа изобретений относится к медицинской технике, а именно к средствам генерации и манипуляции протонным пучком. Способ облучения мишени включает в себя этапы генерирования протонного пучка с помощью циклотрона, обеспечения первой информации для системы выбора энергии, которая включает в себя глубину указанной мишени, выбора уровня энергии множества протонов с помощью системы выбора энергии на основании первой информации, маршрутизации протонного пучка от указанного циклотрона по каналу передачи пучка до системы сканирования, обеспечения второй информации для системы сканирования, которая включает пару поперечных координат и дозу мишени, направления протонного пучка с помощью магнитной конструкции на участок мишени, определяемый второй информацией, причем магнитная конструкция содержит двунаправленные магниты и отдельные источники питания для магнитов, соответствующие каждому из двунаправленных магнитов, облучения мишени на основании второй информации и управления отдельными источниками питания для магнитной структуры на основании положения пучка в мишени. Аппарат для облучения мишени включает циклотрон, систему выбора энергии, систему сканирования, содержащую магнитную конструкцию, канал передачи пучка к системе сканирования, отдельные источники питания для магнитов для каждого двунаправленного магнита, причем каждый из отдельных источников питания для магнитов управляется на основании энергии и положения на мишени протонного пучка. Использование изобретений позволяет повысить точность доставки дозы излучения к раковым клеткам. 2 н. и 12 з.п. ф-лы, 6 ил.

 

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится в общем к технологии генерации и манипуляции протонным пучком, и более конкретно, к медицинским способам, использующим протонное облучение.

ИЗВЕСТНЫЙ УРОВЕНЬ ТЕХНИКИ

К наиболее "возмутительным" аспектам рака относится то, что он захватывает клетки организма и быстро распространяется, оставаясь смешанным со здоровой тканью. По этой причине, ученые и инженеры сталкиваются с трудностями при разработке способа лечения рака, который мог бы отличать здоровую ткань, которую не нужно затрагивать, от раковых клеток, которые должны быть уничтожены. Например, лучевая терапия используется против рака потому, что быстро растущие раковые клетки делятся быстрее и потому более восприимчивы к излучению. Однако все живые клетки организма пациента непрерывно делятся, вследствие чего радиация также причиняет повреждения здоровой ткани и, в свою очередь, вызывает хорошо известные изнурительные побочные эффекты лучевой терапии. Принимая во внимание, что этот аспект рака является основным фактором, определяющим его статус всемирной эпидемии, большое количество исследований рака направлено на создание способов лечения, которые могут быть более точно нацелены собственно на рак.

Ускоренные протоны были впервые использованы для бомбардировки раковых клеток в середине 20-го века учеными-ядерщиками, работающими в лабораториях, оснащенных ускорителями частиц. С тех пор область протонной терапии развилась в успешное оружие медицинского арсенала средств борьбы с раком. Обобщенная концепция протонной терапии предусматривает бомбардировку опухоли с использованием пучка ускоренных протонов. Как и в случае других типов радиотерапии, протоны представляют собой форму ионизирующего излучения, которое более сильно воздействует на быстро делящиеся клетки. Кроме того, пучок может быть сфокусирован прямо на опухоли и потому будет причинять минимальный вред окружающей здоровой ткани. В этом смысле, протонная терапия схожа с другими формами лучевой терапии, использующими направленные пучки, такими как рентгеновская лучевая терапия.

Однако протонная терапия, комбинированная со сканированием пятном, обладает дополнительным и уникальным полезным эффектом более точного соблюдения объемной дозы по сравнению с известными существующими терапевтическими способами. В большинстве случаев, для пациента не требуются специальные коллиматоры.

Как показано на Фигуре 1, протонная терапия превосходит рентгеновскую лучевую терапию по своей способности предотвращать повреждение окружающей здоровой ткани. Ось x 101 показывает глубину проникновения частиц, а ось y 102 показывает пропорциональную дозу излучения, доставленную на данную глубину. Пропорциональная доза радиации, доставляемая фотонами при рентгеновской лучевой терапии, показана с помощью кривой распределения фотонной дозы 103. Пик кривой распределения дозы фотонного излучения 103 находится на малой глубине и затем постепенно снижается. Для увеличения излучения, доставляемого на требуемую глубину, необходимо пропорционально увеличить поражение здоровой ткани над опухолью. По сравнению с этим, кривая распределения протонной дозы 104 сводит к минимуму излучение, доставляемое до и после мишени, и доставляет почти всю свою энергию в заданном окне глубины. Пик кривой распределения протонной дозы называется брэгговским пиком.

Ускорение протонов требует использования ускорителя частиц. Двумя обычными типами ускорителей частиц являются циклотроны и синхротроны. Оба типа ускорителей зависят от взаимодействия магнитных и электрических полей. Синхротроны ускоряют частицы по траектории, имеющей постоянный радиус, и регулируют величину магнитных и электрических полей по мере того, как частицы набирают импульс. Циклотроны ускоряют заряженные частицы с помощью высокочастотного напряжения переменного тока. Перпендикулярное магнитное поле заставляет частицы двигаться по расширяющейся спирали, на которой они подвергаются воздействию ускоряющего напряжения. Когда частицы достигают предварительно заданного радиуса, они выводятся из циклотрона в ускоренном состоянии.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В одном варианте исполнения изобретения предусматривается способ облучения мишени. На одной стадии генерируется протонный пучок с помощью циклотрона. На другой стадии, первая информация поступает в систему выбора энергии. На другой стадии осуществляется выбор уровня энергии протонов с помощью системы выбора энергии на основании первой информации. Первая информация включает глубину мишени. На другой стадии протонный пучок направляется от циклотрона по каналу передачи пучка в систему сканирования. На другой стадии вторая информация поступает в систему сканирования. Вторая информация включает пару поперечных координат. На другой стадии протонный пучок направляется на участок мишени, определяемый второй информацией с помощью магнитной конструкции. На другой стадии мишень облучается протонами, причем число протонов или количество протонов, необходимое для достижения данного числа, соответствует числу протонов, определяемому третьей информацией.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фигура 1 изображает кривые распределения доз фотонов и протонов, используемые в известном уровне техники.

Фигура 2 изображает блок-схему аппарата для облучения мишени в соответствии с настоящим изобретением.

Фигура 3 изображает блок-схему магнитной конструкции и источника питания, которые могут быть использованы в соответствии с настоящим изобретением.

Фигура 4 изображает блок-схему системы сканирования, которая может быть использована в соответствии с настоящим изобретением.

Фигура 5 изображает блок-схему системы направления протонного пучка на множество участков, которая может быть использована в соответствии с настоящим изобретением.

Фигура 6 изображает блок-схему процесса для способа облучения мишени в соответствии с настоящим изобретением.

ДЕТАЛЬНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ИСПОЛНЕНИЯ

Далее будут детально описаны варианты исполнения настоящего изобретения, примеры которых проиллюстрированы на сопроводительных чертежах. Хотя изобретение будет описано в сочетании с этими вариантами исполнения, следует понимать, что они не предназначены для ограничения изобретения такими вариантами исполнения. Наоборот, предполагается, что изобретение охватывает альтернативы, модификации и эквиваленты, которые могут быть включены в сущность и объем изобретения, определяемые приложенной формулой изобретения. Кроме того, в приведенном ниже детальном описании вариантов исполнения настоящего изобретения выделяются многочисленные конкретные детали с целью обеспечения полного понимания настоящего изобретения. Однако рядовому специалисту в данной области техники будет понятно, что настоящее изобретение может быть реализовано без таких конкретных деталей. В других случаях, хорошо известные способы, процедуры, компоненты и схемы не были подробно описаны для того, чтобы без необходимости не затенять аспекты вариантов исполнения настоящего изобретения.

Основным преимуществом протонной лучевой терапии является уменьшение любого соответствующего вреда для здоровой ткани, сопровождающего доставку ионизирующего излучения к опухоли-мишени. Другие способы доставки излучения могут причинять значительный вред здоровой ткани и опасные побочные эффекты. Протонная лучевая терапия, однако, имеет один значительный недостаток, общий с другими видами терапии, связанными с использованием ускоренных частиц, заключающийся в чрезмерной дороговизне используемого для этого оборудования. Капитальные вложения, необходимые для создания функционирующей установки протонной терапии, могут превышать сто миллионов долларов.

Варианты исполнения настоящего изобретения основаны на преимуществах протонной лучевой терапии. В конкретных вариантах исполнения изобретения, доза излучения протонного пучка более точно доставляется к раковым клеткам. Это достигается в определенных вариантах исполнения благодаря использованию метода сканирования пятном с использованием трехмерного нацеливания. В конкретных вариантах исполнения изобретения, трехмерное нацеливание уточняется в масштабе реального времени при проведении конкретного цикла лечения. Уточнение нацеливания протонного пучка в реальном времени помогает учитывать изменения расположения мишени. Например, когда мишень представляет собой опухоль, мишень будет перемещаться под воздействием самого лечения, а также вследствие движений тела пациента. Коррекция в реальном времени также помогает компенсировать неточности системы доставки, приводящие к тому, что облучению подвергаются не те участки, которые нуждаются в этом. Наконец, коррекция в реальном времени позволяет контролировать фактически доставленную дозу и при необходимости изменять курс лечения. Конкретные варианты исполнения изобретения усиливают полезный эффект лучевой терапии протонным пучком путем облучения мишени более сфокусированной дозой радиации и коррекции такого облучения с целью обеспечения наиболее эффективного воздействия на мишень.

Варианты исполнения настоящего изобретения уменьшают недостатки, ассоциированные с терапией ускоренными частицами. В конкретных вариантах исполнения изобретения, один ускоритель частиц используется для доставки протонного пучка в несколько процедурных кабинетов. Это резко снижает расходы на одного пациента по сравнению с лечебными заведениями лучевой терапии, имеющими по ускорителю на каждый процедурный кабинет, или имеющими единственный процедурный кабинет, которым должны пользоваться многочисленные пациенты. В конкретных вариантах исполнения изобретения, ускоренные протоны подаются по каналу передачи пучка с использованием регулируемых магнитных полей, обеспечивающих повышенную гибкость определения того, каким образом и куда в конечном счете направляются протоны.

Конкретный вариант исполнения изобретения может быть описан со ссылкой на фигуру 2. Фигура 2 изображает аппарат и систему для облучения мишени. Система 200 включает циклотрон 201, позволяющий генерировать протонный пучок. В конкретных вариантах исполнения изобретения, циклотрон 201 представляет собой сверхпроводящий циклотрон. Уровень энергии протонов в протонном пучке выбирают с помощью системы выбора энергии 202. Система выбора энергии 202 может непрерывно увеличивать уровень энергии до заданного значения энергии протонов, ускоряемых в циклотроне. В конкретных вариантах исполнения изобретения, этот выбор энергии основан на первой информации, которая может быть детерминированной информацией, содержащейся в плане лечения, или предоставляется системой, определяющей такую информацию. Система сканирования 203 направляет протонный пучок на участок мишени 204 с помощью магнитной конструкции. В конкретных вариантах исполнения изобретения, система сканирования 203 направляет протонный пучок в соответствии со второй информацией, которая может быть детерминированной информацией, содержащейся в плане лечения, или предоставляется системой, определяющей такую информацию. В конкретных вариантах исполнения изобретения, система 200 способна производить трехмерное сканирование пятном, потому что уровень энергии протонов протонного пучка выбирают на основании глубины мишени и поперечные координаты пучка могут корректироваться системой сканирования. Регулировка уровня энергии пучка позволяет контролировать глубину, на которой находятся брэгговские пики ускоренных протонов. Повышенная гибкость, обеспечиваемая благодаря трехмерному сканированию пятном, значительно повышает точность дозы, доставляемой пациенту, для увеличения доставки дозы в опухоль и минимизации повреждений здоровой ткани.

Сканирование пятном мишени 204 может осуществляться в соответствии с несколькими различными методиками. В конкретных вариантах исполнения изобретения, мишень 204 представляет собой опухоль и участок, на который направлен протонный пучок, выбирают на основании данных местоположения пациента, относящихся к конкретному пациенту, получающему протонную лучевую терапию. Данные местоположения пациента могут включать информацию о местонахождении определенных анатомических структур в пациенте и могут также включать местонахождение опухоли в теле пациента. Сканирование пятном мишени 204 может производиться за несколько сеансов с использованием одной и той же или вариантов схем сканирования пятном. В конкретных вариантах исполнения изобретения, система сканирования 203 и система выбора энергии 202 обе меняют свои значения на протяжении данного сеанса применения протонов с целью проведения трехмерного сканирования пятном. В конкретных вариантах исполнения изобретения, интенсивность протонного пучка будет меняться вместе с энергией протонного пучка и/или с поперечными координатами для более точного контроля доставки излучения в определенный участок мишени. В конкретных вариантах исполнения изобретения, система сканирования 203 регулирует местонахождение участка доставки пучка в процессе облучения, в то время как уровень энергии остается неизменным, так чтобы доставка протонов изменялась в поперечном направлении при постоянной глубине брэгговского пика. Для достижения медицински значимого эффекта воздействия на опухоли отдельный сеанс протонной лучевой терапии не должен иметь большую длительность. Отдельный сеанс облучения может предусматривать облучение 400 различных участков на пространстве 100 см2 менее чем за одну секунду.

Конкретный вариант исполнения изобретения может быть описан со ссылкой на фигуру 3. Фигура 3 изображает систему сканирования 300, которая может быть использована вместо системы сканирования 203 на Фигуре 2. Система сканирования 300 включает магнитную конструкцию 301, используемую для направления протонного пучка 302. Магнитная конструкция 301 может изменять свое магнитное поле для ориентации магнита в поперечных направлениях x и y. В конкретных вариантах исполнения изобретения, питание магнитной конструкции 301 осуществляется с помощью источника питания магнита 303. В конкретных вариантах исполнения изобретения, регулировку источника питания магнита 303 осуществляют на основании энергии протонного пучка и требуемого положения пучка на мишени.

Конкретный вариант исполнения изобретения может быть описан со ссылкой на фигуру 4. Фигура 4 изображает систему сканирования 400, которая может быть использована вместо системы сканирования 203 на Фигуре 2. Система сканирования 400 включает магнитную конструкцию 401, используемую для направления протонного пучка. В первых конкретных вариантах исполнения изобретения, магнитная конструкция 401 включает два сканирующих магнита, изображенных как магнит y-направления 402 и магнит x-направления 403. В конкретных вариантах исполнения изобретения, магниты получают питание от отдельных источников питания, изображенных как первый источник питания магнита 404 и второй источник питания магнита 405. Магнит y-направления 402 способен управлять смещением протонного пучка в поперечном y-направлении. Магнит x-направления 403 способен управлять смещением протонного пучка в поперечном x-направлении.

Во вторых конкретных вариантах исполнения изобретения, магнитная конструкция включает один сканирующий магнит, изображенный как двунаправленный магнит. В конкретных вариантах исполнения изобретения, магниты включают две пары катушек - одну для направления x и одну для направления y. В конкретных вариантах исполнения изобретения, катушки магнитов получают питание от отдельных источников питания, изображенных как первый источник питания магнита и второй источник питания магнита. Двунаправленный магнит способен управлять смещением протонного пучка в поперечных y-направлении и x-направлении.

В конкретных вариантах исполнения изобретения, система сканирования будет дополнительно включать камеру переходной ионизации, такую как камера переходной ионизации 406. Эта камера переходной ионизации размещена между магнитной конструкцией 401 и мишенью 407 вдоль траектории протонного пучка 408. Камера переходной ионизации 406 позволяет измерять дозу, доставляемую к мишени 407. В конкретных вариантах исполнения изобретения, отслеживается доза, доставляемая к определенному участку мишени 407. В конкретных вариантах исполнения изобретения, отслеживается доставляемая доза для всей мишени 407. В конкретных вариантах исполнения изобретения, камера переходной ионизации 406 будет представлять собой многополосковую ионизационную камеру, содержащую полоски проводящей фольги шириной несколько миллиметров, соединенные с электронными датчиками. Многополосковая ионизационная камера 406 позволяет измерять фактическое положение пучка на мишени 407 относительно положения нацеливания.

В конкретных вариантах исполнения изобретения, данные, собираемые камерой переходной ионизации 406, могут использоваться в различных целях. Как показано на Фигуре 4, собранные данные могут направляться в процессорный блок 409, работающий в масштабе реального времени. В конкретных вариантах исполнения изобретения, процессорный блок 409, работающий в масштабе реального времени, будет использовать информацию о положении пучка, дозе, продолжительности обработки, и данные местоположения пациента, такие как глубина опухоли, для управления магнитной конструкцией 401 с целью оптимизации облучения мишени 407. Например, процессорный блок 409, работающий в масштабе реального времени, может определить, что положение пучка не совпадает с желательным положением, и может компенсировать это отклонение для более точной установки положения пучка в желательное положение. В качестве другого примера, процессорный блок 409, работающий в масштабе реального времени, может собирать для конкретного пациента в масштабе реального времени данные о положении опухоли и регулировать направление протонного пучка на определенный участок. В конкретных вариантах исполнения изобретения, процессорный блок 409, работающий в масштабе реального времени, будет передавать первую информацию в систему выбора энергии 202. Например, этой первой информацией может быть глубина опухоли у пациента, подвергающегося протонной лучевой терапии, или энергия протонного пучка. В конкретных вариантах исполнения изобретения, процессорный блок 409, работающий в масштабе реального времени, будет передавать вторую информацию в другие компоненты системы сканирования 400. Например, такой второй информацией может быть положение пучка и доза мишени, или данные, определяемые на основании положения пучка и дозы мишени. Таким образом, процессорный блок 409, работающий в масштабе реального времени, может обеспечивать регулировку в масштабе реального времени положения пучка, интенсивности пучка и глубины брэгговского пика на основании информации для конкретного пациента, и измерение фактических характеристик и положения протонного пучка. В конкретных вариантах исполнения изобретения, данные, собранные камерой переходной ионизации 406, могут выводиться из системы для внешнего использования.

Конкретный вариант исполнения изобретения может быть описан со ссылкой на фигуру 5. Фигура 5 изображает систему 500. Система 500 включает циклотрон 501 и систему выбора энергии 502. Система 500 дополнительно включает канал передачи пучка 503. В конкретных вариантах исполнения изобретения, канал передачи пучка 503 будет иметь многочисленные сочленения, имеющие магнитные или другие устройства для направления пучка по разным траекториям. В конкретных вариантах исполнения изобретения, определенные траектории могут быть перекрыты, тогда как другие остаются открытыми. Канал передачи пучка 503 ведет в процедурный кабинет для пациентов 504, имеющий систему сканирования 505 и мишень 506. В конкретных вариантах исполнения изобретения, мишень 506 будет представлять собой опухоль в теле пациента или какую-либо другую мишень для облучения протонным пучком. Канал передачи пучка 503 дополнительно ведет во второй процедурный кабинет для пациентов 507, который может иметь вторую систему сканирования 508 и вторую мишень 509. В конкретных вариантах исполнения изобретения, система сканирования 505 или система сканирования 508 могут иметь характеристики, соответствующие системе сканирования 203.

В конкретных вариантах исполнения изобретения, система выбора энергии 502 может иметь характеристики, соответствующие системе выбора энергии 202. В конкретных вариантах исполнения изобретения, система выбора энергии 502 способна принимать пациент-специфическую информацию и информацию о протонном пучке от процессорных блоков в системе сканирования 505 и системе сканирования 508, а также от других систем сканирования, к которым подсоединен канал передачи пучка 503. В конкретных вариантах исполнения изобретения, процедурный кабинет для пациентов 504 и процедурный кабинет для пациентов 507 представляют собой отдельные помещения в одном и том же учреждении, что позволяет обеспечить экономически более эффективное использование циклотрона 501.

Конкретный вариант исполнения изобретения может быть описан со ссылкой на фигуру 6. Фигура 6 иллюстрирует способ облучения мишени. На стадии 600 генерируется протонный пучок с помощью циклотрона. Протонный пучок состоит из множества протонов. Отношение количества протонов ко времени называется интенсивностью пучка. В конкретных вариантах исполнения изобретения, циклотрон является сверхпроводящим циклотроном. На стадии 601 первая информация поступает в систему выбора энергии. В конкретных вариантах исполнения изобретения, эта первая информация основана на глубине, на которую должны быть направлены протоны. В конкретных вариантах исполнения изобретения, эта информация обеспечивается процессорным блоком системы сканирования, такой как система сканирования 203. На стадии 602 уровень энергии протонов протонного пучка выбирают с использованием указанной системы выбора энергии на основании первой информации. На стадии 603, протонный пучок поступает от циклотрона по каналу передачи пучка в систему сканирования. На стадии 604, вторая информация поступает в систему сканирования. В конкретных вариантах исполнения изобретения, вторая информация может включать пару поперечных координат (положение пучка) и дозу мишени, или быть получена на основании этих данных.

На стадии 605, протонный пучок направляется на участок мишени на основании второй информации. На стадии 606 мишень облучается протонами. В конкретных вариантах исполнения изобретения, способ может быть осуществлен с использованием аппарата, имеющего характеристики, соответствующие системе 200.

В конкретных вариантах исполнения изобретения, система сканирования может проводить измерение данных, касающихся доставленного протонного пучка, которые затем могут быть использованы для регулировки протонного пучка в масштабе реального времени. В конкретных вариантах исполнения изобретения, способ будет дополнительно включать стадию измерения дозы, доставляемой к желательному участку мишени с использованием камеры переходной ионизации. В конкретных вариантах исполнения изобретения, камера переходной ионизации будет представлять собой многополосковую ионизационную камеру. Этот способ может также включать стадию измерения положения пучка на указанной мишени относительно желательного положения пучка с использованием камеры переходной ионизации. Ионизационная камера расположена между магнитной конструкцией и мишенью вдоль протонного пучка. Информация, полученная системой сканирования, может быть обработана в масштабе реального времени. Второй и первый кванты информации могут включать эту информацию.

В конкретных вариантах исполнения изобретения, протонный пучок может быть подведен к множеству систем сканирования. В конкретных вариантах исполнения изобретения, способ будет дополнительно включать стадию передачи протонного пучка от циклотрона по каналу передачи пучка ко второй системе сканирования. В конкретных вариантах исполнения изобретения, мишенью, на которую направлен пучок, является опухоль. Маршрутизация пучка к множеству систем сканирования, которые могут находиться во множестве процедурных кабинетов для пациентов, позволяет, таким образом, использовать один циклотрон для проведения протонной терапии множества пациентов для обеспечения экономической эффективности. В конкретных вариантах исполнения изобретения, способ может быть осуществлен с использованием аппарата, имеющего характеристики, соответствующие системе 500.

Хотя варианты исполнения изобретения были описаны преимущественно в связи с конкретными вариантами его исполнения, другие варианты также являются возможными. Различные конфигурации описанной системы могут быть использованы вместо, или в дополнение к конфигурациям, представленным тут. Квалифицированным специалистам в данной области техники будет понятно, что предшествующее описание приведено только в качестве примера и не должно ограничивать изобретение. Ничто в данном описании не должно указывать, что изобретение ограничено лучевой терапией, поскольку целенаправленная доставка ускоренных частиц может использоваться во многих других областях. Ничто в данном описании не должно ограничивать объем изобретения лечением рака, облучением анатомических структур, или использованием какого-либо конкретного материала источника протонного пучка. Функции могут выполняться с помощью аппаратного или программного обеспечения, по желанию. В общем, любые представленные схемы рассчитаны на указание одной возможной конфигурации, и большое количество вариантов являются возможными. В используемом в описании и приложенной формуле изобретения значении, термин "информация" относится к единице информации, которая может иметь любую форму и размеры, при условии, что она включает разрешаемую когерентную информацию. В используемом в описании и приложенной формуле изобретения значении, термин "поперечный" используется для обозначения движения в плоскости, нормальной по отношению к вектору, образуемому номинальным положением протонного пучка. Квалифицированным специалистам в данной области техники будет также понятно, что способы и системы, согласующиеся с настоящим изобретением, являются пригодными для использования в широком диапазоне областей применения, охватывающем любые области, связанные с ускорением протонов или физикой элементарных частиц в целом.

Хотя данное описание содержит детальное описание, относящееся к конкретным вариантам исполнения изобретения, квалифицированным специалистам в данной области техники будет также понятно, что, поняв вышеприведенное описание, можно легко представить себе изменения, варианты и эквиваленты таких вариантов исполнения. Такие и другие модификации и варианты настоящего изобретения могут практиковаться квалифицированными специалистами в данной области техники без выхода за пределы сущности и объема настоящего изобретения, более конкретно определяемые приложенной формулой изобретения.

1. Способ облучения мишени, включающий в себя этапы:

генерирования протонного пучка с помощью циклотрона, причем указанный протонный пучок состоит из множества протонов;

обеспечения первой информации для системы выбора энергии, причем указанная первая информация включает в себя глубину указанной мишени;

выбора уровня энергии указанного множества протонов с помощью указанной системы выбора энергии на основании указанной первой информации;

маршрутизации указанного протонного пучка от указанного циклотрона по каналу передачи пучка до системы сканирования;

обеспечения второй информации для указанной системы сканирования, где указанная вторая информация включает пару поперечных координат и дозу мишени;

направления указанного протонного пучка с помощью магнитной конструкции на участок указанной мишени, определяемый указанной второй информацией, причем магнитная конструкция содержит двунаправленные магниты и отдельные источники питания для магнитов, соответствующие каждому из двунаправленных магнитов;

облучения указанной мишени на основании указанной второй информации; и

управления отдельными источниками питания для указанной магнитной структуры на основании положения пучка в указанной мишени.

2. Способ по п. 1, дополнительно включающий этап контроля источника питания указанной магнитной конструкции на основании энергии указанного протонного пучка.

3. Способ по п. 1, в котором дополнительно обеспечивают третью информацию, которая соответствует числу протонов, и мишень облучают протонами на основании третьей информации.

4. Способ по п. 1, дополнительно включающий этапы:

маршрутизации указанного протонного пучка от указанного циклотрона по указанному каналу передачи пучка ко второй системе сканирования;

в котором указанная мишень представляет собой опухоль;

в котором указанная система сканирования размещена в одном или нескольких процедурных кабинетах.

5. Способ по п. 1, в котором указанный циклотрон является сверхпроводящим циклотроном.

6. Способ по п. 1, дополнительно включающий этапы:

измерения дозы, доставляемой к указанной мишени во время указанного этапа облучения с помощью камеры переходной ионизации; и

измерения положения пучка относительно указанного положения и ширины пучка во время указанного этапа облучения с помощью многополосковой ионизационной камеры;

в котором указанная камера переходной ионизации установлена между указанной магнитной конструкцией и указанной мишенью вдоль указанного протонного пучка.

7. Способ по п. 6, дополнительно включающий этап продуцирования указанных первой и второй информации в масштабе реального времени на основании указанного положения пучка и указанной дозы.

8. Аппарат для облучения мишени, включающий в себя:

циклотрон, выполненный с возможностью генерировать протонный пучок, причем указанный протонный пучок включает множество протонов;

систему выбора энергии, выполненную с возможностью выбирать уровень энергии для указанного множества протонов из набора трех или больше уровней энергии;

систему сканирования, содержащую магнитную конструкцию и выполненную с возможностью направлять указанный протонный пучок на участок указанной мишени с помощью магнитной конструкции, причем магнитная конструкция содержит двунаправленные магниты; и

канал передачи пучка, выполненный с возможностью передавать указанный протонный пучок от указанного циклотрона к указанной системе сканирования;

отдельные источники питания для магнитов для каждого двунаправленного магнита, причем каждый из отдельных источников питания для магнитов управляется на основании энергии и положения на мишени указанного протонного пучка;

в котором указанная система выбора энергии выбирает указанный уровень энергии на основании первой информации; и

в котором указанная система сканирования направляет указанный протонный пучок на указанный участок на основании второй информации.

9. Аппарат по п. 8, в котором двунаправленные магниты выполнены с возможностью задавать направление указанного протонного пучка в поперечном направлении у и в поперечном направлении х.

10. Аппарат по п. 8, дополнительно включающий камеру переходной ионизации, размещенную между указанной магнитной конструкцией и указанной мишенью вдоль траектории указанного протонного пучка, где указанная камера переходной ионизации позволяет измерять дозу, доставляемую к указанному участку указанной мишени.

11. Аппарат по п. 10, дополнительно включающий многополосковую ионизационную камеру, размещенную между указанной магнитной конструкцией и указанной мишенью вдоль указанной траектории указанного протонного пучка, где указанная многополосковая ионизационная камера позволяет измерять положение пучка относительно указанного участка.

12. Аппарат по п. 11, в котором:

указанная первая информация основана на глубине указанной мишени; и

указанная вторая информация основана на указанном положении пучка и указанной дозе.

13. Аппарат по п. 11, в котором указанная система сканирования изменяет указанное положение пучка и указанную глубину мишени в реальном масштабе времени на основании указанной дозы.

14. Аппарат по п. 8, дополнительно включающий:

вторую систему сканирования, расположенную во втором процедурном кабинете для пациентов, где указанная вторая система сканирования позволяет направлять указанный протонный пучок с помощью второй магнитной конструкции;

в которой указанная система сканирования расположена в процедурном кабинете для пациентов; и

в которой указанный второй процедурный кабинет для пациентов является отдельным от указанного процедурного кабинета для пациентов.



 

Похожие патенты:
Изобретение относится к медицине, онкологии, радиологии и может быть использовано для лечения сарком мягких тканей (СМТ), их рецидивов. Проводят локальную гипертермию 3 раза в неделю, начиная ее одновременно с лучевой терапией, при температуре 43°С в течение 60 мин.

Способ относится к ядерной медицине, нейроонкологии, может быть применен при бор-нейтронозахватной терапии (БНЗТ) злокачественных опухолей. Проводят введение пациенту препарата адресной доставки бора, облучение потоком эпитепловых нейтронов и измерение гамма-спектрометром пространственного распределения интенсивности излучения гамма-квантов.
Изобретение относится к медицине, онкологии, урологии, радиологии, способам регистрации аутофлюоресценции тканей для более эффективного проведения низкодозной брахитерапии локализованных форм злокачественных новообразований предстательной железы.

Группа изобретений относится к медицинской технике, а именно к средствам совмещения изображений. Система для визуализации картирования совмещения изображений, обеспечивающая осуществление способа для визуализации картирования совмещения изображений, в которой первое изображение, использующее первую систему координат, сопоставляется со вторым изображением, использующим вторую систему координат, причем система содержит дисплей и один или более процессоров, запрограммированных принимать первое и второе изображение, получать картирование совмещения изображений из первого изображения во второе изображение, получать одно или более опорных мест в изображении, выделять каждое опорное место в изображении и выделять коррелированное место в изображении, причем один или более процессоров запрограммированы отображать первое изображение рядом со вторым изображением на дисплее, и коррелированные места в изображении определяются с использованием картирования совмещения изображений, причем картирование совмещения изображений содержит, если картирование совмещения изображений осуществляется в системе координат одного из первого изображения и второго изображения, то путем суммирования картирования совмещения изображений с опорным местом в изображении одного из первого изображения и второго изображения и преобразования суммы в систему координат другого из первого изображения и второго изображения, или если картирование совмещения изображений осуществляется в системе координат другого из первого изображения и второго изображения, то путем преобразования опорного места в изображении в систему координат другого из первого изображения и второго изображения и прибавления картирования совмещения изображений.

Группа изобретений относится к наружной дистанционной лучевой терапии. Система планирования лечения для формирования границ лечения содержит один или более процессоров, запрограммированных, чтобы принимать план лучевой терапии (RTP) для облучения мишени в течение одной или более фракций лечения, причем упомянутый RTP включает в себя одну или более границ лечения вокруг мишени, и запланированное распределение дозы, которая должна быть доставлена мишени, принимать данные движения по меньшей мере для одной из фракций лечения по RTP, причем данные движения принимаются во время и/или между фракциями лечения по RTP, вычислять распределение дозы с компенсацией движения для мишени и сравнивать распределение дозы с компенсацией движения с запланированным распределением дозы.

Группа изобретений относится к медицинской технике, а именно к средствам подачи радиофармацевтических материалов. Система измерения радиоактивной концентрации радиофармацевтического препарата содержит контейнер, связанную с ним анализируемую область, сформированную из части контейнера, детектор радиации, апертурную систему, имеющую по меньшей мере один оптический элемент, расположенный между анализируемой областью и детектором радиации, и выполненную с возможностью передачи в нее радиоактивной концентрации радионуклида в анализируемой области, устройство сбора данных, обеспечивающее измерение радиации анализируемой области, и микропроцессорную систему.

Изобретение относится к медицине, онкологии, способам комбинированного лечения местнораспространенного рака прямой кишки (РПК). Проводят предоперационную дистанционную лучевую гамма-терапию (ДЛТ) на фоне введения химиопрепаратов и локальной гипертермии.

Группа изобретений относится к медицинской технике. Предлагается устройство излучения и способ минимизации излучения, в которых излучение, доставляемое пациенту и/или оператору оборудования, минимизируют.

Группа изобретений относится к компьютерной томографии с контрастным усилением. Способ формирования изображения содержит этапы, на которых контролируют цикл движения субъекта, определяют местоположение изучаемой ткани с учетом цикла движения, при этом изучаемая ткань движется согласованно с циклом движения, позиционируют субъект в зоне для исследования так, чтобы весь изучаемый объем изучаемой ткани оставался в зоне для исследования во время сканирования, причем позиционирование включает сканирование с низкой дозой или предварительное сканирование, которое локализует положения всего изучаемого объема за цикл движения, и создают изображение изучаемой ткани субъекта.

Группа изобретений относится к медицинской технике, а именно к дозиметрии облучения. Дозиметр измерения дозы облучения субъекта во время сеанса лучевой терапии под контролем магнитно-резонансной визуализации содержит корпус, наружная поверхность которого выполнена с возможностью размещения субъекта, в котором каждая из отдельных ячеек содержит оболочки, заполненные дозиметром излучения магнитного резонанса.

Изобретения относятся к медицинской технике, а именно к мобильным рентгеновским аппаратам. Мобильный рентгеновский аппарат включает в себя основание для размещения блока управления и источника питания, а также перемещаемый шарнирный рычаг, поддерживающий рентгеновский аппликатор, содержащий рентгеновскую трубку для испускания рентгеновского луча, имеющего центральную ось, через выходное окно для облучения объекта, причем рентгеновский аппарат дополнительно включает в себя дозиметрическую систему на основе фантома, включающую в себя эквивалентный ткани материал, при этом дозиметрическая система содержит по меньшей мере два дозиметра, обеспеченные в эквивалентном ткани материале на определенных глубинах. Способ дозиметрического контроля рентгеновского луча, испускаемого из мобильного рентгеновского аппарата, включает в себя этап, на котором обеспечивают дозиметрическую систему на основе фантома для верификации очаговой дозы рентгеновского облучения. Использование изобретений позволяет осуществлять доставку рентгеновского луча управляемым образом. 2 н. и 21 з.п. ф-лы, 6 ил.

Группа изобретений относится к медицинской технике и направлена на сборный узел источника для брахитерапии, на комплект частей, на способ получения сборного узла источника для брахитерапии, на использование конкретного покрытия и на способ брахитерапевтического лечения. Сборный узел источника для брахитерапии содержит нажимно-вытяжной трос и на его дистальном конце капсулу, подходящую для брахитерапии. Указанная капсула содержит камеру для удерживания одного или нескольких радиоактивных источников, камера образована стенкой, и по меньшей мере часть внешней поверхности стенки капсулы содержит покрытие, содержащее один или несколько материалов, выбранных из TiN, TiCN, TiCrN, CrN, TiA1CrN, DLC и MοS2. Указанную капсулу прикрепляют к нажимно-вытяжному тросу, или указанная капсула содержится в нажимно-вытяжном тросе. Группа изобретений позволяет получить высокую целостность стенки капсулы. 6 н. и 15 з.п. ф-лы, 2 ил.

Группа изобретений относится к медицинской технике, а именно к мобильным рентгеновским аппаратам. Мобильный рентгеновский аппарат включает в себя основание для размещения блока управления, источника питания и охладителя и шарнирный перемещаемый рычаг, поддерживающий рентгеновский аппликатор, содержащий рентгеновскую трубку, причем рентгеновский аппликатор присоединен к основанию, а рентгеновская трубка включает в себя мишень для генерации рентгеновского луча, и коллиматор, подключаемый к гнезду коллиматора, для придания формы генерируемому рентгеновскому лучу, при этом расстояние между мишенью и коллиматором находится в диапазоне от 4 до 10 см. Коллиматор снабжен средством автоматической идентификации, выполненным с возможностью генерировать сигнал в блоке управления, представляющий характеристики коллиматора, а средство идентификации сформировано посредством уникальной пары выступов, приводящей к различимому изменению полного сопротивления гнезда коллиматора. Способ изготовления мобильного рентгеновского аппарата и способ доставки рентгеновского луча для облучения поверхностного поражения состоят в том, что соединяют рычаг с основанием при помощи гибкого кабеля, устанавливают рентгеновскую трубку с мишенью и коллиматор, задают расстояние между мишенью и коллиматором, подключаемым к гнезду коллиматора, в диапазоне от 4 до 10 см, причем коллиматор дополнительно снабжен средством автоматической идентификации с возможностью генерировать сигнал в блоке управления, представляющий характеристики коллиматора, и обнаруживать различимое изменение полного сопротивления гнезда коллиматора. Использование изобретений позволяет уменьшить кожную дозу облучения. 4 н. и 20 з.п. ф-лы, 10 ил.
Изобретение относится к ядерной технике и может быть использовано при радиотерапии с использованием радиоактивных источников. Закрытый источник ионизирующего излучения содержит последовательно соединенные между собой герметичные капсулы с размещенной в каждой капсуле радиоактивной вставкой с радиоактивным веществом на ней, при этом герметичные капсулы соединены между собой путем последовательного оплетения нескольких герметичных капсул хирургической рассасывающейся нитью, причем размещенная в каждой герметичной капсуле радиоактивная вставка выполнена в виде металлической трубки из серебра или стали, покрытой слоем серебра с толщиной стенки металлической трубки, не превышающей значения обратной величины взвешенного по спектру излучения среднего коэффициента линейного ослабления излучения веществом металлической трубки или из куска серебряной проволоки, радиоактивное вещество равномерно нанесено на поверхность металлической трубки или на кусок серебряной проволоки, герметичная капсула образована отрезком трубки из титанового сплава и приваренными к нему лазерной сваркой торцевыми стенками. В результате достигается возможность снизить потери мощности ионизирующего излучения с соответствующим уменьшением расхода количества радиоактивного вещества на одну герметичную капсулу. 2 н. и 12 з.п. ф-лы.

Изобретение относится к медицине, онкологии, лучевой терапии и гипертермическому лечению больных с местнораспространенным раком шейки матки (МРРШМ). Проводят курс сочетанной лучевой терапии: дистанционной гаммы-терапии в стандартном режиме фракционирования дозы РОД 2 Гр, 5 фракций в неделю, с СОД 46 Гр и внутриполостной лучевой терапии с энергией 1,25 МэВ в режиме крупного фракционирования дозы РОД 5 Гр, 2 фракции в неделю, с СОД 50 Гр. Вводят цисплатин в дозе 40 мг/м2, 1 раз в неделю, до суммарной дозы не менее 220 мг. Причем за 2 ч до сеанса внутриполостной лучевой терапии проводят локальную гипертермию при температуре 42-43°С в течение 40-60 мин, 10 сеансов. Способ обеспечивает повышение непосредственной эффективности за счет увеличения удельного веса полных ответов на лечение, благодаря более быстрому регрессу первичного очага, повышение качества жизни больных за счет более быстрого купирования болевого синдрома и прекращения кровотечения из опухоли. 1 пр., 1 ил., 2 табл.
Изобретение относится к медицине, а именно к онкологии. Для выбора индивидуального объема локорегионарной лучевой терапии после хирургической операции по поводу люминального подтипа рака молочной железы (МЖ) проводят морфологическое исследование подмышечных лимфоузлов с метастазами. При этом определяют экспрессию Ki 67. В случае Ki 67<20% проводят облучение оставшейся ткани МЖ или послеоперационного рубца после ее удаления, а также тканей передней грудной стенки и зоны нижних и средних лимфатических узлов подмышечной области. При Ki 67≥20% проводят облучение оставшейся ткани МЖ или послеоперационного рубца после ее удаления, а также тканей передней грудной стенки и зоны лимфатических узлов подмышечной и подключичной области. Способ обеспечивает существенное снижение лучевой нагрузки при облучении пациентов раком МЖ, короткие сроки реабилитации. 2 пр.
Изобретение относится к медицине, а именно к онкологии, и может быть использовано для лечения люминального подтипа рака молочной железы N1 в постменопаузальном периоде. Для этого определяют рецепторы эстрогена, суммарный диаметр метастазов D в аксиллярных лимфоузлах и среднее количество метастатических клеток К, ядра которых экспрессируют рецепторы эстрогена, в них. При выявлении 2≤D<10 мм и значении К, превышающем 1%, проводят лучевую терапию по выбранной схеме лечения, а после ее завершения осуществляют сочетанное введение тамоксифена и неселективного бета-адреноблокатора ежедневно в терапевтических дозах в течение 1-5 лет. При выявлении D≥10 мм и при значении К≥33% осуществляют последовательное проведение адьювантной химиотерапии с одновременным подкожным введением фрагмина в суточной дозе 2500 ME ежедневно, затем проводят лучевую терапию по выбранным схеме лечения, а после этого проводят гормонотерапию ингибитором ароматазы в течение 5-7 лет. При выявлении D≥10 мм и при значении К<33% осуществляют одновременное проведение химиолучевой и гормонотерапии, при этом одновременно с химиотерапией вводят подкожно фрагмин в дозе 5000 ME ежедневно, а в качестве гормонотерапии используют ингибитор ароматазы в течение 7-10 лет. Способ обеспечивает возможность в более короткие сроки провести лечение, в ряде случаев сохранить трудоспособность во время его проведения, избавить пациента от возможных осложнений при обеспечении высокой эффективности терапии. 3 пр.

Группа изобретений относится к мобильным рентгеновским аппаратам. Рентгеновский аппарат включает в себя основание для размещения блока управления и источника питания, перемещаемый шарнирный рычаг, поддерживающий рентгеновский аппликатор, имеющий рентгеновскую трубку, содержащую мишень анода и катод и включающую в себя корпус, имеющий выходное окно на одном его конце для испускания рентгеновского луча из мишени анода через выходное окно для облучения объекта. Рентгеновский аппарат дополнительно включает встроенную дозиметрическую систему, выполненную с возможностью осуществления дозиметрии в реальном времени, которая размещена в рентгеновской трубке вне пути рентгеновского луча, испускаемого из мишени анода и проходящего через выходное окно, при этом катод расположен сбоку от оси вблизи выходного окна. Способ дозиметрического контроля рентгеновского луча включает этап, на котором измеряют относящийся к излучению параметр, связанный с рентгеновским лучом, с использованием встроенной дозиметрической системы, которая обеспечена вне пути рентгеновского луча, испускаемого из мишени анода и проходящего через выходное окно. Использование изобретений позволяет доставлять рентгеновский луч управляемым образом. 2 н. и 19 з.п. ф-лы, 6 ил.
Изобретение относится к медицине, а именно к онкологии, и может быть использовано для лечения местно-распространенного рака молочной железы с опухолевыми изъязвлениями кожи. Для этого проводят лучевую терапию в режиме среднего фракционирования дозы на область основания молочной железы и зоны регионарного лимфооттока. Дополнительно до начала облучения на область опухоли наносят гидрогелевую Салфетку «Колетекс-5-фтур» в течение 5-7 дней по 2-3 раза ежедневно. Перед облучением на область опухолевых изъязвлений кожи наносят гидрогелевую Салфетку «Колетекс-5-фтур», в которую предварительно вводят азотнокислое серебро в мас.% 0,2-2,0. При этом краевые зоны опухолевых изъязвлений кожи обрабатывают материалом гидрогелевым на основе альгината натрия «Колетекс-гель-ДНК», в который предварительно вводят бетулинсодержащий экстракт бересты в мас.% 0,1-1,5. После нанесения указанных гидрогелей поверх них на область молочной железы размещают термосетку, которую выкраивают с перекрытием области язвы на 1,0-1,5 см. Перед проведением лучевой терапии разметку поля в области язвы проводят на термосетке. Способ обеспечивает ускорение заживления опухолевых язв, снижение лекарственной нагрузки, снижение токсичности и возможности проведения лучевой терапии без перерыва, уменьшение травматизации тканей в зоне облучения, купирование воспалительных процессов. 2 пр.

Группа изобретений относится к медицинской технике, а именно к наружной дистанционной лучевой терапии. Система планирования лечения для генерации лечения для конкретного пациента содержит один или более процессоров, запрограммированных принимать план лучевой терапии (RTP) для облучения мишени на протяжении курса из одной или более лечебных фракций, который включает в себя распределение запланированной дозы, подлежащей введению в мишень, принимать данные движения пациента для, по меньшей мере, одной из лечебных фракций RTP, принимать временные метрические данные введения для, по меньшей мере, одной из лечебных фракций RTP, вычислять распределение дозы, скомпенсированной по движению, для мишени с использованием данных движения и временных метрических данных введения, и сравнивать распределение дозы, скомпенсированной по движению, с распределением запланированной дозы, при этом временные метрические данные введения включают в себя угловые положения гентри все время в ходе этой фракции и количества сегментов, принадлежащих конкретному пучку, который активен в любой данный момент времени. Система лучевой терапии содержит одно или более устройств формирования изображения, систему планирования, устройство лучевой терапии, устройство контроля введения дозы, и устройство контроля движения, генерирующее данные движения из суррогатных мишеней мишени. Способ генерации лечения для конкретного пациента содержит этапы, которые осуществляются с использованием системы планирования лечения. Система лучевой терапии по второму варианту выполнения дополнительно содержит один или более процессоров, запрограммированных принимать RTP для облучения мишени на протяжении курса из одной или более лечебных фракций. Использование изобретений позволяет повысить точность введенной дозы. 3 н. и 11 з.п. ф-лы, 3 ил.
Наверх