Способ измерения дебита нефтяных скважин и устройство для его осуществления

Изобретение относится к технике, используемой в нефтедобывающей промышленности, и предназначено для замера и учета продукции нефтяных скважин. Технический результат заключается в повышении качества и эффективности измерения дебита нефтяных скважин. Способ измерения дебита нефтяных скважин включает постоянный процесс разделения нефтеводогазовой смеси на компоненты и содержит вначале отделения газовой фазы от жидкой дисперсией потока смеси и инерционным воздействием на поток газа, затем разделение жидкой фазы на нефть и воду методом отстоя в гравитационном поле и повторяющийся цикл измерения, включающий последовательно: сброс газовой фазы в общую линию с одновременным измерением ее расхода, накопление жидкой фазы до заданного уровня и, как следствие этого, перекрытие сброса газовой фазы, накопление газовой фазы до заданного перепада давлений ее и среды в общей линии и, как следствие этого, сброс жидкой фазы порцией заданной величины в общую линию с одновременным измерением ее расхода и открытием сброса газовой фазы, а также поддержание давления газовой фазы в заданных пределах сбросом ее в общую линию и сброс порции газовой фазы, дополнительно поступившей из скважин с газовым «пузырем», вне зависимости от уровня накопления жидкой фазы. При этом определение дебита продукции нефтяных скважин производят поочередным заполнением жидкостью, с учетом времени заполнения, и вытеснением жидкости, с учетом времени вытеснения, фиксированного объема газосепаратора, заданного с помощью датчиков фиксированными положениями заслонки «открыто» и «закрыто» и верхнего и нижнего положений поплавка, с поочередным раздельным измерением контроллером дебита газа по счетчику газа, и дебита жидкости по счетчику жидкости либо измерением дебита газа по счетчику жидкости, либо измерением дебита жидкости по счетчику газа. В реализующем способ устройстве на газовой линии установлены датчики давления и температуры, связанные с контроллером, причем газовая заслонка на газовой линии и поплавок газосепаратора связаны рычажно-пружинным механизмом с возможностью фиксации положения газовой заслонки «открыто» или «закрыто», при этом газовая заслонка снабжена соединенными с контроллером датчиками положения «открыто» или «закрыто» фиксированного объема газосепаратора жидкой фазы, ограниченного нижним и верхним уровнями, определяемыми положениями поплавка. 2 н.п. ф-лы, 2 ил.

 

Изобретение относится к технике, используемой в нефтедобывающей промышленности, и предназначено для замера и учета продукции нефтяных скважин.

Известно устройство для измерения дебита скважин (патент на РФ №2199662, Е21В 47/10, 29.05.2001), содержащее газосепаратор с поплавком, связанным с заслонкой на газовой линии, сообщенный жидкостной и, через заслонку, газовой линиями с общей линией, включающее также счетчик жидкости, клапан с подпружиненным штоком дискретного действия с магнитной фиксацией, седло клапана, шайбу из магнитного материала, укрепленную на штоке и расположенную между кольцевыми магнитами, установленными в магнитопроводах, жестко прикрепленных к корпусу, взаимодействующими с шайбой при перемещении штока, и фиксирующие ее в крайних положениях, дроссель, установленный в проходном сечении седла клапана и жестко соединенный со штоком последнего. Способ подготовки и измерения дебита продукции заключается в том, что в постоянном процессе сепарации нефтеводогазовой смеси из скважины, путем дробления ее потока, смесь разделяют на две фазы (продукты разделения): газовую и жидкую: затем, в постоянно повторяющемся цикле измерения, последовательно выполняют следующие операции: газовую фазу сбрасывают в общую линию, а жидкую фазу накапливают и разделяют при этом на компоненты путем отстоя в гравитационном поле, причем операцию осуществляют до достижения фазой заданного уровня, вследствие чего этим перекрывают сброс газовой фазы и накапливают ее до создания заданного перепада давлений газовой фазы в газосепараторе и среды в общей линии, и, как следствие этого, затем сбрасывают жидкую фазу в общую линию, при этом измеряют ее расход и открывают сброс газовой фазы.

Недостатками известных способа и устройства являются:

- сброс жидкой фазы в виде неупорядоченной последовательности чередующихся порций отстоявшихся компонентов неопределенного объема, что не способствует качественной подготовке перед подачей в товарный парк;

- измерение дебита только жидкой фазы - смеси двух компонентов: нефти и воды;

- отсутствие способа и средств удаления газа, выделившегося из раствора в жидкой фазе при подаче ее жидкостной линией из газосепаратора к счетчику жидкости, что значительно снижает точность измерения.

Известно устройство для измерения дебита нефтяных скважин (авт. свид. СССР №1553661, Е21В 47/10, 30.03.1990), содержащее вертикальный цилиндрический сепаратор с гидроциклоном, датчики уровня, датчики давления и температуры, газовую линию с клапаном дискретного действия, впускную и выпускную жидкостные линии, успокоительные решетки, нижнюю и верхнюю, и микропроцессор. Способ измерения дебита включает подготовку продукции нефтяных скважин к измерению дебита и непосредственно само измерение, выполняемые в заданном порядке: подача нефтеводогазовой смеси из нефтяных скважин на сепарацию, разделение ее в гидроциклоне инерционным воздействием, на жидкую и газовую фазы, сброс газовой фазы в общий коллектор, накопление жидкой фазы в полости измерения и разделение ее при этом на компоненты отстоем в гравитационном поле, сглаживание пульсаций поля скоростей ее неупорядоченного перемещения, вычисление ее объемного и массового дебитов и относительного содержания нефти и воды в ней, по известным их плотностям, путем измерения времени заполнения объема полости измерения жидкой фазой и измерения массы этого объема жидкой фазы методом гидростатического взвешивания ее столба, затем по заполнении объема полости измерения жидкой фазой до заданного уровня перекрытие сброса газовой фазы и ее накопление с одновременным измерением давления и температуры и, как следствие этого, вытеснение жидкой фазы в сборный коллектор давлением газовой фазы, в процессе которого вычисляют дебит газовой фазы по времени вытеснения.

Известные способ и устройство имеют ряд недостатков:

- сброс жидкой фазы в виде неупорядоченной последовательности чередующихся порций отстоявшихся компонентов неопределенного объема, что не способствует качественной последующей подготовке ее перед подачей в товарный парк;

- отсутствует непосредственный замер плотностей воды, газа и нефти, текущие значения величин которых необходимы для расчета микропроцессором дебита компонентов продукции скважины;

- не учитывается при определении дебита газовой фазы изменение давления и температуры ее за время процесса вытеснения;

- не стабилизируется величина давления газовой фазы;

- отсутствуют средства для удаления газа, выделившегося из раствора в жидкой фазе при прохождении ею выпускной жидкостной линии, что может отрицательно сказаться на работе последней как сифона;

- не учитывается при определении дебита газовой фазы объем жидкой фазы, дополнительно поступившей в сепаратор во время процесса вытеснения;

- не используются потенциальные возможности способа, проявляющиеся в результате естественного разделения на компоненты жидкой фазы во время ее накопления, для замера плотности компонентов и сохранения устойчивого состояния разделенности жидкой фазы на компоненты при подаче ее в общий коллектор.

Известно устройство для дифференцированного измерения дебита нефтяных скважин (патент РФ №2406823, Е21В 47/10, 14.09.2009), содержащее газосепаратор, гидроциклон, сепаратор со сливами и барьерными гидрозапорами, клапаны дискретного действия, объемные счетчики, газожидкостные затворы, газовую линию, датчики уровня, давления, температуры, микропроцессор, и способ дифференцированного измерения дебита нефтяных скважин, содержащий подачу продукции из скважин в виде нефтеводогазовой смеси в сепаратор, разделение ее в гидроциклоне на жидкую и газовую фазы, сброс газовой фазы в общий коллектор с одновременным измерением ее давления и температуры, накопление жидкой фазы, разделение ее на компоненты отстоем в гравитационном поле, сглаживание пульсаций поля скоростей неупорядоченного перемещения жидкой фазы, определение ее объемного и массового дебитов, содержания нефти и воды в ней по известным их плотностям, затем по окончании накопления жидкой фазы до заданного уровня перекрытие сброса газовой фазы и накопление ее и, как следствие перекрытия, вытеснение жидкой фазы в общий коллектор, а по окончании его открытие сброса газовой фазы и определение ее дебита.

Известные способ и устройство имеют следующие недостатки:

- требуется длительное время для определения порции дебита воды, нефти и эмульсии и каждой их этих составляющих при большой обводненности продукции нефтяных скважин для более точного измерения порций компонентов определенного объема:

- не работает гидравлический затвор устройства по газу при большом газовом факторе продукции нефтяной скважины.

Известны способ измерения дебита продукции нефтяных скважин и устройство для его осуществления (патент РФ №2541991, Е21В 47/10, 18.02.2014). При этом способе из продукции нефтяных скважин в виде нефтеводогазовой смеси выделяют чистую воду системой сифонов за счет создания гидравлического затвора для прохождения нефти и эмульсии. Накапливают прошедшие через гидравлический затвор нефти и эмульсии, переключением и созданием гидравлического затвора для прохождения чистой воды, для последующей идентификации плотномером и измерения объемным расходомером. При накоплении до соответствующего уровня жидкости создают гидравлический затвор для прохождения газа. Под действием возрастающего давления газа с открытием комбинированного регулятора расхода производят выдавливание жидкости из отстойников. С падением уровня жидкости в отстойниках гидравлический затвор ликвидируют и начинается проход газа через комбинированный расходомер, комбинированный регулятор расхода. Замеряют давление и температуру во время сброса его в общий коллектор. Замеряют объемный расход компонентов нефти, эмульсии, воды и газа. Поддерживают давление среды в заданном интервале его значений. Рассчитывают параметры процесса измерения и дебита нефтяных скважин и при этом обеспечивают подбором сечения в трубопроводах гидрозатворов соотношения скоростей потока жидкостей или газа со скоростью всплытия пузырьков нефти и эмульсии в воде или газа в жидкости. Устройство, в котором газовая линия содержит газовый расходомер и газовый регулятор расхода. Газосепаратор в нижней части связан с общим коллектором комбинированным расходомером, комбинированным регулятором расхода и плотномером через буферную емкость, которая соединена с разделительной емкостью газовым трубопроводом и жидкостным трубопроводом. Разделительная емкость и буферная емкость, соединенные газовым трубопроводом, образуют прямой и оппозитный сифон, а соединенные жидкостным трубопроводом - оппозитный сифон. Буферная емкость связана с общим коллектором измерительной линией. Разделительная емкость связана с основной газовой линией газовым трубопроводом, а с газосепаратором через вертикальный отстойник, вертикальный трубопровод и трубопроводы, образующие два прямых сифона и два оппозитных сифона. Между зоной вертикального отстойника и вертикального трубопровода в газосепараторе установлены перегородки. Микропроцессор соединен с газовым расходомером, газовым регулятором расхода, комбинированным расходомером, комбинированным регулятором расхода и плотномером.

Недостатками аналога являются:

- отсутствие четкого разделения жидкой и газовой фазы измерения, так как существует возможность прохождения через газовый счетчик газожидкостной смеси;

- наличие погрешности в широком диапазоне измерения расхода жидкой и газовой фаз продукции при наличии разных расходомеров для жидкости и газа.

Наиболее близкими по технической сущности и достигаемому результату к заявляемому являются способ измерения дебита нефтяных скважин и устройство его осуществления (варианты) (патент РФ №2351757, Е21В 47/10, 05.09.2007). Устройство состоит из газосепаратора с продуктоотборником и поплавком, связанным с заслонкой на газовой линии, сообщающей газосепаратор через объемный и массовый расходомеры и клапан с общей линией. Газосепаратор также сообщен с аварийной емкостью и связан с общей линией через гравитационный сепаратор с сифонным продуктоотборником, а через объемный и массовый расходомеры и клапан - жидкостной линией. Заслонка оборудована байпасом, включающим компенсационную емкость и клапан. Имеется блок вычисления, учета добычи, регистрации и анализа результатов измерения. Клапаны выполнены с фиксацией крайних положений и с возможностью открытия прохода сверх номинала. Способ включает отделение газовой фазы от жидкой, замер расхода и вычисление ее плотности, двухэтапное разделение жидкой фазы: предварительное - в процессе ее накопления и окончательное - гравитационной сепарацией после дросселирования отдельных капель нефти на компоненты, отбор поочередно порций каждого компонента, затем дублированный замер расходов компонентов и вычисление их плотностей. По данным замеров производят определение дебита скважин по компонентам отдельно и учет добычи.

Недостатками ближайшего аналога являются:

- применение расходомеров жидкости и газа разного типа, что расширяет диапазон погрешности измерений;

- в процессе измерения расхода газа существует возможность прохождения и учета расходомером по газу капельной газожидкостной смеси;

- отсутствие калибровки показаний расходомеров по газу и жидкости между собой по погрешности их показаний в режиме их постоянной работы.

Задачей изобретения является повышение точности измерения дебита нефтяных скважин по отдельным компонентам их продукции.

Техническим результатом заявляемого изобретения является повышение качества и эффективности измерения дебита нефтяных скважин.

Повышение качества и эффективности измерения дебита нефтяных скважин обеспечивается за счет того, что показания газового расходомера подтверждаются показаниями жидкостного расходомера, и на газовой линии устройство снабжено газовой заслонкой с фиксацией датчиками положения «открыто» и «закрыто», связанными с контроллером для раздельного определения дебита нефтяных скважин по отдельным компонентам их продукции, а рычажно-пружинный механизм, связывающий поплавок газосепаратора с газовой заслонкой на газовой линии, обеспечивает гарантированное положение газовой заслонки в режимах «открыто» и «закрыто».

Поставленная задача решается, а технический результат достигается тем, что по способу измерения дебита нефтяных скважин, включающему постоянный процесс разделения нефтеводогазовой смеси на компоненты, по которому сначала отделяют газовую фазу от жидкой дисперсией потока смеси и инерционным воздействием на поток газа, затем разделяют жидкую фазу на нефть и воду методом отстоя в гравитационном поле и повторяют цикл измерения, включающий последовательно сброс газовой фазы в общую линию с одновременным измерением ее расхода, накопление жидкой фазы до заданного уровня и, как следствие этого, перекрытие сброса газовой фазы, накопление газовой фазы до заданного перепада давлений ее среды в общей линии и, как следствие этого, сброс жидкой фазы порцией заданной величины в общую линию с одновременным измерением ее расхода и открытием сброса газовой фазы, а также поддержание давления газовой фазы в заданных пределах сбросом ее в общую линию и сброс порции газовой фазы, дополнительно поступившей из скважин с газовым «пузырем», вне зависимости от уровня накопления жидкой фазы, согласно изобретению определение дебита продукции нефтяных скважин производят поочередным заполнением жидкостью, с учетом времени заполнения, и вытеснением жидкости, с учетом времени вытеснения, фиксированного объема Vо сепаратора, заданного фиксированными положениями датчиков заслонки «открыто» и «закрыто» и верхнего и нижнего положений поплавка, с поочередным раздельным измерением контроллером дебита газа по счетчику газа и дебита жидкости по счетчику жидкости, либо измерением дебита газа по счетчику жидкости, либо измерением дебита жидкости по счетчику газа, при этом дебит жидкости определяют по показаниям счетчика жидкости, отнесенным к сумме времени вытеснения и времени заполнения фиксированного объема Vо сепаратора:

Vо=Qдебит газа⋅tвытеснения;

Vo=Qдебит жидкости⋅tзаполнения,

где:

Vo - фиксированный объем газосепаратора;

Qдебит газа - дебит газа;

Qдебит жидкости - дебит жидкости;

tвытеснения - время вытеснения жидкой фазы фиксированного объема Vo газосепаратора;

tзаполнения - время заполнения жидкой фазой фиксированного объема Vo газосепаратора.

Qдебит жидкости=Vсчетчик жидкости/(tзаполнения+tвытеснения),

где:

Vсчетчик жидкости - объем жидкости, измеренный счетчиком;

tзаполнения - время заполнения жидкой фазой фиксированного объема Vo сепаратора;

tвытеснения - время вытеснения жидкой фазы фиксированного объема Vo сепаратора;

а дебит газа определяют по показаниям счетчика газа, отнесенным к сумме времени вытеснения и времени заполнения фиксированного объема Vo сепаратора:

Qдебит газа=Vсчетчик газа/(tзаполнения+tвытеснения),

где:

Vсчетчик жидкости - объем газа, измеренный счетчиком газа;

tзаполнения - время заполнения жидкой фазой фиксированного объема Vo сепаратора;

tвытеснения - время вытеснения жидкой фазы фиксированного объема Vo сепаратора,

либо дебит газа определяют по дебиту жидкости с учетом времени заполнения, отнесенному ко времени вытеснения:

Qдебит газа=Qдебит жидкости⋅tзаполнения/tвытеснения,

где:

Рдебит жидкости - дебит жидкости определяют по показаниям счетчика жидкости, отнесенным к сумме времени вытеснения и времени заполнения фиксированного объема Vo сепаратора;

tзаполнения - время заполнения жидкой фазой фиксированного объема Vo сепаратора;

tвытеснения - время вытеснения жидкой фазы фиксированного объема Vo газосепаратора,

либо дебит жидкости определяют по дебиту газа с учетом времени вытеснения, отнесенному ко времени заполнения:

Qдебит жидкости=Qдебит газа⋅tвытеснения/tзаполнения,

где:

Qдебит газа - дебит газа по показаниям счетчика газа, отнесенным к сумме времени вытеснения и заполнения фиксированного объема Vo газосепаратора;

tвытеснения - время вытеснения жидкой фазы фиксированного объема Vo газосепаратора;

tзаполнения - время заполнения жидкой фазой фиксированного объема Vo газосепаратора.

Поставленная задача решается, а технический результат достигается также тем, что по устройству для измерения дебита нефтяных скважин, содержащему газосепаратор с поплавком, связанным с газовой заслонкой на газовой линии, сообщающей газосепаратор с общей линией, связанные с контроллером жидкостный и газовый расходомеры, жидкостный и газовый регуляторы расхода, установленные на жидкостной, также сообщающей газосепаратор с общей линией, и газовых линиях с возможностью фиксации их в двух крайних положениях «открыто» и «закрыто», согласно изобретению на газовой линии установлены датчики давления и температуры, связанные с контроллером, причем газовая заслонка на газовой линии и поплавок газосепаратора связаны рычажно-пружинным механизмом, фиксирующим положения газовой заслонки «открыто» или «закрыто», при этом газовая заслонка снабжена соединенными с контроллером датчиками положения «открыто» и «закрыто» фиксированного объема Vo газосепаратора жидкой фазы, ограниченного нижним и верхним уровнями, определяемыми положениями поплавка.

Суть изобретения поясняется чертежами. На фиг. 1 изображена схема устройства с открытой газовой заслонкой. На фиг. 2 изображена схема устройства с закрытой газовой заслонкой;

Устройство для измерения дебита нефтяных скважин (в дальнейшем тексте «устройство») содержит газосепаратор 1 с поплавком 2, взаимодействующий с газовой заслонкой 3 на газовой линии 4, соединенной с общей линией 5. На газовой линии 4 после газовой заслонки 3 последовательно установлены газовый расходомер 6, датчик давления 7, датчик температуры 8 и газовый регулятор расхода 9, а на жидкостной линии 10 на выходе из газосепаратора 1 установлен жидкостной расходомер 11 и за ним жидкостной регулятор расхода 12, соединенный с общей линией 5.

Установленные на газовой линии 4 газовый расходомер 6, датчик давления 7, датчик температуры 8 и газовый регулятор расхода 9, наряду с датчиком положения «открыто» 13 и датчиком положения «закрыто» 14 газовой заслонки 3, также как жидкостной расходомер 11 и жидкостной регулятор расхода 12 на жидкостной линии 10 связаны с контролером 15, а газовая заслонка 3 связана с поплавком 2 газосепаратора 1 рычажно-пружинным механизмом 16.

Устройство для измерения дебита нефтяных скважин работает следующим образом: продукцию нефтяных скважин в виде нефтегазовой смеси подают в газосепаратор 1, в котором производят отделение газа от жидкости и газ из газосепаратора 1 по мере его поступления через открытую газовую заслонку 3, газовую линию 4, газовый расходомер 6, датчики давления 7 и температуры 8, газовый регулятор расхода 9 попадают в общую линию 5.

По мере накопления жидкости в газосепараторе 1 и достижением поплавка 2 максимального уровня жидкости Н газовая заслонка 3 занимает положение «закрыто» под воздействием рычажно-пружинного механизма 16. Между газосепаратором 1 и общей линией 5 создается перепад давления. При этом с достижением перепада давления между газосепаратором 1 и общей линией 5 величины открытия жидкостного регулятора расхода 12, который открывается и начинается движение жидкости из газосепаратора 1 через жидкостный расходомер 11, жидкостный регулятор расхода 12 в общую линию 5 по жидкостной линии 10. Уровень жидкости в газосепараторе 1 падает и через время вытеснения (tвытеснения) с достижением поплавка 2 уровня h газовая заслонка 3, связанная с поплавком 2, занимает положение «открыто» под воздействием рычажно-пружинного механизма 16. В результате газ из газосепаратора 1 через газовую заслонку 3, газовый расходомер 6, датчики давления 7 и температуры 8, газовый регулятор расхода 9 поступает в общую линию 5. При этом жидкостный регулятор расхода 12 закрывается и газосепаратор 1 заполняется жидкостью, а контроллер 15 начинает отсчет времени заполнения (tзаполнения) жидкостью фиксированного объема Vo газосепаратора 1 с момента получения сигнала от датчика 13 «открыто» открытого положения газовой заслонки 3 и заканчивается после заполнения фиксированного объема Vo газосепаратора 1 с достижением максимального уровня Н и получения сигнала от датчика 14 «закрыто» закрытого положения газовой заслонки 3, после чего начинается отсчет времени вытеснения газом жидкой фазы фиксированного объема Vo. С достижением минимального уровня h поплавком 2, связанным с рычажно-пружинным механизмом 16, произойдет закрытие газовой заслонки 3. С выдачей сигнала от датчика положения «открыто» 13 заканчивается время вытеснения (tвытеснения) жидкой фазы фиксированного объема газосепаратора 1, газ поступает в общую линию 5 и газосепаратор 1 заполняется жидкостью.

Уровни жидкой фазы по отметкам Н и h определяют постоянный объем V измерения, создаваемый положениями поплавка 2 и соответственно положениями газовой заслонки 3 «открыто» - датчиком положения «открыто» 13 и «закрыто» - датчиком положения «закрыто» 14. Рычажно-пружинный механизм 16 обеспечивает гарантированное положение газовой заслонки 3 в режимах «открыто» и «закрыто».

Время процесса заполнения (tзаполнения) и время процесса вытеснения (tвытеснения) газосепаратора 1 измеряют контроллером 15 по срабатыванию датчиков положения «открыто» 13 и датчиков положения «закрыто» 14 газовой заслонки 3 соответственно «открыто» и «закрыто». Через время заполнения (tзаполнения) уровень жидкости в газосепараторе 1 поднимается до максимального уровня Н. После чего цикл работы устройства повторяется. При этом дебит жидкости определяют по показаниям счетчика жидкости, отнесенным к сумме времени вытеснения и времени заполнения фиксированного объема Vo сепаратора:

Vo=Qдебит газа⋅tвытеснения;

Vo=Qдебит жидкости⋅tзаполнения,

где:

Vo - фиксированный объем газосепаратора;

Qдебит газа - дебит газа;

Qдебит жидкости - дебит жидкости;

tвытеснения - время вытеснения жидкой фазы фиксированного объема Vo газосепаратора;

tзаполнения - время заполнения жидкой фазой фиксированного объема Vo газосепаратора.

Qдебит жидкости=Vсчетчик жидкости/(tзаполнения+tвытеснения)

где:

Vсчетчик жидкости - объем жидкости, измеренный счетчиком;

tзаполнения - время заполнения жидкой фазой фиксированного объема Vo сепаратора;

tвытеснения - время вытеснения жидкой фазы фиксированного объема Vo сепаратора,

а дебит газа определяют по показаниям счетчика газа, отнесенным к сумме времени вытеснения и времени заполнения фиксированного объема Vo сепаратора

Qдебит газа=Vсчетчик газа/(tзаполнения+tвытеснения)),

где:

Vсчетчик жидкости - объем газа, измеренный счетчиком газа;

tзаполнения - время заполнения жидкой фазой фиксированного объема Vo сепаратора;

tвытеснения - время вытеснения жидкой фазы фиксированного объема Vo сепаратора,

либо дебит газа определяют по дебиту жидкости с учетом времени заполнения, отнесенному ко времени вытеснения.

Qдебит газа=Qдебит жидкости⋅Vсчетчик газа/(tзаполнения+tвытеснения)

где:

Qдебит жидкости - дебит жидкости определяют по показаниям счетчика жидкости, отнесенным к сумме времени вытеснения и времени заполнения фиксированного объема Vo сепаратора;

tзаполнения - время заполнения жидкой фазой фиксированного объема Vo сепаратора;

tвытеснения - время вытеснения жидкой фазы фиксированного объема Vo газосепаратора,

либо дебит жидкости определяют по дебиту газа с учетом времени вытеснения, отнесенному ко времени заполнения:

Qдебит жидкости=Qдебит газа⋅tвытеснения/tзаполнения

где:

Qдебит газа - дебит газа по показаниям счетчика газа, отнесенным к сумме времени вытеснения и заполнения фиксированного объема Vo газосепаратора;

tвытеснения - время вытеснения жидкой фазы фиксированного объема Vo газосепаратора;

tзаполнения - время заполнения жидкой фазой фиксированного объема Vo газосепаратора.

Использование изобретения позволяет повысить точность и количество измерения дебита газа и жидкости нефтяных скважин и создать надежное устройство с выбором оптимального способа измерения с подбором оптимального состава средств измерения.

Заявляемое изобретение обеспечивает повышение точности измерения дебита нефтяных скважин по отдельным компонентам их продукции, а также повышение качества и эффективности измерения дебита нефтяных скважин.

1. Способ измерения дебита нефтяных скважин, включающий постоянный процесс разделения нефтеводогазовой смеси на компоненты, по которому сначала отделяют газовую фазу от жидкой дисперсией потока смеси и инерционным воздействием на поток газа, затем разделяют жидкую фазу на нефть и воду методом отстоя в гравитационном поле и повторяют цикл измерения, включающий последовательно сброс газовой фазы в общую линию с одновременным измерением ее расхода, накопление жидкой фазы до заданного уровня и, как следствие этого, перекрытие сброса газовой фазы, накопление газовой фазы до заданного перепада давлений ее и среды в общей линии и, как следствие этого, сброс жидкой фазы порцией заданной величины в общую линию с одновременным измерением ее расхода и открытием сброса газовой фазы, а также поддержание давления газовой фазы в заданных пределах сбросом ее в общую линию и сброс порции газовой фазы, дополнительно поступившей из скважин с газовым «пузырем», вне зависимости от уровня накопления жидкой фазы, отличающийся тем, что определение дебита продукции нефтяных скважин производят поочередным заполнением жидкостью с учетом времени заполнения, и вытеснением жидкости, с учетом времени вытеснения, фиксированного объема Vo газосепаратора, заданного, с помощью датчиков, фиксированными положениями заслонки «открыто» и «закрыто» и верхнего и нижнего положений поплавка, с поочередным раздельным измерением контроллером дебита газа по счетчику газа и дебита жидкости по счетчику жидкости, либо измерением дебита газа по счетчику жидкости, либо измерением дебита жидкости по счетчику газа, при этом дебит жидкости определяют по показаниям счетчика жидкости, отнесенным к сумме времени вытеснения и времени заполнения фиксированного объема Vo сепаратора:

;

,

где:

Vo - фиксированный объем газосепаратора;

Qдебит газа - дебит газа;

Qдебит жидкости - дебит жидкости;

tвытеснения - время вытеснения жидкой фазы фиксированного объема Vo газосепаратора;

tзаполнения - время заполнения жидкой фазой фиксированного объема Vo газосепаратора.

,

где:

V счетчик жидкости - объем жидкости, измеренный счетчиком;

tзаполнения - время заполнения жидкой фазой фиксированного объема Vo газосепаратора;

tвытеснения - время вытеснения жидкой фазы фиксированного объема Vo газосепаратора, а дебит газа определяют по показаниям счетчика газа, отнесенным к сумме времени вытеснения и времени заполнения фиксированного объема Vo газосепаратора:

,

где:

V счетчик жидкости - объем газа, измеренный счетчиком газа;

tзаполнения - время заполнения жидкой фазой фиксированного объема Vo газосепаратора;

tвытеснения - время вытеснения жидкой фазы фиксированного объема Vo газосепаратора,

либо дебит газа определяют по дебиту жидкости с учетом времени заполнения, отнесенному ко времени вытеснения:

где:

Qдебит жидкости - дебит жидкости определяют по показаниям счетчика жидкости, отнесенным к сумме времени вытеснения и времени заполнения фиксированного объема Vo сепаратора;

tзаполнения - время заполнения жидкой фазой фиксированного объема Vo сепаратора;

tвытеснения - время вытеснения жидкой фазы фиксированного объема Vo газосепаратора,

либо дебит жидкости определяют по дебиту газа с учетом времени вытеснения, отнесенному ко времени заполнения:

где:

Qдебит газа - дебит газа по показаниям счетчика газа, отнесенным к сумме времени вытеснения и заполнения фиксированного объема Vo газосепаратора;

tвытеснения - время вытеснения жидкой фазы фиксированного объема Vo газосепаратора;

tзаполнения - время заполнения жидкой фазой фиксированного объема Vo газосепаратора.

2. Устройство для измерения дебита нефтяных скважин, содержащее газосепаратор с поплавком, связанным с газовой заслонкой на газовой линии, сообщающей газосепаратор с общей линией, связанные с контроллером жидкостный и газовый расходомеры, жидкостный и газовый регуляторы расхода, установленные на жидкостной, также сообщающей газосепаратор с общей линией, и газовой линиях с возможностью фиксации их в двух крайних положениях «открыто» или «закрыто», отличающееся тем, что на газовой линии установлены датчики давления и температуры, связанные с контроллером, причем газовая заслонка на газовой линии и поплавок газосепаратора связаны рычажно-пружинным механизмом с возможностью фиксации положения газовой заслонки «открыто» или «закрыто», при этом газовая заслонка снабжена соединенными с контроллером датчиками положения «открыто» или «закрыто» фиксированного объема газосепаратора жидкой фазы, ограниченного нижним и верхним уровнями, определяемыми положениями поплавка.



 

Похожие патенты:

Изобретение относится к нефтедобыче, а именно к измерению дебита скважины в процессе ее эксплуатации. Технический результат заключается в упрощении и повышении точности определения дебита.
Изобретение относится к области добычи природного газа и, в частности, к оперативному контролю выноса воды и песка из скважины в автоматизированных системах управления технологическими процессами (АСУ ТП) нефтегазоконденсатных месторождений Крайнего Севера.

Изобретение относится к нефтегазовой промышленности и может быть использовано при разработке газовых и газоконденсатных месторождений. Способ включает проведение стандартных газодинамических исследований скважин на стандартных режимах фильтрации с построением зависимости устьевых параметров (давления и температуры) и давления на забое скважины от расхода газа, контроль соответствия величины фиксируемых в процессе эксплуатации устьевых параметров величине параметров, определяемой зависимостью, построенной по результатам газодинамических исследований (ГДИ) при текущем расходе газа.

Изобретение относится к области исследования характеристик скважин. Техническим результатом является обеспечение возможности проведения оперативного контроля скважины одновременно с этапом ее освоения.

Изобретение относится к газодобывающей промышленности и может быть использовано при разработке и эксплуатации газовых месторождений. Техническим результатом является диагностирование начала обводнения газовых скважин в режиме реального времени и предотвращение их самозадавливания.

Изобретение относится к нефтегазодобывающей промышленности, в частности к методам поиска скважин с заколонными перетоками (ЗКЦ) воды. Техническим результатом настоящего изобретения являются повышение эффективности способа выявления скважин, обводняющихся посредством заколонных перетоков воды, за счет повышения надежности исследования скважин путем увеличения длительности анализируемого начального периода их эксплуатации и за счет значительного сокращения затрат времени на исследование.

Изобретение относится к области нефтегазовой промышленности, может быть использовано при измерении и контроле дебита газоконденсатных скважин и позволяет повысить точность измерения дебита газоконденсатных скважин.

Изобретение относится к системе и способу динамической визуализации скорости текучей среды в подземных пластах путем отображения частицы в различных местах расположения на линии тока, которая представляет путь текучей среды в подземном пласте.

Изобретение относится к нефтяной промышленности и может найти применение при определении обводненности продукции нефтяной скважины. Способ включает подачу непрерывного потока нефтегазоводяной смеси поочередно в одинаковые мерные камеры счетчика жидкости и их циклическую разгрузку путем опрокидывания в выкидную линию, причем первая камера снабжена постоянным грузом, который подбирают таким образом, чтобы емкости второй камеры хватило для набора пороговой массы опрокидывания, фиксацию времени трех последовательных моментов срабатывания бесконтактного датчика опорожнения, соответствующих трем последовательным моментам опорожнения мерных камер счетчика, определение времени наполнения мерных камер счетчика жидкости, принятых за фазу цикла, вычисление величины асимметрии фаз циклов, определение плотности жидкости, поступающей в мерные камеры счетчика: ρЖ=0,577m3(1-FS 1,5)2/{dm2Lm2W(1+FS)3}, где m - масса мерной камеры, dm - масса груза, Lm - плечо груза относительно центра поворота мерной камеры, W - ширина мерной камеры, значения которых предварительно вносят в вычислительный блок, в который также подают сигнал с датчика опорожнения.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для измерения дебита скважин. Технический результат направлен на повышение точности измерения дебита нефтяных скважин.

Предлагаемое изобретение относится к области нефтегазовой промышленности и может быть использовано для контроля технического состояния нефтегазовых скважин. Предлагаемый способ включает регистрацию по стволу скважин амплитуды электромагнитного поля в низкочастотном диапазоне, вызванном вибрацией потока жидкости в заколонном пространстве обсадной колонны с остаточной намагниченностью. По наличию аномалий производят определение интервалов заколонных перетоков пластовой жидкости. При этом дополнительно регистрируют сигналы магнитоимпульсной дефектоскопии-толщинометрии и по аномалиям повышенной намагниченности выделяют границы интервалов заколонных перетоков пластовой жидкости и зон коррозии с наружной стороны обсадных колонн. Технический результат заключается в одновременном выделении заколонных перетоков и зон коррозии на наружной стороне обсадных колонн в эксплуатационных скважинах, повышении надежности оценки технического состояния скважин. 2 ил.

Изобретение относится к способу измерения обводненности скважинной продукции. В скважине, оборудованной глубинным электроцентробежным насосом (ЭЦН) и частотным регулятором тока электропитания погружного электродвигателя, в интервале от забоя скважины (зона нефтяного пласта) до глубинного насоса стационарно располагают не менее двух датчиков давления (манометров) с определенным расстоянием между ними по вертикали. Датчики с заданной периодичностью передают информацию по давлению на контроллер станции управления работы скважины, находящийся на поверхности земли. При этом выбирают такой режим работы ЭЦН, который обеспечивает давление в зоне измерительных датчиков (манометров) выше, чем давление насыщения нефти газом. Обводненность скважинной продукции определяется по математической формуле, в которой плотность нефти и воды закладываются как известные величины при давлении, равном средней величине давлений по двум ближайшим датчикам. Данные по плотностям пластовых флюидов получаются по предварительным исследованиям глубинных проб нефти и воды нефтедобывающих скважин. 1 ил., 2 табл.

Изобретение относится к способу определения границы вода/цемент в кольцевом зазоре между двумя коаксиальными трубами в углеводородной скважине. Технический результат заключается в улучшении определения границы вода/цемент в кольцевом зазоре между двумя коаксиальными трубами в углеводородной скважине. Способ включает запуск скважинного прибора в центральной трубе скважины, причем скважинный прибор содержит корпус и установленные в корпусе прибора генератор импульсов и регистратор сигнала; генерирование, посредством генератора импульсов, электромагнитного импульса и возбуждение тем самым физических вибраций в центральной трубе скважины; регистрацию, посредством регистратора сигнала, акустических сигналов, отраженных от скважины; повторение операций генерирования и регистрации для различных положений генератора импульсов по глубине скважины; обеспечение организации зарегистрированных сигналов в виде двумерного представления; фильтрацию зарегистрированных сигналов, прошедших организацию, с целью идентифицировать в двумерном представлении гиперболу и принятие вершины гиперболы в качестве определяющей положение границы вода/цемент. 6 з.п. ф-лы, 11 ил.

Изобретение относится к нефтедобывающей промышленности, а именно к управлению заводнением нефтяных пластов. Способ включает отбор нефти через добывающие скважины и закачку рабочего агента через нагнетательные скважины, оценку влияния добывающих и нагнетательных скважин. При этом для определения оптимальных значений приемистости нагнетательных скважин используют математическую модель месторождения, а в качестве первоначальных данных для каждой добывающей скважины и потенциально влияющих на нее нагнетательных скважин принимают показатели в виде даты замера, значение приемистости, дебита жидкости и доли нефти. В качестве математической модели используют функции, отражающие изменение дебита жидкости и доли нефти добывающих скважин при изменении приемистости нагнетательных скважин, при этом производят адаптацию математической модели путем получения минимального расхождения фактических и расчетных данных дебита жидкости и доли нефти каждой работы добывающей скважины. Определяют оптимальные значения настроечных параметров функций дебита жидкости и доли нефти, и составляют смешанную функцию суточной добычи нефти добывающей скважины в зависимости от приемистости окружающих ее нагнетательных скважин. Затем производят максимизацию суммарной добычи нефти по месторождению в целом путем перераспределения приемистости нагнетательных скважин, с наложением ограничений на объемы закачки для эффективной организации системы вытеснения нефти водой и поддержания пластового давления. Технический результат заключается в обеспечении эффективной организации системы вытеснения нефти водой и системы поддержания пластового давления. 4 ил., 11 табл.

Изобретение относится к нефтегазовой промышленности, в частности к проведению работ по длительному исследованию скважин в условиях автономии, и может быть использовано в процессах изучения новых месторождений в отсутствии сопутствующей инфраструктуры. Модульный комплекс содержит модуль тестового сепаратора и учета продукции скважины, подключенный к трубопроводной линии продукции скважин, поступающей с устья исследуемой скважины, модуль накопительной емкости с насосами откачки, модуль распределения газа, блок факельного хозяйства, состоящий из факельной совмещенной установки для утилизации газа и факельной установки утилизации нефти с воздушным компрессором подачи воздуха. Между собой указанные модули и блоки обвязаны технологическими линиями продукции скважины, нефти, газа, сжатого воздуха, оборудованными запорной и запорно-регулирующей арматурой. Вход мерной емкости в модуль тестового сепаратора и учета продукции скважины соединен жидкостной транспортной линией нефти с выходом тестового сепаратора, а выход соединен с линией подачи нефти в накопительную емкость и линией замера дебита нефти, связанной линией подачи отсепарированной нефти с факельной установкой утилизации нефти, на которой расположен массовый расходомер, и трубопроводной линией продукции скважин для подачи ее в модуль накопительной емкости. Обеспечивается расширение функциональных возможностей мобильного комплекса. 7 з.п. ф-лы, 2 ил.
Группа изобретений относится к горному делу и может быть применена для осуществления гидравлического разрыва множества продуктивных интервалов подземного пласта и количественного мониторинга количества флюидов, добываемых во множестве продуктивных интервалов подземного пласта. Можно осуществлять мониторинг флюидов, добываемых из подвергнутого гидравлическому разрыву пласта, путем закачивания в скважину жидкости для гидравлического разрыва, которая содержит индикатор. Способ может применяться для мониторинга как добытых углеводородов, так и добытой воды. Индикатор также можно использовать при борьбе с поступлением в скважину песка, при гидравлическом разрыве, совмещенном с установкой гравийного фильтра, или при осуществлении операции кислотного гидравлического разрыва пласта. Индикатор является компонентом композита, в котором он может быть иммобилизован внутри матрицы (такой как эмульсия), или пористых частиц, на носителе, или прессован со связующим веществом в твердые частицы. Индикатор может медленно высвобождаться из композита. Технический результат заключается в повышении эффективности количественного мониторинга количества флюидов, добываемых во множестве продуктивных интервалов, подвергнутых гидравлическому разрыву. 3 н. и 29 з.п. ф-лы.

Изобретение относится к области добычи природного газа и, в частности, к оперативному контролю выноса воды и песка из скважины в автоматизированной системе управления технологическими процессами (АСУ ТП) нефтегазоконденсатных месторождений Крайнего Севера. Способ включает измерение расхода, давления и температуры газа на устье скважины с параллельным контролем в реальном масштабе времени фактического давления и температуры газа в конце шлейфа-газопровода, по которому газ поступает на вход установки комплексной подготовки газа (УКПГ). Использование текущих значений контролируемых параметров для вычисления расчетного значения давления газа в конце шлейфа-газопровода в реальном масштабе времени средствами АСУ ТП. Сравнение динамики его изменения во времени с динамикой изменения фактического давления газа в конце шлейфа-газопровода. Начало процесса выноса песка и воды из скважины определяют по появлению разности в динамике поведения давлений расчетного и фактического. Фактические параметры газа измеряют на устье каждой скважины, подключенной к газосборному шлейфу (ГСШ) по схеме с путевой подкачкой газа, и по этим параметрам производят расчет давления в конце ГСШ на входе УКПГ, которое используют в качестве оперативной модели для контроля функционирования шлейфа, при непрерывном контроле фактического давления и температуры в конце ГСШ. При появлении разности в динамике поведения давлений расчетного и фактического АСУ ТП начинает анализировать динамику поведения давления на устьях всех скважин и выбирает ближайшую к УКПГ из всех, у которых выявлен подъем давления на устье скважины. После чего, в рамках технологических ограничений, регулирует работу этой скважины. 1 ил.

Изобретение относится к исследованию скважин, а именно к выбору скважин с закольматированной призабойной зоной пласта (ПЗП). Способ включает геофизические исследования скважин, а также лабораторные исследования керна, систематический замер дебита нефти, жидкости. В скважинах проводят гидродинамические исследования с выявлением скважин с повышенным скин-фактором. При этом для поиска проблемных скважин с закольматированной ПЗП используется графическая корреляция текущих значений фактического дебита жидкости скважины (ось Y) и показателя ее потенциала (ось X), рассматривающая сразу все добывающие скважины залежи, запущенные в работу за один период времени. При этом показатель потенциала скважины рассчитывается как произведение величин вскрытой начальной нефтенасыщенной толщины пласта, средней проницаемости ПЗП, разности между текущими пластовым давлением и забойным давлением в скважине, деленное на вязкость добываемой жидкости в пластовых условиях, а вязкость добываемой жидкости рассчитывается как среднее арифметическое от вязкости нефти и воды в пластовых условиях с учетом их содержания в продукции. Проблемными скважинами с вероятной кольматацией ПЗП признаются скважины, точки которых расположены на корреляции заметно ниже прямой, интерполирующей точки, подчиняющиеся прямой зависимости дебита жидкости скважины от ее показателя потенциала. При этом для отмеченных проблемных скважин строятся динамики дебита жидкости, нефти и воды за последний период эксплуатации и для проведения обработки призабойной зоны (ОПЗ) отбираются лишь те проблемные скважины, для которых падение дебита жидкости сопровождается падением дебита нефти. 1 з.п. ф-лы, 3 ил.

Изобретение относится к способам эксплуатации газовых и газоконденсатных скважин и может быть использовано для сокращения потерь ретроградного конденсата и предотвращения аккумулирования жидкости в стволе скважины. Способ включает замер термобарических параметров, таких как давление устьевое и устьевая температура, определение коэффициента сверхсжимаемости газа, поддержание регулированием устьевого штуцера дебита скважины не менее критического, обеспечивающего вынос пластовой жидкости с забоя. При этом критический дебит скважины определяют по формуле: , где: Q - дебит газа скважины, необходимый для выноса жидкости по подъемной трубе, Руст - давление устьевое; D - внутренний диаметр подъемной трубы; Tуст - устьевая температура; Z - коэффициент сверхсжимаемости газа, соответствующий устьевым и критическим значениям давления и температуры. 1 пр.

Изобретение относится к области нефтедобычи и может быть использовано в измерительных установках для корректировки данных при определении дебита продукции нефтяных скважин. Техническим результатом предлагаемого изобретения является повышение точности определения содержания доли пластовой воды в сырой нефти за счет прямых измерений плотности расслоенной сырой нефти. Способ заключается в том, что накапливают сырую нефть из скважины в вертикальной цилиндрической емкости, в течение заданного времени доводят отстоем до состояния расслоения на пластовую воду, водонефтяную смесь и сырую нефть с малым содержанием пластовой воды. В процессе слива расслоенной сырой нефти из вертикальной цилиндрической емкости определяют плотность пластовой воды и нефти и, используя их значения, определяют массовую долю пластовой воды в сырой нефти. Сливают насосом сырую нефть из вертикальной цилиндрической емкости по жидкостной линии с установленными массомером и влагомером, в течение цикла слива измеряют массу и плотность расслоенной сырой нефти, а также объемную долю пластовой воды в слое сырой нефти с малым содержанием пластовой воды. Выбирают значения массы и плотности в моменты времени начала и окончания цикла слива и моменты времени начала и окончания изменения измеряемого значения плотности расслоенной сырой нефти, при этом массовую долю пластовой воды в сырой нефти определяют по формуле , где М - значение массы сырой нефти, МВ - значение массы пластовой воды, МНВ - значение массы водонефтяной смеси и сырой нефти с малым содержанием пластовой воды, - значение средней плотности сырой нефти, - значение средней плотности пластовой воды, - значение средней плотности водонефтяной смеси, - значение средней плотности сырой нефти с малым содержанием пластовой воды, - значение средней объемной доли пластовой воды в сырой нефти с малым содержанием пластовой воды, измеренное влагомером, значения которых вычисляют на основе измеренных значений массы, плотности и доли воды в течение цикла слива.
Наверх