Способ извлечения ионов церия (iv) из водных растворов

Изобретение относится к способам извлечения церия (IV) методом электрофлотации из сточных вод, бедного или техногенного сырья. Описан способ извлечения церия (IV) из водного раствора, включающий электрофлотацию с нерастворимыми анодами, в котором в очищаемую воду вводят катионный флокулянт на основе высокополимеризованного полиакриламида при массовом соотношении ионов церия (IV) к флокулянту [1]:[0,008-0,1], при этом электрофлотацию осуществляют при плотности тока 0,4 А/л в течение 10 мин. Технический результат: расширение диапазона исходных концентраций ионов церия (IV) при сохранении высокой степени извлечения ионов церия (IV). 1 табл., 2 пр.

 

Изобретение относится к способам извлечения церия (IV) методом электрофлотации из сточных вод, бедного или техногенного сырья.

Известен способ извлечения церия (IV) из сульфатных растворов методом экстракции, при котором экстракцию ведут из 0,5-2,0 М сульфатного раствора 0,32%-ным раствором 2-метил-8,9-дигидро[1,2,4]триазоло[1,5-α]хиназолин-6(7Н)-она, растворенного в метиленхлориде (патент РФ №2530081, кл. С22В 59/00, С22В 3/26, 2014). Недостатком метода являются ограничения по нижнему пределу концентрации, минимальная исходная концентрация церия (IV) составляет 500 мг/л.

Наиболее близким по техническому решению является способ электрофлотационного извлечения ионов церия (IV) из водных растворов (Гайдукова A.M., Бродский В.А., Колесников В.А. Электрофлотационное извлечение ионов церия (III), (IV) из водных растворов. // Гальванотехника и обработка поверхности. 2014. Том XXII, №4. - С. 44-48). Процесс ведут при оптимальных условиях: рН 6,5 - 7, плотности тока 0,4 А/л, времени обработки 10 минут, при этом достигается высокая степень извлечения ионов церия (IV), составляющая 98%. Однако этот метод имеет ограничения по исходным концентрациям ионов церия (IV) в очищаемых стоках, она не превышает 200 мг/л. Этот способ выбран за прототип.

Технической задачей предлагаемого изобретения является расширение диапазона исходных концентраций ионов церия (IV) при сохранении высокой степени извлечения ионов церия (IV), лежащей в районе 96-98%.

Поставленная задача решается тем, что в сточную воду, содержащую ионы церия (IV), вводят катионный флокулянт на основе высокополимеризованного полиакриламида при массовом соотношении ионов церия (IV) к флокулянту [1]: [0,008-0,1] с последующим электрофлотационным извлечением из сточной воды образовавшихся соединений при плотности тока 0,4 А/л в течение 10 мин.

Известно, что нижний предел исходной концентрации определяется растворимостью ионов металла, верхний - коагуляционными процессами и седиментацией осадка.

В присутствии органического флокулянта на основе высокополимеризованного полиакриламида происходит увеличение размеров взвешенных частиц за счет их слипания и образования агломератов. Данный эффект значительно повышает верхний предел исходной концентрации, к тому же способствует более эффективному захвату агломератов газовыми пузырьками и образованию устойчивых комплексов агломераты частиц - пузырьки газов, что приводит к увеличению скорости электрофлотационного процесса очистки.

Извлечение ионов церия (IV) из водных растворов осуществлялось в непроточном электрофлотаторе с нерастворимыми металл-оксидными анодами. Исследования проводились в растворах сернокислого и азотнокислого церия (IV) в диапазоне концентраций по ионам металла от 10 до 1500 мг/л при комнатной температуре (20±2°С). В качестве фонового электролита, позволяющего повысить электропроводность, использовали раствор Na2SO4 с концентрацией 1 г/л. Массовую концентрацию церия (IV) измеряли по стандартизованной методике на масс-спектрометре с индуктивно связанной плазмой.

Изобретение иллюстрируется следующими примерами.

Пример 1. В 1 л воды, содержащей 50 мг церия (IV), вводят при перемешивании катионный флокулянт на основе высокополимеризованного полиакриламида при массовом соотношении ионов церия (IV) к флокулянту [1]:[0,01]. Раствор при рН 6,5-7,0 перемешивают в течение 0,5 минут и подают в электрофлотационный аппарат для отделения образовавшихся частиц от очищаемой воды при плотности тока 0,4 А/л. Процесс электрофлотации ведут в течение 10 мин. После электрофлотации отбирают пробу вод на анализ и определяют содержание ионов церия (IV).

Пример 2. В 1 л воды, содержащей 1200 мг церия (IV), вводят при перемешивании катионный флокулянт на основе высокополимеризованного полиакриламида при массовом соотношении ионов церия (IV) к флокулянту [1]:[0,008]. Раствор при рН 6,5-7,0 перемешивают в течение 0,5 минут и подают в электрофлотационный аппарат для отделения образовавшихся частиц от очищаемой воды при плотности тока 0,4 А/л. Процесс электрофлотации ведут в течение 10 мин. После электрофлотации отбирают пробу вод на анализ и определяют содержание ионов церия (IV).

Для сравнения эффективности известного и предлагаемого способов проводилась очистка сточных вод с использованием одной и той же системы электродов, конструкции электрофлотатора, плотности тока, исходных концентраций ионов церия (IV), рН среды. Полученные результаты представлены в таблице 1.

Как видно из таблицы 1, предлагаемый способ позволяет существенно расширить диапазон исходных концентраций ионов церия (IV), который составляет 10-1200 мг/л, с достижением высокой степени извлечения 96-98% по сравнению с прототипом.

Эффективность от применения предлагаемого способа обусловлена повышением степени извлечения из сточных вод при исходной концентрации ионов церия (IV) от 200 до 1200 мг/л на 56-98%.

Способ извлечения церия (IV) из водного раствора, включающий электрофлотацию с нерастворимыми анодами, отличающийся тем, что в очищаемую воду вводят катионный флокулянт на основе высокополимеризованного полиакриламида при массовом соотношении ионов церия (IV) к флокулянту 1:0,008-0,1, при этом электрофлотацию осуществляют при плотности тока 0,4 А/л в течение 10 мин.



 

Похожие патенты:

Изобретение может быть использовано в области производства твердого ракетного топлива. Отработанные стоки, образующиеся в процессе синтеза компонентов твердого ракетного топлива, загрязненные ионами тяжелых металлов - никеля и свинца, сульфатами, нитратами и органическими примесями, направляют на установку термического обезвреживания, где подвергают огневому уничтожению.

Изобретение может быть использовано для очистки сильнозагрязненных поверхностных стоков с территорий промышленных предприятий, полигонов ТБО. Сточные воды с предварительно введенным флокулянтом с гидрофобизирующими свойствами подают на стадию осаждения песка и крупных частиц, тонкую механическую очистку от взвешенных веществ в слое загрузки из цилиндрических колец, засыпанных в навал, сорбцию свободных и эмульгированных нефтепродуктов, дополнительную сорбцию растворимых нефтепродуктов на сорбенте с прикрепленной микрофлорой и подачей кислорода воздуха.

Изобретение относится к области добычи и переработки полезных ископаемых. Установка для извлечения водорода из воды Черного моря содержит реактор, соединенный трубопроводами с воздухозаборником и емкостью с серной кислотой, поступающей из окислителя.

Из-под перфорированного фальшдна, через плотно примыкающий к соответствующему сечению отверстию в фальшдне водовод, с помощью водоподъемного устройства производят забор воды в расположенный выше уровень воды, оснащенный источником света контейнер с плавающими или укорененными в субстрате растениями–фильтраторами, с последующим возвратом очищенной воды через водовод под фальшдно.

Изобретения могут быть использованы для обработки воды ионообменными смолами в условиях отсутствия постоянной водоочистной станции в жилых поселках и при сезонных работах на отдаленных участках.

Изобретение может быть использовано в цветной и черной металлургии, а также для очистки промышленных и бытовых стоков. Способ очистки сточных вод от ионов хрома (III, VI) включает контакт очищаемой воды со смесью анионита с сильнокислотным катионитом, перемешивание и разделение фаз.

Изобретение относится к области обработки технических вод. Способ регулирования степени деградации крахмала в крахмалсодержащей производственной воде с производства целлюлюзы предусматривает обработку производственной воды биоцидной системой, содержащей ионы цинка и окисляющий или неокисляющий биоцид.

Изобретение к облучающему устройству для генерации ультрафиолетового излучения. Технический результат изобретения заключается в увеличении срока эксплуатации облучающего устройства.

Подземный водосборный резервуар угольного разреза содержит непроницаемый слой и расположенные снизу от этого слоя пространство для хранения воды и очистной слой. Пространство для хранения воды содержит первое пространство для хранения воды и второе пространство для хранения воды.

Изобретение предназначено для отделения примесей от жидкости. Способ отделения примесей от основной жидкости содержит этапы, на которых создают проточную камеру, имеющую источник акустической энергии, а на противоположной стороне проточной камеры отражатель акустической энергии, обеспечивают протекание основной жидкости через проточную камеру, применяют источник акустической энергии к основной жидкости, чтобы создать трехмерную ультразвуковую стоячую волну, причем трехмерная ультразвуковая стоячая волна приводит к образованию силы акустического излучения, имеющей осевой компонент и поперечный компонент, которые имеют один порядок величины.

Изобретение относится к отчистке растворов цианирования, полученных при гидрометаллургической переработке концентратов, содержащих благородные и цветные металлы, от цианистых комплексов цветных металлов. Способ включает обработку растворов цианирования гипохлоритом кальция в концентрации от 4,5 до 5 г/л с обеспечением перевода цветных металлов в нерастворимый осадок, а после появления осадка проводят выдержку в течение 2-5 ч с обеспечением поддержания рН раствора от 9,5 до 10,7. Обеспечивается сокращение продолжительности процесса сорбции золота из растворов после цианирования. 2 табл., 1 пр.

Изобретение может быть использовано для восстановления и поддержания экологического баланса в открытых водоемах. Способ включает комплексную технологию восстановления экологической системы водоема, включающую предварительную оценку экологического состояния водоема, по результатам которой на объем воды воздействуют модулированным электрическим потенциалом излучателя, который модулируют сигналом с частотой 30-150 Гц, содержащим спектр воздействия на экологическую систему водоема амплитудой 0,5-1,7 V и продолжительностью не менее 120 минут. Спектральные характеристики сигнала: форму, частоту и амплитуду сигнала, а также геометрическую форму и материал излучателя определяют в зависимости от результатов оценки экологического состояния водоема. Излучатель размещают в объеме воды на высоте подвеса, выбранной из равенства энергий у поверхности воды и дна водоема на линии подвеса. Размещение излучателей в плоскости подвеса осуществляют с учетом перекрытия их апертур. Количество излучателей для каждого водоема определяют в зависимости от площади водоема. Дополнительно в объеме воды размещают растворяемые в воде элементы в качестве доноров недостающих химических элементов. Одновременно осуществляют реабилитацию береговой экологической системы. Затем проводят отбор проб воды для оценки состояния водоема и осуществляют коррекцию спектра воздействия. Отбор проб воды и коррекцию проводят до достижения в водоеме экологического равновесия. Способ обеспечивает повышение эффективности очистки открытых водоемов от загрязнений и восстановление экологического баланса. 1 з.п. ф-лы, 4 табл., 1 фото.

Изобретение относится к экологии и предназначено для очистки воды от микроорганизмов и окисляющихся примесей. Установка гидродинамической обработки воды содержит насос, кавитационное устройство, систему ввода рабочего газа из внешнего источника в поток обрабатываемой воды, подводящие и отводящие трубопроводы, измерительные и настроечные элементы. Кавитационное устройство состоит из последовательно установленных прямоточных конфузора и цилиндрической камеры, при этом конфузор имеет угол сужения β=(20±5°), длину L=0,08-0,45 м, диаметр выходного сечения d=0,03-0,21 м и предназначен для увеличения скорости потока воды до W≥25 м/с. Цилиндрическая камера имеет диаметр проходного сечения d=0,03-0,21 м, длину L=5±0,5 м, соединена через дозирующее устройство с источником сжатого кислородсодержащего газа - баллоном кислорода с давлением до 150 ата и предназначена для повышения очистительного эффекта гидродинамических процессов преобразованием жидкофазного потока воды в двухфазный микропузырьковый поток путем подачи в него кислородсодержащего газа за счет обеспечения следующих ключевых параметров потока: критерия Рейнольдса Re≥105; скорости потока W=25-50 м/с; концентрации кислорода в потоке С02=2,7-3,0 г/л в сечении ввода газа; объемного газосодержания жидкости δ=0,11-0,40; радиуса парогазовых пузырьков R≤100 мкм; продолжительности соприкосновения жидкой и парогазовой фаз τ=0,1-0,2 с; критерия Вебера We=105-107. Изобретение позволяет предохранить окружающую среду от загрязнения ядовитыми химическими реагентами. 1 ил.

Изобретение относится к очистке сточных вод, образующихся при мойке средств хранения нефти и нефтепродуктов, с использованием процесса пневматической флотации. Установка состоит из вертикальной емкости 1, внутри которой имеется вертикальная перегородка 2, оборудованная обратным клапаном 17, разделяющая емкость на две индивидуальные полости 3 и 4, в нижней части которых установлены перфорированные трубы 5 с закрепленными на них мелкопористыми чехлами, перфорированная труба полости 3 дополнительно соединена с дозатором 7 для флокулянтов, над перфорированными трубами установлены перегородки 8 и 9, выполненные из пластин, в полости 3 они сделаны в виде объемной решетки, в полости 4 высота перегородок убывает от периферии к центру, также в полости 4 имеются два ультразвуковых излучателя 10, расположенные на диаметрально противоположных стенках выше перфорированных труб, перфорированные трубы 5 подсоединены к компрессору сжатого воздуха 11, расход которого измеряется ротаметром 12, узел сбора отделенного нефтепродукта размещен с наружной стороны вертикальной емкости 1 и выполнен в виде лотка 13, прикрепленного к емкости 1 по периметру под углом к верхней образующей вертикальной емкости. Высота отбортовки лотка 13 выбрана из условий отсутствия перелива, в нижней части лотка имеется патрубок 14 слива отделенного нефтепродукта. Подача воздуха от компрессора 11 в полость 3 и 4 осуществляется открытием запорных кранов 15 и 16. Установка имеет запорный кран 18 для слива очищенной воды. Технический результат изобретения - повышение эффективности очистки воды от нефтепродуктов и создание возможности оперативного применения в сочетании с любыми средствами очистки при относительно низкой себестоимости процесса очистки. 2 ил., 1 табл.

Изобретение относится к области электрохимических методов очистки водных растворов от анионов и катионов и может быть использовано для очистки природных вод, стоков металлургической, машиностроительной и других отраслей промышленности. Процесс очистки и регенерации кислотных растворов хроматирования проводят при постоянном токе 0,01-0,03 А и напряжении 0,5-1,5 В, с нерастворимыми электродами в виде активированного угля с размером частиц от 0,5 до 2,0 мм. В электродной ячейке перегородка, разделяющая катодное и анодное пространство, выполнена из непроницаемого материала, а в качестве электродов использован заполненный в катодном и анодном пространстве на высоту 0,8-0,9 от высоты перегородки активированный уголь с размером частиц от 0,5 до 2,0 мм. Изобретение повышает степень разделения при одновременном снижении энергозатрат за счет обеспечения нового механизма разделения ионов на поверхности множества активных центров в межэлектродном пространстве. 2 н. и 1 з.п. ф-лы, 1 пр., 2 ил.

Изобретение относится к способу удаления органических загрязнений из воды и может быть использовано, например, для обработки попутно добываемой воды из операции извлечения тяжелой нефти с помощью пара. Способ включает следующие стадии: (A) обработку водной среды на первой фазе подкислением водной среды для десолюбилизации растворенных органических веществ и отделение десолюбилизированных органических веществ от водной среды путем фильтрования, и (B) обработку водной среды, непосредственно выходящей со стадии (А), на второй фазе с помощью приведения водной среды в контакт с активированным углем, имеющим по меньшей мере 50% числа пор с диаметром пор в интервале от примерно 10 до примерно 20 ангстрем. Технический результат – повышение степени очистки воды от органических загрязнений. 11 з.п. ф-лы, 6 ил., 2 табл.

Изобретение относится к способам и устройствам вихревой термической дистилляции жидкостей, вод океанов и морей, засоленных подземных вод, для эффективного низко затратного получения требуемых объемов опресненной воды для сельских, коммунальных, промышленных и иных нужд жизнедеятельности индивидов. Способ обработки жидкостей заключается в том, что сначала исходную жидкость подают в вихревой парогенератор, где ее подвергают принудительному вихревому вращению, посредством которого из центральной части вращающейся жидкости выделяют пар, затем пар подают в центральную часть вихревого пароконденсатора, подвергая его вращению посредством завихрителей, при этом в указанную центральную часть пароконденсатора одновременно с паром подают из приемной емкости струю конденсата, который под действием вращающейся массы пара распадается, оседая на стенках вихревого пароконденсатора, после чего обработанную жидкость отводят в приемную емкость, а часть ее возвращают в центральную часть вихревого пароконденсатора. Устройство для обработки жидкостей содержит парогенератор, источник исходной жидкости, резервуар приема обработанной жидкости, устройство снабжено пароконденсатором, соединенным с парогенератором, при этом парогенератор выполнен в виде реакционной камеры, оснащенной ротором с приводом вращения, ротор имеет турбинные лопатки, в верхней части этой камеры выполнены криволинейные каналы для закручивания потока, а соединенный с парогенератором пароконденсатор имеет завихрители потока пара и патрубок ввода конденсата в камеру конденсации, имеющую рубашку охлаждения. Изобретение обеспечивает очистку больших масс воды на станциях централизованного водоснабжения с низкими капитальными и эксплуатационными затратами. 2 н.п. ф-лы, 1 табл., 5 ил.

Изобретение относится к ректификационному устройству для очистки воды от примесей в виде молекул воды, содержащих в своем составе тяжелые изотопы водорода и кислорода. Устройство содержит ректификационную колонну, работающую под вакуумом, испаритель, конденсатор и тепловой насос. При этом ректификационная колонна состоит из двух коаксиальных труб с диаметрами D1 и D2, причем D1>D2 и (D1-D2)/2<300 мм, со слоем насыпной насадки, расположенным в зазоре между ними, при этом распределитель жидкости вверху колонны имеет не менее 800 точек орошения па квадратный метр площади сечения насадочной части колонны. Изобретение обеспечивает повышение производительности и снижение энергетических затрат. 4 з.п. ф-лы, 5 ил., 4 табл., 3 пр.

Изобретение может быть использовано для очистки сточных вод от ионов хрома, хлоридов, жиров, СПАВ и взвешенных веществ. Для осуществления способа сточные воды подают в устройство цилиндрической формы (1), сначала в отстойник (2), далее во флотатор (3) с зоной флотации и зоной отстаивания во вторичном отстойнике (4). Затем проводят доочистку в зернистом фильтре (5) с движением воды сверху вниз и в сорбционном фильтре (6) с движением воды снизу вверх. По эжектору, встроенному в трубопровод подачи сточной воды, подают хлористый барий и гидроксид кальция. Очищенную воду собирают в емкость очищенной воды (7). Флотатор (3) делят на четыре секции, три - в зоне флотации, а четвертая - в зоне отстаивания. Фильтры (5,6) снабжают съемными крышками для замены загрузки, а загрузки упаковывают в сетчатый патрон из не коррозионного материала. Вторичный отстойник (4) расположен между внешней поверхностью стенки отстойника (2), находящегося по центру, и стенкой корпуса устройства для очистки (1). Отстойник (2) имеет цилиндрическую форму и коническое дно, а дно вторичного отстойника (4) имеет уклон от центра к периферии и через переливное отверстие соединен с зернистым фильтром (5). Корпус устройства (1) выполняют из легкого и прочного стеклопластика. Изобретение позволяет рационально и эффективно осуществлять очистку сточных вод от ионов хрома, хлоридов, сульфатов, взвешенных веществ, СПАВ, снизить показатели БПК и ХПК очищенной воды за счет раздельной последовательной работы блоков очистки, простоты конструкции и мобильности. 4 ил., 1 табл.

Изобретение относится к технологии производства питьевой воды и может быть использовано в пищевой промышленности, диетологии, в медицине, технике, сельском хозяйстве и других отраслях народного хозяйства. Солевая композиция содержит сульфаты магния, цинка и кальция, а также йодид калия и соль морскую пищевую. Солевую композицию по одному из вариантов используют в виде порошка, а по другому - в виде растворов. Изобретение позволяет повысить защитные свойства организма человека и снизить вероятность заболеваний, связанных с нарушением обмена веществ. 2 н.п. ф-лы, 2 табл.
Наверх