Способ оптического измерения счетной концентрации дисперсных частиц в жидких средах и устройство для его осуществления

Изобретение относится к измерительной технике, в частности к оптическим методам измерения концентрации дисперсных частиц, взвешенных в жидкости. Способ оптического измерения счетной концентрации частиц в жидких средах включает измерение среднего гидродинамического диаметра частиц методом динамического рассеяния света, расчет по измеренному значению эффективности экстинкции частиц, измерение оптической плотности на одной из длин волн видимого диапазона и расчет по полученным данным счетной концентрации частиц. Устройство для оптического измерения счетной концентрации дисперсных частиц в жидких средах содержит лазер, светодиодный источник, направление излучения которого совпадает с направлением излучения лазера, поворотное зеркало, направляющее на образец излучение одного из этих источников, расположенные по ходу лазерного луча диафрагму, фокусирующую линзу, кювету с образцом, фотоприемник, измеряющий интенсивность проходящего излучения, и расположенную под углом к лазерному лучу систему сбора рассеянного излучения, включающую диафрагму, собирающую линзу и фотоприемник, измеряющий зависимость от времени интенсивности рассеянного излучения. Технический результат изобретения заключается в возможности осуществления измерений абсолютных концентраций частиц, расширении диапазона диаметров частиц, для которых применим метод, а также в повышении точности определения концентрации. 2 н.п. ф-лы, 1 ил.

 

Изобретение относится к измерительной технике, точнее к оптическим методам измерения концентрации дисперсных частиц, взвешенных в жидкости. Оно может быть использовано для определения концентрации дисперсных частиц (например, наночастиц) в процессе и по результатам их синтеза, а также в жидких средах, содержащих дисперсные частицы и используемых в различных технологиях, например в биомедицинских. В перечисленных случаях знание концентрации частиц необходимо либо для контроля эффективности их синтеза, либо для подбора оптимального дисперсного состава жидкой среды для конкретной технологии. Причем во многих случаях наибольший интерес представляет счетная концентрация частиц, т.е. число частиц в единице объема, единицей измерения счетной концентрации может быть, например, см-3. Наряду со счетной измеряют также массовую концентрацию материала частиц в образце. Счетная концентрация n и массовая концентрация С связаны между собой простым соотношением:

Здесь V - единичный объем жидкости (например, 1 см3), v - объем одной частицы, ρ - плотность материала частицы, Для сферических частиц диаметром d формула (1) принимает вид:

Известны методы измерения массовой концентрации дисперсных частиц в жидких средах, основанные на измерении объема исследуемого жидкого образца, его высушивании (выпаривании), взвешивании сухого остатка и вычислении массовой концентрации по полученным данным. Недостатком такого подхода является необходимость относительно большого объема жидкости для выпаривания (не менее 100-200 мл), определенная трудоемкость и длительность всей процедуры, невозможность отслеживать изменение концентрации в реальном времени.

Измерение массовой концентрации отдельных химических элементов, входящих в состав дисперсных частиц, взвешенных в жидкости, может быть произведено на атомно-абсорбционных или атомно-эмиссионных спектрометрах. Такие измерения также требуют разрушения образца и, соответственно, исключают отслеживание изменений концентрации в реальном времени. Кроме того, оба названных выше метода позволяют измерять только массовую концентрацию вещества - материала наночастицы. Для вычисления счетной концентрации, как видно из формул (1-2), необходимы значения геометрических параметров частиц, которые требуют дополнительных, часто трудоемких измерений, например, на электронном или атомно-силовом микроскопе.

Известны способы измерения массовой или счетной концентрации наночастиц с помощью оптической абсорбционной спектрофотометрии. Эти способы предусматривают построение градуировочного графика (зависимости оптической плотности образца на выбранной длине волны от концентрации частиц) с помощью серии образцов с известными значениями концентрации частиц (образцов сравнения). Затем измеряют оптическую плотность анализируемого образца на той же длине волны и с помощью градуировочного графика определяют соответствующее ему значение концентрации. Для реализации любого из этих способов необходима серия образцов сравнения с заранее известными значениями концентрации.

Известен также оптический способ, не требующий образцов сравнения, а использующий для определения счетной концентрации спектры экстинкции, т.е. зависимость оптической плотности от длины волны в спектральном диапазоне в окрестностях пика плазмонного резонанса. Способ предполагает расчет концентрации частиц по значению их экстинкции при длине волны, находящейся на достаточном расстоянии от пика плазмонного резонанса. Для такого расчета необходимо знать размер частиц, который определяется по положению пика плазмонного резонанса по шкале длин волн. Этот способ описан в работах [W. Haiss et al. Determination of Size and Concentration of Gold Nanoparticles from UV-Vis Spectra, Analytical Chemistry, 2007, V. 79, P.P. 4215-4221; N.G. Khlebtsov Determination of Size and Concentration of Gold Nanoparticles from Extinction Spectra, Analytical Chemistry, 2008, V. 80, P.P. 6620-6625] для золотых и [D. Parmelle et al. A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visable light spectra, Analyst, 2014, V. 139, P.P. 4855-4861] для серебряных наночастиц. Его недостаток заключается в ограниченной применимости - он может использоваться только для частиц, имеющих пик плазмонного резонанса в доступной для наблюдения области, т.е. только для частиц из золота и серебра. Более того, даже для частиц из этих материалов метод применим лишь к монодисперсным системам, т.е. имеющим только один пик в распределении частиц по размерам. Для полидисперсных систем, в которых имеются частицы двух и более характерных размеров, сильно отличающихся друг от друга, рассматриваемый способ непригоден. Кроме того, положение пика плазмонного резонанса зависит не только от размеров частиц, но и от свойств жидкости, в которой они взвешены, и состояния поверхности частицы. Влияние этих факторов ограничивает точность определения размера частицы и, соответственно, концентрации частиц, причем относительная погрешность определения концентрации, обусловленная этим фактором, может значительно превышать погрешность измерения размера частицы. Согласно данным недавно вышедшей работы [Т. Hendel et al In Situ Determination of Colloidal Gold Concentrations with UV-Vis Spectroscopy: Limitations and Perspectives, Analytical Chemistry, 2014 V. 86, P.P. 11114-11124], эта погрешность может превышать 30%. Данный недостаток проявляется даже в той достаточно узкой области, в которой метод работает (в данном случае для монодисперсных частиц золота).

Наиболее близким к заявляемому изобретению является способ определения концентрации наночастиц методом динамического рассеяния света, описанный в работе [В.В. Высоцкий, О.Я. Урюпина, А.В. Гусельникова, В.И. Ролдугин. О возможности определения концентрации частиц методом динамического светорассеяния, Коллоидный журнал, 2009, том 71, №6, с. 728-733]. Этот способ включает:

- измерение на приборе динамического рассеяния света среднего гидродинамического диаметра наночастиц dH для двух образцов;

- измерение на том же приборе дополнительной оптической характеристики - скорости счета фотонов рассеянного света для каждого из образцов;

- расчет относительной концентрации наночастиц в одном из образцов по отношению к другому, в предположении, что интенсивность рассеяния прямо пропорциональна шестой степени диаметра частиц, т.е. в предположении, что интенсивность рассеяния I подчиняется закону Релея

Данному способу присущи следующие ограничения:

- способ позволяет определять только относительную концентрацию наночастиц в образце относительно какого-то другого образца. Для большинства задач представляют интерес именно абсолютные концентрации, т.е. число частиц в единице объема. Для того, чтобы метод, принятый за прототип, использовать для измерения абсолютных концентраций, необходимо иметь хотя бы один образец сравнения - коллоидный раствор наночастиц данного типа с заранее известной концентрацией;

- способ применим только к сферическим наночастицам достаточно малого размера (диаметр частиц не должен превышать 30-40 нм). Это ограничение обусловлено тем, что при расчетах концентрации используется закон Релея, который справедлив только для сферических частиц, диаметр которых меньше длины волны рассеиваемого излучения по крайней мере в 20 раз;

- точность способа ограничена из-за очень резкой зависимости вычисляемого значения концентрации С от диаметра частиц dH (C~d6). Поэтому даже незначительная погрешность при измерении диаметра частиц приводит к существенно большей погрешности для концентрации.

Технической задачей настоящего изобретения является значительное увеличение возможностей способа, т.е. обеспечение измерения абсолютных значений концентрации, существенное расширение диапазона размеров частиц, для которого способ применим, и повышение его точности.

Техническим результатом, полученным от реализации предлагаемого способа, является возможность измерений абсолютных концентраций частиц без необходимости использовать какие-либо образцы сравнения, а также расширение верхней границы диапазона диаметров частиц с 30-40 нм до 6000 нм, т.е. до границы применимости метода динамического рассеяния света, а также повышение точности определения концентрации.

Данный технический результат достигается предложенным способом оптического измерения счетной концентрации дисперсных частиц в жидких средах, заключающимся в том, что кювету с коллоидным раствором, содержащим исследуемые частицы, просвечивают лазерным излучением с длиной волны λ0, измеряют зависимость от времени интенсивности излучения, рассеянного под определенным углом θ - Iрасс.(τ), вычисляют характерное время флуктуаций этой интенсивности τ0,, по значению τ0 определяют гидродинамический диаметр частиц dH по формуле: , где k - постоянная Больцмана, Т - абсолютная температура, η - динамическая вязкость растворителя, - волновой вектор рассеянного излучения, n - показатель преломления растворителя, затем измеряют интенсивности излучения, прошедшего через кювету с коллоидным раствором I1 и кювету с фоном I0, вычисляют оптическую плотность частиц относительно фона по формуле: и по полученным значениям оптической плотности, гидродинамического диаметра частиц и, вычисленной по формулам теории светорассеяния, например, Ми, эффективности экстинкции частиц Qэкст.(dH), определяют счетную концентрацию частиц по формуле: , где h - длина оптического пути в кювете.

Предложенный способ оптического измерения счетной концентрации дисперсных частиц в жидких средах, включающий измерение среднего гидродинамического диаметра методом динамического рассеяния света и измерение оптической плотности на одной из длин волн видимого диапазона обладает следующими отличительными особенностями:

- использование в качестве дополнительной оптической характеристки образца оптической плотности (экстинкции) на одной из характерных длин волн, а не скорости счета фотонов рассеянного света, как в прототипе;

- расчет абсолютного значения концентрации для исследуемого образца, а не относительной счетной концентрации одного образца по отношению к другому;

- использование для расчета счетной концентрации формул для сечения экстинкции общей теории рассеяния Ми, справедливых для диаметров до 10000 нм, а не закона Релея (3) справедливого лишь для наночастиц, диаметр которых не превышает 30-40 нм.

Предлагаемый способ реализуется следующим образом:

1. Измеряют гидродинамический диаметр частиц dH в исследуемом коллоидном растворе методом динамического рассеяния света. [ISO 22412-2008 Particle sizes analysis - Dynamic light scattering].

2. Измеряют оптическую плотность образца Aλ относительно фона (т.е. жидкости, в которой взвешены исследуемые частицы) на одной из характерных длин волн λ.

3. Вычисляют сечение экстинкции Q(dH, m, λ) по формулам теории рассеяния Ми.

4. По справочным или литературным данным определяют значения действительной и мнимой части комплексного показателя преломления материала взвешенных частиц и фоновой жидкости, соответственно nчаст. и kчаст., nфон. и kфон.. Вычисляют относительный комплексный показатель преломления частиц

5. По формулам теории рассеяния Ми, вычисляют эффективность экстинкции Qэкст(m, x), где x - безразмерный параметр, - Формулы для вычисления эффективности экстинкции Qэкст. при заданных значениях m и x приведены в различных источниках, например, [К. Борен, Д. Хафмен Поглощение и рассеяние света малыми частицами, пер. с англ, М, «Мир», 1986]. Имеются также коды компьютерных программ, приведенные в [С. Matzler Matlab codes for Mie scattering and absorption, 2002; S. Prahl Mie Scattering (Version 2-3-3); интернет - ресурс http://omlc.org/software/mie/mie_src.pdf

По вычисленному значению Qэкст. и измеренным значениям dh и Аλ вычисляют счетную концентрацию наночастиц N по формуле

, где

h - длина оптического пути в кювете.

Для реализации способа предложено устройство для оптического измерения счетной концентрации дисперсных частиц в жидких средах, содержащее лазер, светодиодный источник, направление излучения которого совпадает с направлением излучения лазера, поворотное зеркало, направляющее на образец излучение одного из этих источников, расположенные по ходу лазерного луча диафрагму, фокусирующую линзу, кювету с образцом, фотоприемник, измеряющий интенсивность проходящего излучения, и расположенную под углом к лазерному лучу систему сбора рассеянного излучения, включающую диафрагму, собирающую линзу и фотоприемник, измеряющий зависимость от времени интенсивности рассеянного излучения.

Отличительными особенностями предлагаемого устройства является то, что к фотоприемнику, измеряющему интенсивность рассеянного излучения, на пути излучения установлен дополнительный фотоприемник, измеряющий интенсивность излучения прошедшего через кювету, значение этой интенсивности используется для определения оптической плотности образца, а в дополнение к источнику лазерного излучения установлен дополнительный излучатель, например светодиод, направление излучения которого совпадает с направлением лазерного излучения.

Наличие этих элементов отсутствует у известных анализаторов размеров частиц методом динамического рассеяния света.

Техническим результатом, получаемым от внедрения предлагаемого устройства, является возможность, наряду с измерением гидродинамического диаметра частиц, присутствующих в исследуемом образце, измерять также оптическую плотность этих частиц относительно фона. Измерение оптической плотности может производиться на длине волны либо лазерного, либо светодиодного источника излучения, входящих в состав предлагаемого прибора.

Предложенное устройство представляет собой усовершенствованный анализатор частиц, реализующий метод динамического рассеяния света.

Схема устройства приведена на чертеже. Она включает основной источник излучения - лазер 1, поворотное зеркало 2, которое может занимать два рабочих положения, дополнительный источник излучения - светодиод 3, направление излучения которого совпадает с направлением излучения лазера 1, диафрагму 4, фокусирующую линзу 5, держатели кювет 6, в который последовательно устанавливаются кюветы с анализируемым образцом, и с фоном, фотоприемник 7, измеряющий интенсивность излучения, прошедшего через кювету, систему сбора рассеянного излучения, состоящую из диафрагмы 8, собирающей линзы 9 и фотоприемника 10.

Для осуществления предложенного способа необходимо последовательно реализовать два режима работы устройства.

Режим измерения оптической плотности в зависимости от того, на какой длине волны необходимо измерить оптическую плотность включается один из двух источников света - либо лазер 1, либо светодиод 3. С помощью фотоприемника 7 измеряются значения интенсивности излучения, прошедшего через последовательно устанавливаемые в держатель 6 кюветы с образцом (I) и с фоном (I0). По этим значениям компьютерная программа вычисляет оптическую плотность А с помощью формулы A=lg(I0/I). В известных анализаторах размера частиц методом динамического рассеяния света возможность измерения оптической плотности не предусматривается.

Режим измерения гидродинамического диаметра частиц

Это обычный режим, реализующий метод динамического рассеяния света. Излучение лазера 1 поворотным зеркалом 2 направляется на диафрагму 4, проходит через эту диафрагму и фокусирующей линзой 5, фокусируется в центре кюветы с образцом, помещенной в держатель 6. Излучение, рассеянное под некоторым углом (в схеме, приведенной на фигуре, этот угол равен 90°), собирается диафрагмой 8 и линзой 9 и направляется на фотоприемник 10. С помощью фотоприемника 10 измеряется зависимость от времени интенсивности рассеянного излучения Iрacc.(t). По этой зависимости компьютерной программой по алгоритму динамического рассеяния света определяется гидродинамический диаметр частиц dH.

Хотя настоящее изобретение описано на примере конкретных вариантов его осуществления, для специалистов будут ясны возможности многочисленных модификаций данного изобретения, не выходящие за границы объема его правовой охраны, определяемого прилагаемой формулой.

Экспериментальные данные

Для проверки предложенного способа с его помощью были проведены измерения счетной концентрации наночастиц в пяти образцах жидких дисперсий - четырех дисперсиях на основе наночастиц двуокиси кремния и одной на основе наночастиц серебра. По значениям счетной концентрации, определенным предлагаемым способом, вычислялась массовая концентрация, значения которой сравнивались с исходными данными. В качестве исходных данных для частиц двуокиси кремния принимались значения концентрации в весовых процентах, сообщенные производителем, а для частиц серебра - значения массовой концентрации, определенные по спектрам плазмонного резонанса. Значения гидродинамического диаметра измерялись на анализаторе размеров частиц АРН-2, а оптической плотности - на спектрофотометре-флуориметре СФФ-2 "Флуоран» (оба прибора разработаны ФГУП «ВНИИОФИ»). Полученные данные приведены в таблице 1.

При расчетах Qэкст. по формулам теории Ми использовались значения для действительной (n) и мнимой (k) частей показателя преломления, приведенные в таблице 2. При этом для наночастиц из SiO2 вводились поправки, учитывающие зависимость n и k от размеров частиц.

1. Способ оптического измерения счетной концентрации дисперсных частиц в жидких средах, заключающийся в том, что кювету с коллоидным раствором, содержащим исследуемые частицы, просвечивают лазерным излучением с длиной волны λ0, измеряют зависимость от времени интенсивности излучения, рассеянного под определенным углом θ - Iрасс.(τ), вычисляют характерное время флуктуаций этой интенсивности τ0, по значению τ0 определяют гидродинамический диаметр частиц dH по формуле: , где k - постоянная Больцмана, Т - абсолютная температура, η - динамическая вязкость растворителя, - волновой вектор рассеянного излучения, n - показатель преломления растворителя, затем измеряют интенсивности излучения, прошедшего через кювету с коллоидным раствором I1 и кювету с фоном I0, вычисляют оптическую плотность частиц относительно фона по формуле: и по полученным значениям оптической плотности, гидродинамического диаметра частиц и вычисленной по формулам теории светорассеяния эффективности экстинкции частиц Qэкст.(dH) определяют счетную концентрацию частиц по формуле: где h - длина оптического пути в кювете.

2. Устройство для оптического измерения счетной концентрации дисперсных частиц в жидких средах, содержащее лазер, светодиодный источник, направление излучения которого совпадает с направлением излучения лазера, поворотное зеркало, направляющее на образец излучение одного из этих источников, расположенные по ходу лазерного луча диафрагму, фокусирующую линзу, кювету с образцом, фотоприемник, измеряющий интенсивность проходящего излучения, и расположенную под углом к лазерному лучу систему сбора рассеянного излучения, включающую диафрагму, собирающую линзу и фотоприемник, измеряющий зависимость от времени интенсивности рассеянного излучения.



 

Похожие патенты:

Изобретение относится к аналитической химии, а именно к способам определения продуктов химического гидролиза дезоксирибонуклеиновой кислоты (ДНК). Способ определения продуктов химического гидролиза дезоксирибонуклеиновой кислоты (ДНК) включает хроматографическое определение продуктов гидролиза.

Изобретение относится к области геологии и может быть использовано при поиске скоплений углеводородов. Предложен способ обнаружения углеводородов с использованием подводного аппарата, снабженного одним или несколькими измерительными компонентами.

Изобретение относится к цифровой фотографии для медицинских целей, в частности, такой как биологическая ткань, в ближней инфракрасной области спектра. Технический результат заключается в повышении контрастной чувствительности и отношения сигнал/шум видеосистемы для наблюдения малоконтрастных объектов, находящихся в мутной среде, упрощении устройства для формирования телевизионного изображения в мутных средах с преобладающим над поглощением рассеянием.

Изобретение относится к измерительной технике, а именно к приборам для измерения концентрации газа, присутствующего в окружающей среде. Газоанализатор содержит два источника инфракрасного излучения, основной и дополнительный, измерительную кювету, интерференционный светофильтр, основной и дополнительный приемники инфракрасного излучения, два усилителя.

Изобретение относится к обработке изображений. Уменьшено влияние разницы между пробами клетки-мишени и разницы в условиях формирования изображения и так далее.

Рефрактометрический детектор содержит измерительный оптико-механический блок, включающий оптически связанные источник света, объектив, щелевую диафрагму, проточную кварцевую кювету, призму в виде трапеции с острыми углами 45° для юстировки детектора, плоскопараллельную кварцевую пластину зануления, двухплощадочный фотодиод, а также электронный блок.

Изобретение относится к медицине, а именно к терапевтической стоматологии, и может быть использовано как способ и устройство для диагностики заболеваний слизистой оболочки полости рта, а именно для дифференциальной диагностики плоского лишая, лейкоплакии и глоссалгии.

Изобретение относится к технике измерений и может использоваться в автомобильной, сельскохозяйственной, авиационной, нефтеперерабатывающей и других отраслях промышленности, где необходимо проводить оперативный анализ качества моторного масла.

Изобретение относится к медицине, а именно к стоматологии, и может быть использовано для диагностики заболеваний тканей пародонта на разных стадиях. Для осуществления способа исследуют слюну, в качестве показателя воспалительного процесса определяют концентрацию свободного оксипролина спектрофотометрическим методом.

Изобретение относится к измерительной технике и может быть использовано для измерения влажности древесины в процессе сушки и хранения. Способ измерения влажности древесины заключается в том, что устанавливают источник и приемник ИК-излучения поперек волокон древесины на выбранную глубину, измеряют поток ИК-излучения, прошедший через древесину, сравнивают полученные измерения с заранее определенной калибровочной зависимостью, связывающей изменение потока ИК-излучения, прошедшего через древесину с влажностью древесины, определенной весовым способом в фиксированные моменты времени, и вычисляют влажность древесины.

Изобретение относится к области экологии и может быть использовано для измерения концентрации парниковых газов в атмосфере. Сущность: система содержит тракт дистанционных измерений и тракт экспресс-анализа газовых компонент в предельном слое атмосферы. Тракт дистанционных измерений включает тракт регистрации сигнала отраженного от подстилающей поверхности светового потока, дважды прошедшего атмосферу, установленный на орбитальном носителе (3), Центр (5) управления полетом, радиолинии командного управления (6) и передачи (8) данных, наземные пункты (9) приема информации, средство (10) передачи информации, центр (11) тематической обработки информации. Упомянутый тракт регистрации сигнала состоит из спектрометра (1) и многоспектральной камеры (2), осуществляющих зондирование запланированных участков по программам, передаваемым из Центра (5) управления полетом. Упомянутый тракт экспресс-анализа газовых компонент размещен на тестовом участке и состоит из кассеты газовых датчиков (20) на каждый тип газа, канального коммутатора (24), аналого-цифрового преобразователя (22), буферного запоминающего устройства (23), синхронизируемых программируемой схемой (24) выборки измерений. Сигнал тракта экспресс-анализа газовых компонент используют для калибровки тракта дистанционных измерений. Технический результат: повышение точности определения концентрации парниковых газов в атмосфере. 5 ил.

Изобретение относится к устройствам измерения оптической плотности газовой среды. Способ включает наличие нескольких, связанных с опорным каналом, измерительных каналов, расположенных в пространстве на равном расстоянии от общего центра, выделение амплитуд разностных между измерительными каналами сигналов, сравнение максимальной из таких амплитуд со значением сигнала в опорном канале и при превышении порога по результатам сравнения формирование результатов измерения оптической плотности среды для установления факта наличия дыма. Технический результат заключается в существенном повышении скорости обнаружения пожара на ранних стадиях его возникновения. 2 з.п. ф-лы, 2 ил.

Изобретение относится к биотехнологии. Предложен способ идентификации микроводорослей. Способ включает воздействие методом лазерной индуцированной флуоресценции на образец пробы анализируемой среды в термокамере с последующим измерением спектра флуоресцентного излучения при изменении температуры в диапазоне 5-80°С. Измеренные температурные зависимости спектров флуоресценции пигментов клеток микроводоросли в указанном диапазоне температур сравнивают с соответствующими зависимостями для известных микроводорослей и определяют вид водоросли. Способ обеспечивает идентификацию микроводорослей с возможностью автоматизации процесса измерения. 4 ил., 2 табл., 4 пр.

Изобретение относится к области измерительной техники. Кювета для оптических микрорезонаторов с модами типа шепчущей галереи содержит корпус с отверстием в верхнем торце, выполненный с возможностью заполнения исследуемой средой и снабженный боковыми окнами для ввода и вывода излучения. Внутри корпуса с помощью крепежной лапки зафиксирован элемент оптической связи, напротив которого во фронтальной стенке корпуса выполнено окно для визуального наблюдения. Отверстие в верхнем торце снабжено патрубком, на котором в натяг установлен эластичный рукав для герметичного ввода системы позиционирования микрорезонаторов внутри кюветы и их оптической юстировки относительно элемента оптической связи. Технический результат заключается в повышении точности измерения и обеспечении доступа к управлению системой позиционирования для оптической юстировки микрорезонаторов внутри кюветы относительно элемента оптической связи непосредственно во время измерения. 6 з.п. ф-лы, 2 ил.

Изобретение относится к конструкции электрохимических ячеек для исследований электрохимических систем методами in situ спектроскопии и микроскопии. Герметичная электрохимическая ячейка состоит из содержащего сквозную полость для размещения электролита корпуса, рабочего электрода, по крайней мере одного вспомогательного электрода и пластины, выполненной с возможностью герметичного закрепления со стороны нижнего торца корпуса. При этом рабочий электрод, который одновременно является окном для спектроскопических измерений, выполнен в виде размещенного на пористой подложке из нитрида кремния слоя графена. В корпусе ячейки предусмотрено пространство для размещения вспомогательного электрода и электрода сравнения, а также пористого стекла для разделения электролитов рабочего и вспомогательного электродов. Техническим результатом является возможность осуществления исследований электрохимических систем методами in situ спектроскопии, а также расширение диапазона рабочих давлений. 11 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике и может найти применение в процессах определения эффективного потенциала ионизации и эффективного сродства к электрону многокомпонентных ароматических конденсированных сред (органические полупроводники на основе ароматических углеводородов и смесей, нефтяные смолы, смолы пиролиза, каменноугольные смолы, высококипящие нефтяные фракции, легкие и тяжелые газойли коксования, каталитического крекинга деасфальтизаты, экстракты селективной очистки масляных фракций, асфальтосмолистые вещества, битуминозные материалы, кубовые остатки процессов нефтехимпереработки). Технический результат – расширение функциональных возможностей. Для этого эффективные потенциал ионизации и сродство к электрону определяются по координате синего цвета BsRGB, определяемой в колориметрической системе координат sRGB по фотоизображению растворов многокомпонентных конденсированных сред, которое регистрируется с люминесцентным источником излучения. При этом достигается повышение скорости определения эффективного потенциала ионизации (ЭПИ) и эффективного сродства к электрону (ЭСЭ), которая превышает время изменения физической структуры материала и его химического состава. 2 табл.

Изобретение относится к биологической химии, а именно к биохимии животных, и может быть использовано для определения выраженности карбонильного стресса при послеродовом эндометрите у коров. Способ оценки показателей окислительной модификации белков молока коров включает определение содержания карбонилированных белков, оценку показателей осуществляют по коэффициенту интенсивности карбонильного стресса, который рассчитывают по формуле: Kc=СКДНФГ нейтр / СКДНФГ осн, где СКДНФГ нейтр - содержание кетон-динитрофенилгидразонов нейтрального характера; СКДНФГ осн - содержание кетон-динитрофенилгидразонов основного характера, где Kc=1,5-1,9 свидетельствует о ранней стадии развития карбонильного стресса у коров; Kc=2,0-3,4 свидетельствует об отсутствии карбонильного стресса у клинически здоровых коров; Kc=3,5-4,5 свидетельствует о поздней стадии развития карбонильного стресса у коров. Заявляемый способ прост и экономичен в осуществлении. Расчет коэффициента интенсивности карбонильного стресса позволяет выявить глубокие нарушения соотношений производных аминокислот нейтрального и основного характера, что повышает информативную ценность лабораторного исследования.

Изобретение относится к области аналитической химии и может быть использовано для определения интегральной антиоксидантной активности (АОА) растительного сырья и продуктов питания на его основе. Способ включает взаимодействие реагента, иммобилизованного в оптическую полиметакрилатную мембрану, с аналитом, последующее ее отделение от раствора и оценку величины антиоксидантной активности. В качестве реагента применяют индикаторную систему медь(II) – неокупроин, иммобилизованную в полиметакрилатную матрицу, аналитический сигнал представляют в виде светопоглощения при 450 нм, или визуальной оценки интенсивности окраски оптической мембраны, количественную и/или качественную оценку интегральной антиоксидантной активности проводят по градуировочному графику и/или цветовой шкале, построенным для аскорбиновой кислоты, используемой в качестве вещества-стандарта. 2 ил., 7 табл., 3 пр.

Изобретение относится к области физики, в частности к аналитическому приборостроению и может быть использовано в газоанализаторах, применяемых на установках извлечения серы. Cпособ оптического определения компонента, преимущественно сероводорода, и его концентрации в потоке газа включает облучение пробы исследуемого газа с использованием лазерного излучения с различными длинами волн, при котором производят сложение люминесцентного излучения в УФ или видимом диапазоне с лазерным излучением в ближнем ИК диапазоне для достижения порога интенсивности, при котором возникает эффект вынужденного рассеивания Мандельштама-Бриллюэна с образованием стоксовых составляющих. Далее регистрируют спектральное распределение интенсивности прошедшего через пробу излучения, определяют превышение полученного сигнала над пороговым уровнем шума и сравнивают абсолютные значения полученных пиков и главного максимума, соответствующего лазерному излучению. При этом пробу исследуемого газа облучают в камере газоанализатора, заполненной водой, температуру которой поддерживают в диапазоне 80-85°С. Присутствие компонента идентифицируют по частоте максимума излучения, полученного в результате вынужденного рассеивания Мандельштама-Бриллюэна, а его концентрацию определяют как логарифм интенсивности стоксовой составляющей. Газоанализатор размещают непосредственно в зоне движения потока газа, а в качестве источника лазерного облучения используют по меньшей мере один твердотельный лазер с полупроводниковой накачкой, встроенный в камеру газоанализатора. Длину волны лазерного излучения в УФ и видимом диапазоне выбирают в пределах 200-530 нм, а в ближнем ИК диапазоне - 810-1200 нм. Технический результат - возможность определения компонента, преимущественно сероводорода, и его концентрации в потоке газа с высокой точностью, а также непрерывный мониторинг процесса. 3 з.п. ф-лы, 4 ил.

Изобретение относится к устройству для качественной и/или количественной регистрации частиц в жидкости. Устройство для качественной и/или количественной регистрации частиц в жидкости содержит источник (1) света, оптический датчик (2) и размещенный между ними держатель (4) пробы для приема исследуемой жидкости. При этом держатель (4) пробы является подвижным относительно по меньшей мере датчика (2) и выполнен с возможностью соединения через впускное отверстие (9) для жидкости с линией (11) для подвода жидкости и через выпускное отверстие (10) для жидкости - с линией (12) для отвода жидкости. Причем держатель (4) пробы расположен с возможностью замены в приемном приспособлении (5) устройства и между проводными подключениями (9, 10) в держателе (4) пробы образован закрытый канал (37), который по меньшей мере на отдельных участках на двух противолежащих сторонах имеет прозрачную стенку (30, 31). В устройстве предусмотрен фиксатор (25), с помощью которого держатель (4) пробы в своем предписанном положении выполнен с возможностью фиксации с геометрическим замыканием в приемном приспособлении (5). Техническим результатом является обеспечение возможности быстрой и простой смены держателя при загрязнении 3 н. и 17 з.п. ф-лы, 8 ил.
Наверх