Способ проведения искусственного кровообращения при обеспечении кардиохирургических вмешательств

Изобретение относится к медицине, а именно к сердечно-сосудистой хирургии. Дополнительно в магистраль подачи газо-воздушной смеси аппарата искусственного кровообращения (АИК) вводят оксид азота - NO. При этом подачу NO осуществляют в дозе 40 ppm в период первого параллельного кровообращения сразу после достижения расчетной объемной скорости перфузии и перфузионного баланса. Сохраняют данный протокол подачи NO на протяжении всего периода проведения искусственного кровообращения. Прекращают подачу NO в контур экстракорпоральной циркуляции в период второго параллельного кровообращения после снятия зажима с аорты и восстановления эффективной сердечной деятельности. При этом временной интервал от прекращения подачи NO до перевода пациента на естественное кровообращение должен быть не менее 5 мин. Способ позволяет сократить число послеоперационных осложнений у пациентов, оперированных в условиях искусственного кровообращения, и улучшить результаты кардиохирургических вмешательств, а также устранить негативные эффекты искусственного кровообращения с сохранением гемодинамической стабильности пациентов в раннем постперфузионном периоде. 1 пр.

 

Изобретение относится к медицине, а именно к сердечно-сосудистой хирургии, к технологиям проведения искусственного кровообращения при кардиохирургических вмешательствах.

Кардиохирургическое вмешательство в условиях искусственного кровообращения представляет собой крайнюю степень хирургической агрессии, сопровождающуюся выраженными сдвигами нервно-рефлекторной регуляции, гуморальной активности и метаболического статуса. [1, 2]. Несмотря на значительные успехи в области анестезиологического обеспечения вмешательств на открытом сердце, остается нерешенным целый ряд частных вопросов кардиоанестезиологии: феномен перераспределения кровотока и централизации кровообращения во время проведения полного сердечно-легочного обхода; ишемически-реперфузионные повреждения органов и тканей при проведении искусственного кровообращения; развитие синдрома системного воспалительного ответа при операциях в условиях полного сердечно-легочного обхода [3].

Остается высокой частота миокардиальной дисфункции, манифестирующей как острая систолическая или диастолическая сердечная недостаточность в раннем послеоперационном периоде [4].

Частота осложнений побуждает клиницистов на разработку эффективных способов анестезиологической защиты пациентов. Поиск оптимального способа безопасной перфузии продолжается.

Известен способ проведения искусственного кровообращения у кардиохирургических пациентов с использованием ганглионарной блокады, выполняемой путем введения в перфузат, находящийся в контуре экстракорпоральной циркуляции, пентамина в дозе 2 мг/кг [5].

Данный способ является наиболее близким к заявляемому по технической сущности и достигаемому результату и выбран в качестве прототипа.

Недостатком данного способа являются остаточные эффекты ганглионарной блокады, которые в постперфузионном периоде могут послужить причиной гемодинамической нестабильности пациентов. Данные эффекты особенно выражены в условиях синдрома малого сердечного выброса, наблюдаемого после кардиохирургических вмешательств. Применение ганглионарной блокады и, в частности, пентамина противопоказано при острой сердечной недостаточности, циркуляторном шоке любого генеза, хронической диастолической сердечной недостаточности, закрытоугольной глаукоме, почечной и печеночной недостаточности.

Задачей изобретения является создание способа, позволяющего устранить негативные эффекты искусственного кровообращения с сохранением гемодинамической стабильности пациентов в раннем постперфузионном периоде и отсутствием противопоказаний к применению.

Поставленная задача решается путем дополнительного введения в магистраль подачи газо-воздушной смеси аппарата искусственного кровообращения (АИК) оксида азота - NO. Подачу NO осуществляют в дозе 40 ppm в период первого параллельного кровообращения сразу после достижения расчетной объемной скорости перфузии и перфузионного баланса. Для доставки NO в магистраль подачи газо-воздушной смеси врезают дополнительную линию с бактериальным фильтром в месте максимально приближенном к оксигенатору аппарата искусственного кровообращения (АИК). Сохраняют данный протокол подачи NO на протяжении всего периода проведения искусственного кровообращения. Прекращают подачу NO в контур экстракорпоральной циркуляции в период второго параллельного кровообращения после снятия зажима с аорты и восстановления эффективной сердечной деятельности. Для исключения системных гемодинамических эффектов временной интервал от прекращения подачи NO в АИК до отлучения пациента от механической перфузии и перевода на естественное кровообращение должен быть не менее 5 мин.

Новым в предлагаемом изобретении является дополнительное введение NO непосредственно в магистраль подачи газо-воздушной смеси АИК в дозе 40 ppm на протяжении всего периода проведения искусственного кровообращения.

Техническим результатом данного изобретения является сокращение числа послеоперационных осложнений у пациентов, оперированных в условиях искусственного кровообращения, и улучшение результатов кардиохирургических вмешательств.

Воздействие на механизмы метаболической регуляции капиллярного кровотока является патогенетически обоснованным. Продуцируемый эндотелиальными клетками оксид азота - NO занимает особое место среди локальных медиаторов сосудистых реакций [6]. NO обладает широким спектром биорегуляторных влияний: оказывает сильное сосудорасширяющее действие, модулирует освобождение вазоактивных медиаторов, препятствует сужению сосудов эндотелином-1 и высвобождению норадреналина окончаниями симпатических нейронов. Кроме того, NO тормозит активацию, секрецию, агрегацию и адгезию тромбоцитов [7], ингибирует активацию, адгезию и инфильтрацию сосудистой стенки лейкоцитами [8, 9], снижает синтез воспалительных цитокинов и моноцитарных хемотаксических факторов [10], подавляет экспрессию провоспалительных генов.

Отличительные признаки проявили в заявляемой совокупности новые свойства, явным образом не вытекающие из уровня техники в данной области и неочевидные для специалиста. Идентичной совокупности признаков не обнаружено в проанализированной патентной и научно-медицинской литературе. Предлагаемый в качестве изобретения способ может быть использован в практическом здравоохранении для повышения качества и эффективности лечения.

Исходя из вышеизложенного, следует считать данное техническое решение соответствующим условиям патентоспособности: «новизна», «изобретательский уровень», «промышленная применимость».

Способ осуществляют следующим образом: в магистраль подачи газо-воздушной смеси в асептических условиях врезают дополнительную линию для доставки NO. Коннектор линии доставки NO должен быть максимально приближен к оксигенатору АИК и иметь бактериальный фильтр. Дозирование NO осуществляют с помощью анализатора PrinterNOX (CareFusion, USA). Уровень метгемоглобина в периферической крови контролируют методом отражающей фотометрии с помощью газоанализатора Stat Profile ССХ (Nova Biomedical, USA).

Подключение аппарата искусственного кровообращения осуществляют по принятой методике по схеме «аорта - правое предсердие». Старт искусственного кровообращения осуществляют по команде оперирущего хирурга в непульсирующем режиме. Перфузионный индекс 2,8 л/мин/м2. После достижения расчетной объемной скорости перфузии и перфузионного баланса уже в период первого параллельного кровообращения осуществляют подачу NO в контур экстракорпоральной циркуляции в дозе 40 ppm. Данный протокол подачи NO сохраняют на протяжении всего периода проведения искусственного кровообращения. После снятия зажима с аорты, восстановления эффективной сердечной деятельности в период второго параллельного кровообращения подачу NO в контур экстракорпоральной циркуляции прекращают. Для исключения системных гемодинамических эффектов временной интервал от прекращения подачи NO в АИК до отлучения пациента от механической перфузии и перевода на естественное кровообращение не должен быть менее 5 мин.

Клинический пример

Пациентка М., 61 год, вес 88 кг, рост 168.

Основной диагноз: Дисплазия соединительной ткани. Недостаточность митрального клапана 4 ст., недостаточность трикуспидального клапана 4 ст. Легочная гипертензия 3 ст. Сердечная астма. Двусторонний гидроторакс. Гидроперикард. Асцит. Кардиальный фиброз печени. Синдром печеночно-клеточной недостаточности.

Сопутствующие заболевания: ХОБЛ 2 ст., неполная ремиссия. Хронический панкреатит, холецистит. Язвенная болезнь желудка. Хроническая железо-дефицитная анемия.

Пациентке выполнено протезирование митрального клапана и пластика трикуспидального клапана в условиях ИК- и фармако-холодовой кардиоплегии «Кустодиолом» на фоне комбинированной анестезии и ИВЛ. Продолжительность искусственного кровообращения составила 150 мин, время тотальной ишемии миокарда 110 мин.

Подключение аппарата искусственного кровообращения по схеме «аорта - правое предсердие». Искусственное кровообращение осуществлялось в непульсирующем режиме. Перфузионный индекс 2,8 л/мин/м2. После достижения расчетной объемной скорости перфузии и перфузионного баланса уже в период первого параллельного кровообращения начата подача NO в контур экстракорпоральной циркуляции в дозе 40 ppm. Дозирование NO осуществлялось с помощью анализатора PrinterNOX (CareFusion). Уровень метгемоглобина в периферической крови контролировался методом отражающей фотометрии с помощью газоанализатора Stat Profile ССХ (Nova Biomedical, USA). Данный протокол подачи NO сохранялся на протяжении всего периода проведения искусственного кровообращения. Адекватность проведения механической перфузии оценивался по комплексу параметров.

Состояние микроциркуляции оценивалось по данным тканевой оксиметрии тенора правой кисти - оксиметр INOVUS (Somanetics). В период проведения искусственного кровообращения с подачей NO в контур АИК средний показатель насыщения капиллярной крови кислородом составил 60%, что было даже выше доперфузионных значений (в среднем 41%). Данные изменения указывают на выраженный децентрализующий эффект подачи NO с явным улучшением условий микроциркуляции во время искусственного кровообращения. Адекватность венозного возврата на протяжении перфузии оставалась удовлетворительной и составляла в среднем 3000 мл, что указывает на отсутствие секвестрации внутрисосудистого объема крови в сосудах периферической циркуляции. Сатурация смешанной венозной крови на протяжении механической перфузии оставалась в пределах 70-75%, отражая удовлетворительный общий кислородный бюджет организма. Искусственное кровообращение проводилось в условиях «тепловатой» гипотермии, температура в прямой кишке составляла в среднем 34°C. Ректально-периферический градиент на протяжении искусственного кровообращения не превышал 3°C, что также указывает на улучшение микроциркуляции. После снятия зажима с аорты отмечалось спонтанное восстановление сердечной деятельности с исходом в синусовый ритм. Подача NO в контур экстракорпоральной циркуляции прекращена за 5 мин до отлучения пациента от АИК. Отлучение от искусственного кровообращения произошло на фоне стартовых доз инотропной поддержки (допмин 4 мкг/кг/мин), без признаков перегрузки левых или правых отделов сердца (ЦВД - 8 мм рт.ст., ДЗЛА-6 мм рт.ст.) и без потребности в высокой ингалируемой фракции кислорода (FiO2 - 0,35). Ранний послеоперационный период протекал без особенностей. Пациентка не требовала массивных доз инотропной и вазопрессорной поддержки, что подтверждает кардиопротективные эффекты подачи NO в контур экстракорпоральной циркуляции. P/F индекс при поступлении в отделение реанимации составил 410. Время искусственной вентиляции легких составило 4 ч 20 мин. Объем инфузий на протяжении 48 ч послеоперационного периода составил 7600 мл, диурез 7000 мл, дренажные потери 360 мл, расчетные перспирационные потери - 800 мл. Средний гемоглобин составил 90 г/л, гемотрансфузий пациентка не требовала. Лихорадки в послеоперационном периоде не наблюдалось. Таким образом, применив NO, позволяет снизить выраженность синдрома системной воспалительной реакции, что выражается в отсутствии лихорадки, умеренно отрицательном послеоперационном гидробалансе, отсутствии секвестрации жидкости и отеков за счет снижения выраженности феномена «капиллярной утечки».

Осложнений в раннем послеоперационном периоде не наблюдалось. Время пребывания в ОАР составило 2 суток.

Предлагаемый авторами способ апробирован у 20 пациентов и позволяет устранить негативные эффекты искусственного кровообращения с сохранением гемодинамической стабильности пациентов в раннем постперфузионном периоде, что ведет к сокращению числа послеоперационных осложнений у пациентов, оперированных в условиях искусственного кровообращения, и улучшению результатов кардиохирургических вмешательств.

Список использованной литературы

1. Караськов A.M., В.В. Ломиворотов. «Биохимическая адаптация организма после кардиохирургических вмешательств». - Новосибирск: Издательство СО РАН, филиал «Гео», 2004. - 287 с.

2. Литасова Е.Е., Малыгина А.Н., Евнина И.И. и др. Состояние гормональной регуляции при кардиохирургических операциях в условиях "сухого" сердца // Анестезиология и реаниматология. - 1994. - №2. - С. 50-53.

3. Осипов В.П. «Основы искусственного кровообращения». - М. «Медицина», 1976, С. 19-38.

4. Domanski MJ, Mahaffey К, Hasselblad V, Brener SJ, Smith PK, Hikis G, et al. Association of myocardial enzyme elevation and survival following coronary artery bypass graft surgery. JAMA.2011; 305:585-91.

5. Менынугин И.Н. «Искусственное кровообращение у детей в условиях ганглионарной блокады и пульсирующего потока». Руководство для врачей. - СПб: «Специальная Литература» 1998. - 26.

6. Schechter AN, Gladwin МТ. Hemoglobin and the paracrine and endocrine functionsof nitric oxide. N Engl J Med. 2003; 348:1483-5.

7. Sawicki G, Salas E, Murat J, Miszta-Lane H, Radomski MW. Release of gelatinase a during platelet activation mediates aggregation. Nature. 1997; 386: 616-9.

8. Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA. 1991; 88:4651-5.

9. Chello M, Mastroroberto P, Perticone F, Celi V, Colonna A. Nitric oxide modulation of neutrophil-endothelium interaction: difference between arterial and venous coronary bypass grafts. J Am Coll Cardiol. 1998; 31:823-6.

10. Van Dervort AL, Yan L, Madara PJ, Cobb JP, Wesley RA, Corriveau CC, et al. Nitric oxide regulates endotoxin-induced TNF-alpha production by human neutrophils. J Immunol. 1994; 152:4102-9.

Способ проведения искусственного кровообращения при обеспечении кардиохирургических вмешательств, заключающийся в подаче газо-воздушной смеси в контур экстракорпоральной циркуляции, отличающийся тем, что после достижения расчетной объемной скорости перфузии и перфузионного баланса, в период первого параллельного кровообращения в магистраль подачи газо-воздушной смеси дополнительно осуществляют подачу NO в дозе 40 ppm. и сохраняют данный протокол подачи NO на протяжении всего периода проведения искусственного кровообращения, а прекращают подачу NO в контур экстракорпоральной циркуляции в период второго параллельного кровообращения после снятия зажима с аорты и восстановления эффективной сердечной деятельности, при этом временной интервал от прекращения подачи NO до перевода пациента на естественное кровообращение должен быть не менее 5 мин.



 

Похожие патенты:

Изобретение относится к медицинской технике и может быть использовано в трансплантологии для восстановления и поддержания ишемически поврежденых донорских органов для целей их последующей трансплантации.

Изобретение относится к медицинской технике. Кровяной насос снабжен ротором, установленным в корпусе насоса с помощью подшипника.

Изобретение относится к области мониторинга насекомых. Ловушка содержит устройство для улавливания летающих насекомых и контрольный цилиндр.

Группа изобретений относится к медицине и может быть использована для временной поддержки кровообращения. Катетерный насос содержит удлиненную гильзу с приводным стержнем, проходящим сквозь гильзу и присоединяемым своим проксимальным концом к внешнему источнику приводной энергии.
Изобретение относится к области медицины, а именно к хирургии, в частности к сердечно-сосудистой хирургии. Выполняют пункцию бедренной артерии справа с установкой в ней интродьюсера.

Группа изобретений относится к кардиохирургии. Искусственный желудочек сердца, включающий двухкамерный диафрагменный насос и канюлю, состоящую из последовательно расположенных по отношению к насосу желудочковой и аортальной частей, насос выполнен из разделенных мембраной газовой камеры, которая трубопроводом или каналом соединена с устройством, обеспечивающим импульсную поочередную подачу газа под давлением и создание вакуума, и камеры перекачиваемой среды, снабженной штуцером для соединения с желудочковой частью канюли, при этом желудочковая часть выполнена в виде жесткого трубчатого элемента с перфорацией по периферии его диаметрального сечения, выполненной между упорными шайбами во внутренней стенке трубчатого элемента канюли со смещением в сторону упорной шайбы, дальней от штуцера диафрагменного насоса, и цилиндрического стакана, высотой, меньшей расстояния между упорными шайбами, с отверстием на его основании, размещенного во внутренней части трубчатого элемента канюли и имеющего возможность линейного перемещения между упорными шайбами с функцией открытия-перекрытия отверстий перфорации, а аортальная часть канюли выполнена из мягкой силиконовой трубки.

Изобретение относится к медицине, а именно к кардиохирургии. Перекачивающее устройство содержит проточный канал и клапаны на входе и выходе из канала, при этом на обтекаемой кровью поверхности выполнен изменяющийся по времени рельеф, соответствующий соотношениям нестационарного самоорганизующегося закрученного потока крови.

Изобретение относится к медицинским насосам и предназначено для введения в систему кровообращения млекопитающего с целью поддержки сердца в осуществлении кровообращения.

Изобретение относится к медицине, в частности к экспериментальной фармакологии, и может быть использовано для изучения механизмов коррекции эндотелиальной дисфункции у беременных.

Изобретение относится к органам и тканям, конкретнее к способам и материалам для удаления и восстановления содержания клеток в органах и тканях. .

Изобретение к медицинской технике. Устройство привода насоса перфузионного контура включает блок привода насоса, блок контроля параметров перфузии, блок контроля насыщения перфузата кислородом, блок контроля объемного расхода перфузата, блок звуковой и световой индикации и блок дистанционного управления, связанные с центральным микроконтроллером, выполненным с возможностью контроля блока питания. Блок привода насоса включает микроконтроллер привода насоса, связанный через силовые ключи и электродвигатель с магнитной муфтой, соединяющей вал электродвигателя с насосом, включенным в перфузионный контур. Блок контроля параметров перфузии включает первый и второй фильтры, на входы которых поступают напряжения от датчиков давления и температуры перфузата соответственно, аналого-цифровой преобразователь, связанный с выходами фильтров и со входом микроконтроллера параметров перфузии, связанного с центральным микроконтроллером. Блок контроля насыщения перфузата кислородом включает трансимпедансный усилитель, выполненный с возможностью подключения датчика насыщения кислородом и связанный через аналого-цифровой преобразователь с микроконтроллером блока контроля насыщения перфузата кислородом, один выход которого имеет возможность подключения через цифроаналоговый преобразователь к светодиодам датчика насыщения перфузата кислородом, а другой связан с центральным микроконтроллером. Блок контроля объемного расхода перфузата включает время-цифровой преобразователь, выходами генератора измерительных сигналов и входами измерителя времени подключенный к пьезоэлементам. Выход измерителя времени подключен к микроконтроллеру вычисления объемного расхода перфузата. Блок дистанционного управления выполнен с возможностью формирования и подачи управляющих команд на включение и остановку насоса, запись параметров перфузии и настройку датчиков. Блок звуковой и световой индикации подключен к центральному микроконтроллеру. Изобретение обеспечивает надежное и длительное дистанционное поддержание условий перфузии жизнеспособных донорских органов внутри тела донора. 2 з.п. ф-лы, 4 ил.

Группа изобретений относится к медицинской технике. Система управления насосом для нагнетания крови содержит локальный и дистанционный терминалы обработки. Локальный терминал обработки выполнен с возможностью передавать в дистанционный терминал обработки собранные параметры о текущем состоянии насоса для нагнетания крови и показатели активности сердца; и приводить в движение и управлять насосом для нагнетания крови в соответствии с параметрами регулирования насоса для нагнетания крови, принятыми из дистанционного терминала обработки. Дистанционный терминал обработки выполнен с возможностью получать текущие параметры регулирования насоса для нагнетания крови в соответствии с текущими параметрами состояния и показателями активности сердца, принятыми из локального терминала обработки, и установленными условиями регулирования; и передавать параметры регулирования насоса для нагнетания крови обратно в локальный терминал обработки. Локальный терминал обработки дополнительно содержит источник питания, при этом источник питания локального терминала обработки содержит источник питания постоянного тока (DC) и/или источник питания от сети переменного тока (АС). Локальный терминал обработки дополнительно содержит: локальный модуль предупреждения о низком уровне заряда, выполненный с возможностью генерирования локальной информации предупреждения о низком уровне заряда или запроса подтверждения предупреждения о низком уровне заряда, если общее значение заряда или напряжения источника питания DC и источника питания АС ниже, чем установленный уровень заряда или значение напряжения. Раскрыты способ управления насосом и система насоса для нагнетания крови. Изобретения обеспечивают повышение надежности вспомогательного кровообращения при изменении физиологического состояния пациента. 3 н. и 17 з.п. ф-лы, 8 ил.

Изобретение относится к медицинской технике. Система центробежного кровяного насоса содержит: центробежный насос, содержащий впуск, выпуск и импеллер, имеющий поворотный вал, выполненный с возможностью входа в зацепление с верхней поворотной несущей и с нижней поворотной несущей. Верхняя поворотная несущая проходит от верхней части корпуса во впуск. Нижняя поворотная несущая проходит от нижней части корпуса в его внутреннее пространство. Лопатки на верхней поверхности импеллера продолжаются радиально от центра импеллера. Магнит механически сцеплен с импеллером. Электрический двигатель для магнитного зацеплении с магнитом выполнен с возможностью вращения магнита и импеллера. Трубка входящего потока имеет диаметр 4-6 мм, первый ее конец соединен со впуском, а второй выполнен с возможностью ввода в просвет вены. Трубка входящего потока дополнительно содержит боковой порт. Трубка выходящего потока имеет внутренний диаметр 4-6 мм. Первый ее конец соединен с выпуском, а второй выполнен с возможностью создания анастомоза к периферической вене. Трубка выходящего потока дополнительно содержит боковой порт для управляемого доступа к пути текучей среды в трубке выходящего потока. Устройство управления содержит процессор, запоминающее устройство, батарею и кабель. Процессор выполнен с возможностью управления скоростью импеллера от 50 до 1500 мл/мин в течение 7 дней. Среднее значение напряжения сдвига стенки периферической вены составляет от 2,5 до 10 Па, а значение пульсового давления в периферической вене меньше, чем это значение в отдающей артерии. Технический результат состоит в обеспечении увеличения диаметра периферических вен и артерий. 33 з.п. ф-лы, 43 ил.

Изобретение относится к медицинской технике, а именно к осевому насосу вспомогательного кровообращения. Насос состоит из трубчатого полого корпуса. Внутри корпуса установлен с возможностью вращения нагнетательный элемент с лопатками, ориентированный вдоль оси. Нагнетательный элемент образует зазор между нагнетательным элементом и полым корпусом. Насос содержит установленные по ходу потока направляющие блоки с лопатками. Блоки с лопатками жестко закреплены на внутренней стенке корпуса и расположены спереди и позади нагнетательного элемента. Электродвигатель размещен в одном из направляющих блоков. Между направляющими блоками и рабочим колесом установлено лабиринтное уплотнение. Нагнетательный элемент установлен на валу ротора и выполнен в виде рабочего колеса. Техническим результатом является упрощение конструкции осевого насоса и уменьшение электропотребления за счет исключения магнитных опор. 6 з.п. ф-лы, 3 ил.

Изобретение относится к дисковым насосам трения для перекачки жидкостей, в частности в кардиохирургии для создания вспомогательного насоса поддержки кровообращения для лечения терминальной сердечной недостаточности. Насос содержит корпус, внутри которого установлен с возможностью вращения пакет дисков (3) переменной толщины в радиальном направлении, входной и выходной патрубки. Диски (3) выполнены обтекаемой параболической формы. Ширина зазора между дисками (3) убывает от центра к периферии и определена выражением, которое связано с текущей шириной h зазора (9) между дисками (3) от входа до выхода, шириной hin зазора (8) между дисками (3) на входе, диаметром din дисков (3) на входе, текущим диаметром d дисков (3) от входа до выхода, расходом жидкости на один зазор между дисками (3), толщиной пограничного слоя при ламинарном течении, коэффициентом кинематической вязкости жидкости, скоростью вращения дискового ротора и безразмерным параметром, характеризующим отношение ширины зазора между дисками (3) к толщине пограничного слоя на вращающемся диске (3). Изобретение направлено на оптимизацию параметров дискового насоса, включающую оптимальный выбор формы и величины входного диаметра дисков, скорости вращения ротора в зависимости от свойств жидкости и расхода для достижения максимального КПД и напора насоса, что позволяет его использование в системах искусственного кровообращения. 5 ил.
Изобретение относится к медицине, а именно к реаниматологии и сердечно-сосудистой хирургии. Выполняют подключение ИК к пациенту, проведение анестезии посредством введения наркологических препаратов в оксигенератор ИК. Проводят перфузии с оценкой ее адекватности. При этом объемную скорость перфузии во время искусственного кровообращения увеличивают до 3,0-3.2 л/мин на 1 м2 поверхности тела в условиях нормотермии. Способ позволяет у пациентов с мультифокальным атеросклерозом, с преимущественным поражением коронарных и сонных артерий, уменьшить число периоперационных осложнений, таких как ОНМК, когнитивные дисфункции, нарушение функции почек, отсутствие гемолиза, удовлетворительные показатели лактата (до 4 ммоль/л) и билирубина (до 25 ммоль/л) крови.

Группа изобретений относится к медицинской технике. Способ вспомогательного кровообращения включает плотную фиксацию на грудной клетке задающего элемента, выполненного в виде заполненной рабочей жидкостью полой манжеты. Пульсирующее давление рабочей жидкости формируют в процессе естественного дыхания за счет изменения объема грудной клетки, и с помощью расположенного на теле исполнительного элемента преобразуют периодически меняющееся давление рабочей жидкости в импульсы давления потока крови, регулировку которого осуществляют за счет изменения частоты дыхания и объема грудной клетки при интенсификации или уменьшении нагрузки человека. Устройство для осуществления способа содержит задающий и исполнительный, соединенный с кровеносной системой человека и преобразующий пульсацию рабочей жидкости в пульсацию потока крови, элементы. Задающий элемент представляет собой источник пульсирующего давления рабочей жидкости, расположен на теле человека и выполнен в виде полой плотно фиксируемой вокруг грудной клетки манжеты, снабженной патрубком с клапаном для заполнения рабочей жидкостью и патрубком для подсоединения соединительного шланга. Исполнительный элемент выполнен в виде замкнутого цилиндрического корпуса, заполненного буферной жидкостью, внутри которого размещены два сильфона разного диаметра. Сильфон большего диаметра заполнен рабочей жидкостью, а сильфон меньшего диаметра - кровью, торцевая часть цилиндрического корпуса с основанием сильфона большего диаметра имеет патрубок для соединения через соединительный шланг с манжетой, а торцевая часть корпуса с основанием сильфона меньшего диаметра имеет два патрубка с обратными клапанами, один из которых подсоединен выходящим шлангом к артерии, а другой, входящим шлангом - к вене. Технический результат состоит в увеличении срока непрерывной надежной работы. 2 н.п. ф-лы, 1 ил.

Группа изобретений относится к медицине, а именно к тканевой инженерии. Предложена лишенная клеток путем перфузии сосудистая ткань свиньи, коровы, овцы, собаки или человека, содержащая лишенный клеток внеклеточный матрикс указанной ткани. При этом указанный внеклеточный матрикс включает сосудистое дерево. Указанный лишенный клеток внеклеточный матрикс указанной ткани сохраняет большую часть жидкости, введенной в указанное сосудистое дерево лишенного клеток внеклеточного матрикса. Предложен способ лишения ткани клеток методом перфузии, а также часть органа, лишенного клеток методом перфузии. Группа изобретений позволяет обеспечить возможность эффективной реконструкции органа или ткани. 4 н. и 12 з.п. ф-лы, 2 ил.

Изобретение относится к медицинской технике, а именно к аппаратам вспомогательного кровообращения и искусственного сердца и может быть использовано в качестве носимого автономного привода пневматических искусственных желудочков. Устройство содержит электродвигатель, соединенный с кривошипно-шатунным механизмом, соединенным с поршнем, размещенным в цилиндре. Устройство содержит контроллер. Одна часть рабочей полости цилиндра, разделенная поршнем, подключена к пневмополости первого искусственного желудочка и двум встречно включенным обратным клапанам. Рабочая полость подключена к датчику давления и двухлинейному электромагнитному распределителю. Распределитель выполнен с возможностью сообщения с атмосферой при прямом ходе поршня, после выброса крови из первого искусственного желудочка и при обратном ходе поршня после заполнения кровью первого искусственного желудочка. Другая часть рабочей полости цилиндра, разделенная поршнем, подключена к пневмополости второго искусственного желудочка. Другая полость соединена с дополнительным встречно включенным обратным клапаном, дополнительным датчиком давления и дополнительным двухлинейным электромагнитным распределителем. Распределитель выполнен с возможностью сообщения с атмосферой при обратном ходе поршня после выброса крови из второго искусственного желудочка и при прямом ходе поршня после заполнения кровью второго искусственного желудочка. Контроллер связан с обоими датчиками давления и обоими электромагнитными распределителями. Технический результат заключается в обеспечении синхронной работы двух искусственных желудочков, с соотношением фаз систола-диастола, приближенным к физиологическим величинам. 3 ил.

Группа изобретений относится к медицинской технике, а именно к вариантам устройства для перекачивания крови с бесконтактной магнитной муфтой. В первом варианте устройство включает расположенные в просвете крупных кровеносных сосудов многоступенчатую насосную часть. Насосная часть включает корпус и расположенный внутри корпуса соединительный вал. На соединительном валу находятся две осевые ступени, содержащие рабочие колеса с криволинейными лопатками и статорный аппарат. Устройство включает приводной узел, который включает герметичный корпус. Внутри герметичного корпуса располагается двигатель и приводимый в движение двигателем приводной вал. Приводной узел содержит магнитную муфту, которая включает внешнюю ведущую полумуфту, установленную на приводном валу приводного узла, и внутреннюю ведомую полумуфту, расположенную на торцевой поверхности основания рабочего колеса второй ступени насосной части. Приводной узел позволяет передать крутящий момент на соединительный вал насосной части от двигателя с помощью магнитного поля. Во втором варианте приводной узел располагается вне тела пациента и содержит гибкий передающий вал, расположенный внутри тела пациента. На каждом конце гибкого вала жестко закреплена концевая магнитная полумуфта. Первая концевая полумуфта расположена в магнитном контакте с внутренней ведомой полумуфтой насосной части. Вторая концевая полумуфта расположена в магнитном контакте с внешней ведущей полумуфтой приводного узла. Техническим результатом является снижение травмы крови за счет уменьшения возмущения потока в проточной части и уменьшение скорости вращения рабочих колес. Также исключается необходимость подачи смазывающей жидкости, для исключения заклинивания двигателя приводного узла. 2 н. и 13 з.п. ф-лы, 8 ил.
Наверх