Переносной диагностический комплекс

Переносной диагностический комплекс содержит ПК, адаптер USB, интерфейс USB, микроконтроллер, оперативное запоминающее устройство, две шины управления, две шины данных, интерфейс JTAG, оперативно перепрограммируемый логический узел, программатор, соединенные определенным образом. Обеспечивается мобильная диагностика, тестирование программных испытаний, настройка радиоэлектронных изделий. 1 ил.

 

Изобретение относится к цифровой вычислительной электронике и может использоваться для диагностики работоспособности других электронных устройств, в частности аппаратуры системы управления (СУ).

Из уровня техники известен аналог: переносной программно-диагностический комплекс (патент RU 2363975), который предназначен для диагностики и обнаружения неисправностей радиоэлектронных изделий (РЭИ), который включает: монитор (единое индикаторное устройство для отображения цифробуквенной и графической информации), управляющую ЭВМ, многоканальный генератор аналоговых сигналов с цифровым управлением, многоканальный генератор импульсно-кодовых сигналов с цифровым управлением, многоканальный цифровой преобразователь аналоговых сигналов с цифровым управлением, многоканальный логический анализатор с цифровым управлением, многоканальный диагностический модуль с цифровым управлением, адаптер для соединения с объектом диагностики.

Недостатком аналога является проверка тестируемых изделий, по средством тестовых щупов, что допускает воздействие человеческого фактора на результат проверки, а также требует большое количество сигнальных линий для осуществления проверки изделий.

Прототип описан в статье «Разработка отладочного комплекса JTAG для проведения диагностики БЦВМ» (Основные направления и формы использования инновационных разработок при создании ракетно-космической техники. Сборник материалов, Научно-практический семинар молодых ученых и специалистов предприятий космической промышленности, г. Королев Московской области, 2007, с. 85-98). В статье описывается устройство, в котором тестируемая плата с расположенными на ней БИС подключается через последовательный канал передачи данных (JTAG интерфейс) к некоторому ведущему устройству. Ведущее устройство решает задачи, связанные с диагностикой тестируемого устройства, локализацией неисправностей, загрузкой конфигураций PLD и т.п. Как правило, ведущим устройством является персональный компьютер, оснащенный соответствующим программным обеспечением. В статье приведена схема узлов и связей адаптера с персональным компьютером (ПК) и тестируемым изделием. Адаптер подключается к ПК через интерфейс USB 2.0, а к тестируемому изделию - через интерфейс JTAG. ПК связан через интерфейс USB 2.0, цепь питания которого подключена ко всем элементам адаптера, а шина данных связана с приемопередатчиком интерфейса USB 2.0, который связан двунаправленной шиной данных с микроконтроллером. В свою очередь микроконтроллер имеет однонаправленные связи с функциональными блоками логического узла и связан шиной управления с ОЗУ, при этом адаптер имеет общую шину, которая предоставляет двунаправленную связь между микроконтроллером, ОЗУ, логическим узлом, а также обеспечивает связь микроконтроллера с адресным расширителем, который в свою очередь связан с ОЗУ. Логический узел связан с интерфейсом JTAG через сигнальные линии последовательного синхронного 4-проводного интерфейса JTAG.

Недостатком прототипа является то, что в данной схеме отсутствует возможность оперативного перепрограммирования логического узла, а приведенная в статье схема с низкой производительностью ввиду того, что обработка сигналов JTAG полностью возложена на микроконтроллер.

Задачей изобретения является создание мобильного переносного комплекса, позволяющего проводить диагностику, тестирование, программные испытания и настройку радиоэлектронных изделий.

Для решения поставленной задачи адаптер должен работать вместе с ПК и программатором, образуя переносной диагностический комплекс (ПДК). На ПК должно быть установлено программное обеспечение, которое позволяет проводить диагностику, тестирование, программные испытания и настройку РЭИ, а программатор должен применяться для перепрограммирования оперативно-перепрограммируемого логического узла адаптера.

Разработанный ПДК включает в себя следующие элементы, представленные на фигуре:

1 - Персональный компьютер;

2 - Тестируемое изделие;

3 - Программатор;

4 - Интерфейс USB;

5 - Приемопередатчик интерфейса USB;

6 - Схема формирования сигнала СБРОС;

7 – Оперативно-перепрограммируемый логический узел;

8 - Микроконтроллер;

9 – ОЗУ;

10 - Интерфейс JTAG;

11 - Вспомогательный интерфейс JTAG.

Элементы ПДК имеют следующие связи:

ПК (1), к которому по средствам USB кабеля (ИЮ-1) подключается адаптер через интерфейс USB (4), цепь питания (ЦП-1) которого поступает на приемопередатчик интерфейса USB (5), схему формирования режима СБРОС (6), оперативно-перепрограммируемый логический узел (ОПЛУ) (7), микроконтроллер (8), оперативное запоминающее устройство (ОЗУ) (9), интерфейс JTAG (10) и вспомогательный интерфейс JTAG (11). Информационная шина (ШД-1) интерфейса USB (4) связана с приемопередатчиком интерфейса USB (5). Общая шина данных 8 бит (ШД-2) адаптера подключается к приемо-передатчику интерфейса USB (5), микроконтроллеру (8), ОЗУ (9) и ОПЛУ (7), чем обеспечивает: связь (ШД-2.1) приемопередатчика интерфейса USB (5) с микроконтроллером (8), связь (ШД-2.2.) микроконтроллера (8) с ОЗУ (9), связь (ШД-2.3) микроконтроллера (8) с ОПЛУ (7). Микроконтроллер (8) имеет однонаправленную связь шиной управления (ШУ-5) с ОЗУ (9) и взаимно связан двумя шинами управления (ШУ-1 и ШУ-2) с приемопередатчиком интерфейса USB (5). ОПЛУ (7) и микроконтроллер (8) взаимно связаны между собой двумя шинами управления (ШУ-3 и ШУ-4) и двумя шинами данных (ШД-3 и ШД-4). Схема формирования режима СБРОС (6) связана с приемопередатчиком интерфейса USB (5) и микроконтроллером (8) через отдельные сигнальные независимые электрические цепи (ЭЦ-1 и ЭЦ-2), которые взаимно инвертированные-синфазные по отношению друг к другу. ОПЛУ (7) и микроконтроллер (8) имеют по одной однонаправленной шине адреса 8-бит (ША-1 и ША-2), вместе образующие одну шину адреса 8-бит, которая соединена с ОЗУ (9). Интерфейс JTAG (10) и вспомогательный интерфейс JTAG (11) подключены к ОПЛУ (7) через сигнальные линии последовательного синхронного 4-проводного интерфейса JTAG (ИД-1 и ИД-2). В интерфейс JTAG (10) с применением JTAG кабеля (ИД-3) подключается тестируемое изделие (2), а вспомогательный интерфейс JTAG (11) также имеет цепь питания (ЦП-2), которая совместно с JTAG кабелем (ИД-4) подключается в программатор (3). Программатор (3) шиной данных, в качестве которой применяется USB кабель (ИЮ-2), связан с ПК (1).

ПДК работает следующим образом:

К адаптеру через интерфейс USB (4) подключается ПК (1), а через интерфейс JTAG (10) - тестируемое изделие (2). Через ПК (1) осуществляется управление адаптером и его питание, в том числе перепрограммирование. В адаптере используется интерфейс USB-2.0 или USB-3.0, при этом нормальная работа адаптера возможна при разных версиях интерфейса USB у адаптера и ПК, наличие интерфейса USB-3.0 у ПК и адаптера повышает быстродействие последнего. Общая шина данных 8-бит (ШД-2) позволяет применять в адаптере микроконтроллер с ограниченным количеством портов 8-бит, так как, используя один порт 8-бит микроконтроллера (8), соединяет его сразу с тремя элементами адаптера. Информация с ПК (1, через интерфейс USB (4) поступает на приемопередатчик интерфейса USB (5), который преобразует цифровой последовательный информационный поток в параллельный цифровой двунаправленный поток и передает его на общую шину данных 8-бит (ШД-2), а сигнал, поступающий по шине управления ШУ-2, обеспечивает его прием микроконтроллером (8) через связь ШД-2.1. Микроконтроллер (8) через шину управления ШУ-1 сообщает о готовности принять (передать) информацию с (на) ПК (1), таким образом, приемопередатчик интерфейса USB (5) служит для организации приема и передачи информационного цифрового потока между ПК (1) и микроконтроллером (8), который является инициатором обмена. Также микроконтроллер (8) осуществляет работу с ОЗУ (9) в режимах «чтение» и «запись». Обмен данными между микроконтроллером (8) и ОЗУ (9) осуществляется через общую шину данных 8-бит (ШД-2) по средствам связи ШД-2.2. Для чтения и записи информации используется шина адреса (ША-2), шина управления (ШУ-5). Работа микроконтроллера (8) с ОЗУ (9) имеет ряд особенностей, связанных с тем, что ОЗУ (9) является 16-разрядным, а микроконтроллером (8) 8- разрядным. Если для работы достаточно 50% объема ОЗУ (9), то применяется только одна шина адреса (ША-1 или ША-2), которая выбирается микроконтроллером (8) автоматически на уровне микропрограммы, если для работы требуется более 50% объема ОЗУ (9), то микроконтроллер (8) работает совместно с ОПЛУ (7), в котором на программном уровне реализован адресный расширитель, который позволяет 8-разрядному микроконтроллеру (8) задействовать полный объем оперативной памяти 16-разрядного ОЗУ (9).

Работа осуществляется следующим образом: микроконтроллер (8) отправляет на общую шину данных 8-бит (ШД-2), по связи ШД-2.3, биты информации [0…7], которые запоминаются ОПЛУ (7) на входе шины адреса (ША-1), после чего ОПЛУ задерживает любую поступающую по общей шине данных 8-бит (ШД-2) информацию, до поступления сигнала от микроконтроллера (8) по шине управления (ШУ-3). Далее микроконтроллер (8) отправляет на вход шины адреса (ША-2) биты информации [8…15], после чего ОЗУ (9) по команде, поступающей по шине управления (ШУ-5), принимает объединенный 16-битный сигнал от двух шин адреса (ША-1 и ША-2). Микроконтроллер (8) осуществляет работу с ОПЛУ (7), который является отдельной частью логики, реализованной с применением ПЛИС, и содержит дешифратор, мультиплексор и синхронный двунаправленный сдвиговый регистр, которые формируют циклограмму стандартов JTAG, чем обеспечивают обмен информацией между микроконтроллером (8) и тестируемым изделием (2). Использование ПЛИС позволяет повысить быстродействие, а также точность при работе с данными по интерфейсу JTAG (10) по средствам снижения вычислительной нагрузки на микроконтроллер (8) и увеличения доступного в нем объема свободной памяти. Интерфейс JTAG (10) связан с ОПЛУ (7), принимает обработанные микроконтроллером (8) и ОПЛУ (7) сигналы и передает их на подключенное к нему тестируемое изделие (2). Интерфейс JTAG (10) является активным и усиливает сигнал, поступающий на него с ОПЛУ (7), а также способен восстанавливать сигнал, принимаемый из тестируемого изделия (2). Для перепрограммирования ОПЛУ (7) применяется программатор (3), который подключается к ПК (1) и к вспомогательному интерфейсу JTAG (11). Через ПК (1) осуществляется управление программатором (3), а также его питание. Вспомогательный интерфейс JTAG (11) применяется только для перепрограммирования ОПЛУ (7) и помимо сигнальных линий последовательного синхронного 4-проводного интерфейса JTAG, предназначенных для подключения кабеля JTAG (ИД-4), содержит цепь питания (ЦП-2), которая применяется для запитывания входного буфера программатора (3). В адаптере также присутствует схема формирования сигнала СБРОС (6), которая дает возможность оператору ПК (1) выполнить принудительную перезагрузку микроконтроллера (8) и очистку данных FIFO приемопередатчика интерфейса USB (5).

По существу изобретения представляет собой:

Переносной диагностический комплекс, в котором к ПК (1) подключен адаптер через интерфейс USB (4), цепь питания (ЦП-1) которого подключается ко всем элементам адаптера, а информационная шина связана с приемопередатчиком интерфейса USB (5), который организует прием и передачу информационного цифрового потока между ПК (1) и микроконтроллером (8), который связан с оперативным запоминающем устройством (9) шиной управления (ШУ-5), а тестируемое изделие (2) подключено к адаптеру через интерфейс JTAG (10), который связан с логическим узлом, при этом в адаптере применен оперативно перепрограммируемый логический узел (7), который взаимно связан двумя шинами управления (ШУ-3 и ШУ-4) и двумя шинами данных (ШД-3 и ШД-4) с микроконтроллером (8) и вспомогательным интерфейсом JTAG (11), имеющим контакт цепи питания (ЦП-2), в который подключен программатор (3) связанный по цепи управления (ИЮ-2) с ПК (1), общая шина данных 8-бит (ШД-2) обеспечивает связь микроконтроллера (8) с ОЗУ (9), реализованным в ОПЛУ (7) адресным расширителем и приемопередатчиком интерфейса USB (5), с которым он также взаимно связан двумя шинами управления (ШУ-1 и ШУ-2), а с ОЗУ (9) - микроконтроллер (8) шиной адреса 16-бит, которая формируется из двух шин адреса 8-бит (ША 1 и ША-2), исходящих из микроконтроллера (8) и ОПЛУ (7), схема формирования режима СБРОС (6) связана с приемопередатчиком интерфейса USB (5) и микроконтроллером (8) через отдельные сигнальные независимые электрические цепи, которые взаимно инвертированные-синфазные по отношению друг к другу.

Техническим результатом изобретения является расширение функциональных возможностей, снижение стоимости и его масса-габаритных характеристик при использовании микроконтроллера с ограниченным количеством портов.

Переносной диагностический комплекс позволяет осуществлять следующие действия с тестируемым изделием:

1) начальную диагностику и настройку;

2) контроль электрических связей;

3) проверку печатных плат;

4) программирование и считывание памяти;

5) комплексные стендовые работы и программные испытания;

6) проверку качества и общей работоспособности цифровых логических микросхем, электронных блоков, узлов и электрических соединений (разъемных и неразъемных);

7) проверять работоспособность сервисных программ аппаратуры;

8) поддерживает технологию граничного сканирования;

9) вести работу в многогранном режиме.

При работе с тестируемым изделием диагностический комплекс может осуществлять мониторинг работы и отладку изделия, не нарушая его нормальной работы. При наличии у тестируемого изделия собственного микроконтроллера имеется возможность использовать его вычислительные ресурсы для проверки изделия.

Переносной диагностический комплекс, в котором к ПК подключен адаптер через интерфейс USB, цепь питания которого подключается ко всем элементам адаптера, а информационная шина связана с приемопередатчиком интерфейса USB, который организует прием и передачу информационного цифрового потока между ПК и микроконтроллером, который связан с оперативным запоминающим устройством шиной управления, а тестируемое изделие подключено к адаптеру через интерфейс JTAG, который связан с логическим узлом, отличающийся тем, что в адаптере применен оперативно-перепрограммируемый логический узел, который взаимно связан двумя шинами управления и двумя шинами данных с микроконтроллером и вспомогательным интерфейсом JTAG, имеющим контакт цепи питания, в который подключен программатор, связанный по цепи управления с ПК, общая шина данных 8-бит обеспечивает связь микроконтроллера с ОЗУ, реализованным в ОПЛУ адресным расширителем и приемопередатчиком интерфейса USB, с которым он также взаимно связан двумя шинами управления, а с ОЗУ - микроконтроллер шиной адреса 16-бит, которая формируется из двух шин адреса 8-бит, исходящих из микроконтроллера и ОПЛУ, схема формирования режима СБРОС связана с приемопередатчиком интерфейса USB и микроконтроллером через отдельные сигнальные независимые электрические цепи, которые взаимно инвертированные-синфазные по отношению друг к другу.



 

Похожие патенты:

Изобретение относится к области обработки информации с помощью электронно-вычислительных устройств, в частности протоколированию работы автоматизированных систем управления ракетно-космической техникой в реальном времени и диагностированию возможных неисправностей.

Группа изобретений относится к передатчику параметра процесса. Технический результат - обеспечение точного способа обнаружения ошибок в диапазоне.

Изобретение относится к производству прецизионных изделий сложной формы из полимерных композиционных материалов. В процессе изготовления изделия, осуществляемого в течение нескольких технологических этапов, измеряют контролируемые параметры обрабатываемого изделия, сравнивают значения измеренных параметров с заданными и формируют управляющее воздействие, обеспечивающее корректировку технологических параметров.

Группа изобретений относится к сервосистеме для управления экзоскелетом. Технический результат - создание сервосистемы, способной одновременно измерять дыхание и оказывать воздействие.

Изобретение относится к вычислительной технике, в частности к системам автоматизации управления технологическими процессами. Технический результат заключается в повышении надежности и безопасности функционирования систем жизнеобеспечения морских и пресноводных гидробионтов, содержащихся и выращивающихся в искусственных условиях, путем уменьшения времени обработки информации, повышения степени помехо- и отказоустойчивости.

Изобретение относится к авиационной технике, в частности к способам технического контроля и диагностирования бортовых систем (БС) беспилотного летательного аппарата (БПЛА).
Изобретение относится к средствам тестирования радиоэлектронной аппаратуры. Технический результат заключается в сокращении затрачиваемого времени и количества аппаратуры в процессе тестирования.

Изобретение относится к системе и способу автоматизации системы. Технический результат заключается в автоматизации определения и выполнения операций, осуществляемых машиной или в ходе производственного процесса.

Изобретение относится к средствам контроля систем ориентации и навигации беспилотных и дистанционно пилотируемых летательных аппаратов. Технический результат заключается в повышении точности и достоверности контроля параметров и обнаружения отказа.

Изобретение относится к области цифровой вычислительной техники и может быть использовано в автоматических и автоматизированных системах различного назначения для определения технического состояния по результатам идентификации параметров бортовых систем летательного аппарата.

Переносной диагностический комплекс содержит ПК, адаптер USB, интерфейс USB, микроконтроллер, оперативное запоминающее устройство, интерфейс JTAG, оперативно перепрограммируемый логический узел, две шины управления и две шины данных, программатор, две отдельные взаимно инвертированно-синфазные по отношению друг к другу электрические цепи, соединенные определенным образом. Обеспечивается начальная диагностика, контроль электрических связей, проверка печатных плат, программирование и считывание памяти, тестирование, программные испытания, проверка качества и общей работоспособности цифровых логических микросхем, электронных блоков, узлов и электрических соединений, проверка работоспособности сервисных программ аппаратуры, поддержка технологии граничного сканирования, осуществление мониторинга и отладка изделия, не нарушая его нормальной работы. 1 ил.

Изобретение относится к измерительной технике, а именно к устройствам для выполнения работ по проверке и регулировке автопилота вертолета, в частности автопилота АП-34Б и составных элементов автопилота. Технический результат решения заключается в создании контрольно-проверочного комплекса для проведения проверок автопилотов вертолета и составных элементов его в полуавтоматическом режиме, что обеспечивает повышение надежности и достоверности результатов комплексной проверки параметров проверяемого оборудования во всех режимах функционирования, возможности проведения полуавтоматических проверок. Контрольно-проверочный комплекс для проверки автопилота выполнен содержащим персональный компьютер с программным обеспечением, который по входам и выходам соединен с блоком ввода команд и отображения информации, с блоком эталонных напряжений и измерительным блоком, при этом блок эталонных напряжений, служащий для формирования напряжений заданной амплитуды, частоты и фазы, соединен по выходу с измерительным блоком, который содержит однотипные взаимозаменяемые измерительные модули, модуль усилителей и вторичные источники питания и служит для создания электрических сигналов и измерения ответных сигналов объекта контроля, при этом измерительный блок соединен по входам и выходам через устройство коммутации и нормализации сигналов с объектом контроля, кроме этого, для создания заданного угла поворота вала датчика объекта контроля комплекс содержит установку поворотную, соединенную с персональным компьютером через модуль управления. 1 з.п. ф-лы, 1 ил.

Группа изобретений относится к способу построения инерциальных демпфированных систем с произвольным периодом, инвариантным по отношению к маневрированию объекта и инерциальной системе. Для построения инерциальных систем вводят внешнюю информацию об углах наклона объекта относительно вертикали, полученную путем двойного интегрирования угловых ускорений и коррекции углов по сигналам датчика эталонного угла. Инерциальная система содержит датчик угловой скорости, акселерометр, датчик угла наклона относительно вертикали, два интегратора, три масштабирующих устройства, регулируемое звено, соединенные определенным образом. Датчик угла наклона относительно вертикали содержит датчик эталонного угла, измеритель текущих углов, суммирующее устройство, устройство сравнения, вычислитель начальных условий, выключатель, соединенные определенным образом. Обеспечивается невозмущаемость инерциальной системы без привлечения внешней информации о линейной скорости объекта. 2 н. и 3 з.п. ф-лы, 2 ил.

Изобретение относится к области диагностики технических систем и может быть использовано при формировании эффективных диагностических тестов технических систем различной степени сложности. Технический результат заключается в повышении качества и эффективности способа формирования диагностических тестов. Технический результат достигается за счет того, что перед подачей данных на входы эталонной модели диагностируемого изделия осуществляют группировку всех входов диагностируемого изделия на подмножества по признаку - каждому подмножеству подключен один типовой функциональный узел и каждому такому узлу ставится в соответствие один из имеющихся в базе данных программных модулей - логических интерфейсов, далее на входы полученной эталонной модели диагностируемого изделия задают соответствующие сочетания входных сигналов в последовательности, заданной в разработанном диагностическом тесте, при этом данную последовательность формируют на ЭВМ путем обработки скрипта, представляющего собой последовательность операций логических интерфейсов, после формирования диагностического теста определяют значение его предварительной эффективности и принимают решение о достаточном качестве сформированного диагностического теста, в результате принятого решения диагностический тест отправляют на доработку или принимают в эксплуатацию. 5 ил., 1 табл.

Изобретение относится к способу проверки аппаратуры носителя. Для проверки аппаратуры носителя с контролем линий связи и регистрацией информационного обмена подают напряжение питания на преобразователь питания пусковой установки носителя, преобразованное напряжение от преобразователя питания подают на центральный управляющий модуль, коммутирующий модуль и встроенный имитатор, задают режим проверки линий связи с помощью центрального управляющего модуля, осуществляют проверку всех линий связи коммутирующих модулей с ракетой и транспортно-пусковым контейнером на короткое замыкание, измеряют разности потенциалов и сопротивления между линиями связи, передают результаты проверки в центральный управляющий модуль, задают режим имитации и задействованные каналы, тип имитируемых ракет, наличие и типы имитируемых ошибок информационного обмена, осуществляют имитацию, передают результаты в центральный управляющий модуль, задают режим регистрации, осуществляют информационный обмен в соответствии с определенным протоколом информационного обмена, передают результаты работы и записанный информационный обмен в центральный управляющий модуль, делают заключение об исправности аппаратуры носителя на основе полученных данных. Обеспечивается регистрация информационного обмена и контроль линий связи аппаратуры подготовки и пуска носителя и ракеты. 1 ил.

Группа изобретений относится к способу и системе динамической частотной идентификации объектов управления. Для идентификации объектов управления подают испытательный сигнал на вход объекта управления или добавляют его к уставке замкнутой системы управления, формируют в памяти вычислительного устройства массив измеренных значений выходного сигнала объекта управления и значений сигнала управления с испытательным сигналом определенным образом, вычисляют комплексные интегралы на интервале времени фильтрации измеренных значений выходного сигнала и сигнала управления определенным образом, формируют и решают системы линейных алгебраических уравнений для получения идентифицированных оценок коэффициентов объекта управления, проверяют выполнение условия их сходимости определенным образом, при выполнении которой считается, что идентификация объекта выполнена, в противном случае увеличивают время фильтрации и повторяют все действия. Система динамической частотной идентификации содержит процессор, блок памяти, средство хранения данных, интерфейсы ввода/вывода. Блок памяти содержит машиночитаемые команды для выполнения этапов способа. Обеспечивается сокращение времени идентификации объекта управления. 2 н.п. ф-лы, 4 ил.

Изобретение относится к способу определения оптимальной периодичности контроля состояния процессов. Для определения оптимальной периодичности контроля оценивают условия функционирования объекта контроля, определяют интенсивность отказов, задают множество аппроксимирующих функций, удовлетворяющих заданным требованиям, задают точность аппроксимации, пределы и шаг изменения параметров аппроксимирующих функций, формируют множество данных о времени и характере воздействия дестабилизирующих факторов, фиксируют их и разделяют на однородные группы, аппроксимируют значения параметров дестабилизирующих факторов каждой из однородных групп аппроксимирующими функциями с заданной точностью, определяют частоту каждой полученной функции, строят вариационный ряд значений частот всех полученных функций, определяют наибольшее значение частоты и оптимальный период контроля. Обеспечивается определение оптимальной периодичности контроля состояния объекта. 2 ил.

Изобретение относится к области телекоммуникаций, а именно к области диагностирования и контроля технического состояния информационно-телекоммуникационных сетей связи в условиях ведения компьютерных и сетевых атак. Техническим результатом является повышение достоверности результатов моделирования путем одновременного моделирования деструктивных воздействий нескольких сетевых и компьютерных атак, повышение защищенности элементов VPN, за счет оценки прогнозируемого наносимого ущерба элементу VPN и проведения на основе этой оценки упреждающей реконфигурации VPN. Способ моделирования оценки ущерба, наносимого сетевыми и компьютерными атаками виртуальным частным сетям, заключается в том, что систему связи, включающую N структурных элементов и связей между ними, где n=1, 2, ..., N, разворачивают в рабочее состояние, фиксируют дестабилизирующие воздействия на ее структурные элементы, по полученным данным формируют имитационную модель системы связи, моделируют на ней дестабилизирующие воздействия, по результатам моделирования реконфигурируют имитационную модель системы связи и вычисляют вероятность нарушения ее функционирования от дестабилизирующих воздействий, при функционировании системы в условиях экзогенных деструктивных воздействий также подсчитывают и запоминают данные о числе воздействий mn на n-й элемент системы связи, количество Nв элементов системы связи, подвергшихся деструктивным внешним воздействиям, а имитационную модель формируют по полученным данным, реконфигурируют ее после каждого воздействия, сравнивают вычисленное значение достоверности вскрытия структуры системы связи воздействующей стороной с предварительно заданным пороговым уровнем достоверности, при превышении значения вычисленной достоверности над пороговой упреждающе реконфигурируют реально действующую сеть связи, при этом измеряют параметры сетевого трафика абонентов «Белого» списка IP-адресов, определяют параметры функционирования элемента виртуальной частной сети, при которых возможно предоставить абоненту требуемые им услуги связи, сохраняют измеренные значения параметров в ячейки памяти, задают максимальные значения отклонения от статистических значений измеренных параметров и описывают значения параметров нормального поведения абонентов из «Белого» списка IP-адресов, создают физические модели нормального поведения абонентов виртуальной частной сети, компьютерных и сетевых атак, системы обнаружения атак, сохраняют модели в базе данных, определяют места и размещают сенсоры системы обнаружения атак, определяют требуемые значения по быстродействию системы обнаружения атак, задают и дополняют «Белые» списки IP-адресов абонентов виртуальной частной сети, определяют или дополняют правила фильтрации сетевого трафика, на основе поведенческих критериев, включающих анализ измеренных параметров атак, разрабатывают варианты реконфигурации виртуальной частной сети, имитируют одновременные воздействия нескольких различных компьютерных и сетевых атак элемента виртуальной частной сети при различной загрузке сетевого трафика абонентами виртуальной частной сети, измеряют быстродействие системы обнаружения, оценивают быстродействие системы обнаружения атак. 5 ил.

Изобретение относится к области железнодорожного транспорта, для управления надежностью и технического экспресс-диагностирования оборудования локомотива. Способ включает запрос и получение данных диагностирования от бортовой микропроцессорной системы управления локомотива в виде параметров текущего технического состояния оборудования, их статистическую обработку на основе корреляционного анализа и формирование предупреждающего сигнала в случае прогнозирования отказа оборудования. В процессе статистической обработки указанные данные диагностирования разделяют на группы, относящиеся к однотипным узлам оборудования. Корреляционный анализ проводят в каждой группе по каждому параметру путем расчета коэффициентов корреляции. Отказ оборудования прогнозируют, если коэффициент корреляции отличается от своего среднестатистического значения больше чем на 2%. Устройство технического диагностирования содержит средства подключения к бортовой микропроцессорной системе управления локомотива и блок обработки, выполненный с возможностью реализации описанного способа. Достигается повышение точности прогнозирования отказа. 2 н.п. ф-лы, 2 ил.

Изобретение относится к удаленному мониторингу объектов. В способе для удаленного мониторинга и прогнозирования состояния технологических объектов, относящихся к турбоагрегатам, получают данные от объекта контроля; формируют на основании этих данных эталонную выборку показателей работы и строят матрицы состояния из компонентов точек выборки. На основании MSET метода с помощью матрицы состояния строят эмпирические модели прогнозирования состояния объекта. Определяют по разности компонентов наблюдаемой точки и точки, моделирующей состояние объекта, компоненты невязок. Определяют разладки, отображающие степень влияния показателей работы объекта на отклонение показателей параметров объекта. Анализируют поступающую информацию от объекта контроля. Определяют степень отклонения параметров объекта от показателей эмпирических моделей и выявляют разладки для таких показателей. Ранжируют вычисленные разладки. Обновляют на основании отфильтрованной выборки эмпирические модели и формируют сигнал отклонении параметра объекта контроля на основании обновленной модели. Повышается точность прогнозирования. 2 н. и 23 з.п. ф-лы, 3 ил.
Наверх