Лечебная силикон-гидрогелевая мягкая контактная линза

Изобретение относится к офтальмологии и представляет лечебную силикон-гидрогелевую мягкую контактную линзу (МКЛ). Линза содержит несквозные депо, заполненные лекарственным веществом. Диаметр линзы составляет 14,3-15 мм. По краю линза имеет фаску шириной 1 мм и радиусом на 1 мм больше внутреннего радиуса линзы. Депо расположены в виде сетки на наружной поверхности линзы, кроме зрачковой зоны диаметром 5,0-8,0 мм, или в кольцевидных углублениях на периферии внутренней поверхности линзы. Депо имеют форму полусферы, на внутренней поверхности которой расположены микронасечки. Депо на наружной поверхности линзы расположены в количестве 50-750. Депо на внутренней поверхности линзы расположены в количестве 50-300 в каждом кольцевидном углублении шириной по 1,0 мм в количестве от 1 до 3. Депо в форме полусферы имеет диаметр 100 мкм глубину 30-40 мкм. Микронасечки расположены в количестве 5-100 и имеют длину по 5-10 мкм и ширину по 500 нм - 4 мкм. Применение линзы обеспечивает возможность насыщения лечебной МКЛ липофильными и высокомолекулярными веществами с разной оптической плотностью. Это увеличивает арсенал применяемых лечебных средств, повышение точности дозирования лекарственного препарата за счет максимального приближения депо с лекарственными веществами к пораженной ткани, расширяя показания к использованию линзы. 4 з.п. ф-лы, 2 ил., 2 пр.

 

Предлагаемое изобретение относится к офтальмологии и представляет лечебную силикон-гидрогелевую мягкую контактную линзу (МКЛ), насыщенную липофильным лекарственным веществом.

В современной офтальмологии актуален вопрос о создании эффективных способов доставки лекарственных веществ тканям глаза. При местном применении лекарственных препаратов в виде капель, гелей, мазей, суспензии, инъекций и глазных лекарственных пленок зачастую не получается добиться желаемого клинического эффекта в короткие сроки и/или сохранить полученный результат без повторных манипуляций. Это обусловлено работой анатомических и физиологических барьеров глаза.

Эпителий роговицы является одним из основных анатомических барьеров, который препятствует проникновению гидрофильных лекарств и макромолекул в подлежащие ткани. Другим барьером является строма роговицы, содержащая большое количество гидратированного коллагена, который препятствует диффузии высоколипофильных лекарств (A. Urtti, Challenges and obstacles of ocular pharmacokinetics and drug delivery. Advanced Drug Delivery Reviews. 2006; 58 (11): 1131-1135). В результате всасывания в сосуды лимбальной области также происходит частичная потеря лекарства (Егоров Е.А., Астахов Ю.С., Ставицкая Т.В. Офтальмофармакология. Руководство для врачей. М.: Геотар-Мед; 2004). К физиологическим барьерам глаза относят непрерывную секрецию слезной жидкости и ее постоянную смену на глазной поверхности вследствие моргания, а также индуцированное инсталляциями слезотечение.

В результате роговица поглощает не более 5% от первоначальной концентрации действующего вещества (Duvvuri S., Majumdar S., Mitra А.К. Drug delivery to the retina: challenges and opportunities. Expert Opinion on Biological Therapy. 2003; 3 (1): 45-56). Для повышения биодоступности необходимо увеличение концентрации лекарственного вещества или кратности применения, что может привести к появлению нежелательных побочных эффектов и снижению комплаенса (Hegde R.R, Verma A., Ghosh A. Microemulsion: New Insights into the Ocular Drug Delivery. ISRN Pharm. 2013; 2013: 826798).

С целью решения данной проблемы, а также уменьшения системной абсорбции и улучшения точности дозирования были предложены лечебные МКЛ, насыщенные лекарственными веществами. По данным исследователей, биодоступность лекарств при использовании таких линз достигает 50%, а при инсталляции капель только 2-3% (Li С, Chauhan A. Modeling ophthalmic drug delivery by soaked contact lenses. Ind Eng Chem Res. 2006; 45: 3718-3734). Wichterle О. и Lim D. в 1965 году впервые предложили насытить МКЛ лекарственным веществом. Для осуществления данной идеи ими были разработаны МКЛ из поли-2-гидроксиэтилметакрилата. Насыщение МКЛ было основано на механизме абсорбции гидрогелем гидрофильного лекарственного вещества, которое проводили путем замачивания дегидратированных линз в растворе борной кислоты (Wichterle О, Lim D. Cross-linked hydrophilic polymers and articles made therefrom. USA 1965; 3 (220): 960). Данный метод оказался достаточно простым в использовании, что позволило применять его для насыщения МКЛ из разных материалов. Впоследствии было опубликовано много работ по насыщению МКЛ с использованием метода замачивания МКЛ в растворах разных лекарственных веществ (Dixon Р, Shafor С, Gause S, Hsu КН, Powell КС, Chauhan A. Therapeutic contact lenses: a patent review. Expert Opin Ther Pat. 2015; 25 (10): 1117-1129).

В последнее время предпочтение стали отдавать насыщению силикон-гидрогелевых МКЛ ввиду их повышенной кислородопроницаемости по сравнению с гидрогелевыми МКЛ. С целью замедления выхода лекарственного вещества из МКЛ на глазную поверхность в линзы стали дополнительно загружать витамин Е. В эксперименте было доказано, что концентрация витамина Е в линзах не меняется с течением времени (Peng С, Kim J, Chauhan A. Extended delivery of hydrophilic drugs from silicone-hydrogel contact lenses containing vitamin E diffusion barriers. Biomaterials 2010; 31: 4032-4047), а продолжительность высвобождения лекарственного вещества из МКЛ, по сравнению с линзой без витамина Е, увеличивается в 20-100 раз для гидрофильных препаратов (Hsu К., Fentzke R.C., Chauhan A. Feasibility of corneal drug delivery of cysteamine using vitamin E modified silicone-hydrogel contact lenses. Eur J Pharm Biopharm. 2013; 85: 531-540), в 7-15 раз для гидрофобных лекарственных средств (Peng С, Chauhan A. Extended cyclosporine delivery by silicone-hydrogel contact lenses. J Controlled Release 2011; 154: 267-74).

Несмотря на значительный прогресс в этой области, остаются трудности, связанные с насыщением МКЛ высокомолекулярными и липофильными веществами. Byrne М. (Byrne М, Venkatesh S; inventors. Auburn University, assignee. Contactdrug delivery system. USA 2013; 8 (404): 271) синтезировал молекулярно-импринтированные МКЛ, которые насытили лекарственными веществами с высокой молекулярной массой, такими как гиалуроновая кислота и гидроксипропилметилцеллюлоза. Данный метод предполагал образование нековалентных взаимодействий и водородных связей между полимером линзы и лекарственным веществом, за счет чего препарат удерживался в МКЛ (White C.J., Byrne М.Е. Molecularly imprinted therapeutic contact lenses. Expert Opin Drug Deliv. 2010; 7: 765-780).

Chauhan А. и соавт.разработали липосомы (сферические емкости, состоящие из липидного бислоя) и микроэмульсии, содержащие крупные молекулы лекарственного вещества, которые они загружали в МКЛ (Chauhan A, Gulsen D; inventors. University of Florida Research Foundation, Incorporated, assignee. Ophthalmic drug delivery system. USA 2009; 7 (638): 137). По данным авторов лекарственные вещества из МКЛ выходили в течение 4-8 дней в зависимости от размера частиц. Другие исследователи предложили модифицировать поверхности МКЛ с помощью реакции полимеризации для увеличения сроков выхода вещества из МКЛ (Danion A, Brochu Н, Martin Y, et al. Fabrication and characterization of contact lenses bearing surfaceimmobilized layers of intact liposomes. J Biomed Mater.2007; 82: 41-51).

Также были разработаны слоистые МКЛ, состоящие из нескольких слоев из разных материалов и лекарственных веществ. Такое строение МКЛ способствовало замедлению диффузии лекарства на глазную поверхность (Su X., Kim В., Kim S. Layer-layer-assembled multilayer films for transcutaneous drug and vaccine delivery. ACS Nano. 2008; 3: 3719-3729). Weiner A.L. (Weiner A.L. Pulsatile peri-corneal drug delivery device. WO 0184358; 2011) запатентовал МКЛ, в которой лекарственное вещество содержалось в разделенной на отсеки кольцевидной полости, проходящей по краю, в толще линзы.

Для всех вышеперечисленных аналогов характерен единый механизм выхода препарата из МКЛ, основанный на диффузии по градиенту концентрации (из лечебной МКЛ на глазную поверхность). Ни в одном из описанных исследований не учитывалось влияние давления век на поверхность лечебной МКЛ при моргании - это основной недостаток всех вышеописанных аналогов. Давление век оказывает значительное воздействие на скорость выхода лечебного вещества из МКЛ и суммарную концентрацию вещества на глазной поверхности (Galante R, Paradiso Р, Moutinho MG, Fernandes AI, Mata JL, Matos AP, Colaco R, Saramago B, Serro AP. About the effect of eye blinking on drug release from pHEMA-based hydrogels: an in vitro study. J Biomater Sci Polym Ed. 2015; 26 (4): 235-251). Для всех аналогов характерен ряд нерешенных задач. Во-первых, возможна потеря части лекарственного вещества из МКЛ вследствие механического и химического воздействия во время стерилизации. Во-вторых, не решен вопрос хранения лечебных МКЛ, насыщенных вышеперечисленными способами. При замачивании таких МКЛ в буферных растворах лекарственное вещество будет диффундировать из линзы в раствор.

Учитывая недостатки лечебных МКЛ, Waite S. (Waite S. Drug delivery from contact lenses with a fluidic module. WO 161002; 2014) предложил оригинальную модель лечебной МКЛ, которая стала ближайшим аналогом предлагаемого изобретения. МКЛ выполнена из гидрогеля или силикон-гидрогеля, содержала встроенный в толщу линзы модуль, сквозные и несквозные отверстия, заполненные оптически прозрачным лекарственным веществом. Диаметр линзы находится в диапазоне от 10 до 14 мм, встроенного модуля - от 3 до 12 мм, который располагается по центру линзы ближе к внутренней поверхности, разделен на ячейки, снаружи покрыт мембраной толщиной 10-30 мкм. Объем жидкостного модуля составляет 3-12 мкл, предпочтительно 5-8 мкл. Отверстия в основном несквозные, располагаются в хаотичном порядке по краю на внутренней поверхности МКЛ, обращенной к роговице.

Отверстия имеют диаметр от 100 нм до 500 нм, что позволяет ингибировать диффузию лекарственного вещества из МКЛ за счет поверхностного натяжения раствора в отверстиях. Объем модуля, а также размер и количество отверстий зависят от характеристик лекарственного вещества. Лекарственное вещество выходит из МКЛ под действием давления век при моргании. Концентрация лекарственного средства в растворе находится в диапазоне 50-100 ммоль/л, снижается на 5%-15% в день в зависимости от конструкции линзы и частоты моргания, что позволяет эффективно использовать лечебную МКЛ в течение 2-7 дней. Такое строение лечебной МКЛ позволяет применять ее длительно, периодически перенасыщая лекарственным веществом, и хранить уже насыщенную линзу в буферных растворах до востребования. Основным недостатком ближайшего аналога является невозможность насыщения лечебной МКЛ оптически непрозрачными веществами из-за локализации модуля в оптической зоне. Локализация отверстий на задней поверхности линзы позволяет воздействовать только на подлежащие ткани.

Задачей изобретения является дальнейшее усовершенствование лечебной МКЛ, которая позволит целенаправленно и дозировано воздействовать на конкретные структуры глазной поверхности и расширить спектр насыщающих линзу препаратов.

Техническим результатом предлагаемого изобретения является возможность насыщения лечебной МКЛ липофильными и высокомолекулярными веществами с разной оптической плотностью, что увеличивает арсенал применяемых лечебных средств, расширяет показания к использованию линзы за счет максимального приближения депо с лекарственными веществами к пораженной ткани.

Технический результат достигается за счет того, что диаметр линзы составляет 14,3-15 мм, по краю линза имеет фаску шириной 1 мм и радиусом на 1 мм больше внутреннего радиуса линзы, а депо расположены в виде сетки на наружной поверхности линзы, кроме зрачковой зоны диаметром 5,0-8,0 мм, или в кольцевидных углублениях на периферии внутренней поверхности линзы, причем депо имеют форму полусферы, на внутренней поверхности которой расположены микронасечки.

Материалом линзы является силикон - гидрогель. От ближайшего аналога предлагаемое изобретение отличается увеличенным диаметром, наличием прозрачного центра и фаски по краю линзы, количеством, локализацией и характеристиками депо для лекарственного вещества. Диаметр линзы варьирует от 14,3 до 15 мм, в зависимости от размеров глаза, с учетом перекрытия линзой лимбальной зоны. По краю линза имеет фаску шириной 1 мм, радиусом на 1 мм больше внутреннего радиуса МКЛ. Такая форма МКЛ способствует минимальному смещению при моргании и экскурсии глазного яблока, увеличению подлинзового пространства. В результате лекарственный препарат дольше сохраняется в подлинзовом пространстве, что пролонгирует его действие.

За счет прозрачного оптического центра возможно насыщение линзы лекарственными веществами с любой оптической плотностью, что расширяет арсенал применяемых лечебных средств, а следовательно, позволяет сохранить высокие зрительные функции. Депо расположены на наружной или на внутренней поверхности МКЛ в зависимости от локализации патологического процесса, что расширяет показания к ее использованию. При поражении век, тарзальной конъюнктивы и слезоотводящих путей депо следует располагать на наружной поверхности МКЛ, в частности, в количестве от 50-750 штук, в зависимости от необходимой концентрации лекарственного препарата. При этом депо локализуются в виде сетки за исключением оптического центра, что позволяет максимально использовать поверхность МКЛ и увеличить объем депонированного вещества.

При поражении бульбарной конъюнктивы, роговицы, склеры и подлежащих тканей возможно размещение депо в кольцевидных углублениях, проходящих на периферии с внутренней стороны МКЛ, количество депо, в частности, составляет от 50 до 300 штук и имеет ширину по 1,0 мм. Размещение депо в кольцевидных углублениях связано с возможным раздражением микронасечками поверхности эпителия конъюнктивы при расположении их на внутренней поверхности линзы. Количество кольцевидных углублений с встроенными депо может варьировать от 1 до 3, в зависимости от необходимой концентрации лекарственного вещества. Каждое депо представляет собой полусферу с микронасечками на ее поверхности и может иметь диаметр 100 мкм, глубину 30-40 мкм, микронасечки - длину от 5 до 10 мкм и ширину от 500 нм до 4 мкм. Расположение депо в виде сетки не позволяют деформировать форму и поверхность МКЛ, микронасечки за счет поверхностного натяжения раствора способствуют ингибированию диффузии лекарственного вещества из линзы. Данная конфигурация депо позволяет загрузить большее количество лекарственного препарата в МКЛ, по сравнению с ближайшим аналогом. Локализация депо на наружной или на внутренней поверхности МКЛ в зависимости от заболевания позволяет более целенаправленно и дозировано доставлять лекарственный препарат в пораженную ткань.

Линзу изготавливают методом сферотокарного точения лазерным инструментом. Микронасечки получают методом гравировки газовым CO2-лазером с длиной волны 10,6 мкм, мощностью излучения 30 Вт. Для получения 1 депо используют 45 импульсов в одной точке с мощностью излучения 3 Вт. Липофильное лекарственное вещество под действием вакуума загружают в депо МКЛ. Насыщенные МКЛ стерилизуют и помещают в буферный раствор до востребования. За счет особого дизайна депо и липофильности лекарственного вещества последнее не диффундирует из линзы в буферный раствор, что позволяет хранить насыщенные МКЛ длительно.

На Фиг. 1 представлено схематическое изображение лечебной МКЛ с депо на наружной поверхности линзы, где 1 - фаска; 2 - депо, заполненные лекарственным веществом. На Фиг. 2 - лечебная МКЛ с депо на внутренней поверхности линзы, где 1 - фаска; 2 - депо, заполненные лекарственным веществом. 3 - кольцевидное углубление с депо на внутренней поверхности МКЛ.

Лечебную МКЛ используют следующим образом.

После надевания насыщенной лекарственным препаратом МКЛ на глаз пациента лекарство выходит из линзы под действием давления век при моргании, которое составляет 3-20 мм рт.ст. Концентрация лекарственного средства в растворе и зависит от количества депо и частоты моргания. Это позволяет эффективно использовать лечебную МКЛ в течение 5-14 дней до полного опорожнения депо. При необходимости пролонгации терапии возможно повторное насыщение МКЛ лекарственным веществом.

Пример 1.

Пациентка М., 1971 г.р. Впервые обратилась в НИИ глазных болезней в 2006 г. Был диагностирован ОИ- сухой кератоконъюнктивит тяжелой степени на фоне болезни Шегрена, нитчатый кератит, гиполакримия III ст. Постоянно предъявляла жалобы на ощущение инородного тела в глазах, сухость, жжение, светобоязнь, снижение остроты зрения. На протяжении многих лет получала репоративную, слезозаменительную терапию с использованием различных глазных капель искусственной слезы, которые закапывала до 10 раз ежедневно, периодически капала кортикостероиды. Выраженного положительного эффекта капли не оказывали, нитчатый кератит сохранялся.

При обследовании: острота зрения 0,8 с коррекцией. По данным теста Ширмера базальная секреция была равна 3 мм с двух сторон, отмечали снижение рефлекторного компонента до 2 мм. Проба Норна составляла 4 сек с двух сторон. Проведение тестов с витальными красителями демонстрировало окрашивание роговицы флюоресциином по всей поверхности, а лисссаминовым зеленым - окрашивание бульбарной конъюнктивы с носовой стороны в экспонируемой зоне.

Пациентке были надеты МКЛ, насыщенные Циклоспорином А. Диаметр линз составил 14,5 мм, базовая кривизна 8,5 мм, диаметр зрачковой зоны 6 мм. Депо с лекарственным веществом локализовались на внутренней поверхности линзы в двух кольцевидных углублениях в количестве 500 (по 250 в каждом углублении). Депо сформированы из микронасечек в количестве 100 длиной 7 мкм и шириной 2 мкм. Лечебные линзы на фоне слезозаменительной терапии хорошо переносились больной, не вызывали чувство дискомфорта и раздражения в глазах. Ношение МКЛ, насыщенных циклоспорином А, позволило с первых дней лечения улучшить состояние пациентки, значительно уменьшить жалобы. Через 1 нед линзы были сняты. При осмотре отмечали полную эпителизацию роговицы (отсутствовало окрашивание роговицы флюоресциином). Острота зрения повысилась до 1,0. Была отмечена положительная динамика по данным функциональных тестов: базальная секреция по тесту Ширмера возросла до 4 мм, проба Норна увеличилась до 7 сек с обеих сторон.

Пример 2.

Пациентка Н., 1953 г.р. Обратилась в НИИ глазных болезней с жалобами на покраснение глаз, ощущение дискомфорта и жжения в глазах, отек и покраснение век. В анамнезе: хронический гастрит с наличием Helicobacter pylori. После обследования было диагностировано ОИ-обострение хронического блефароконъюнктивита. При осмотре отмечали утолщение краев век, расширение сосудов межреберного края, отек век и переходной складки, гиперемию тарзальной и бульбарной конъюнктивы. При проведении тестов с витальными красителями зафиксировали тотальное окрашивание тарзальной конъюнктивы и бульбарной конъюнктивы в нижнем квадранте. Больной были надеты лечебные МКЛ, насыщенные Офлоксацином. Диаметр линз составил 14,7 мм, базовая кривизна 8,7 мм, диаметр зрачковой зоны 7,0 мм. Депо с лекарственным веществом локализовались с наружной поверхности линзы для максимального приближения к пораженной ткани в количестве 650. Депо сформированы из микронасечек в количестве 50 длиной 5 мкм и шириной 1 мкм. Через 2 нед (при опорожнении депо) линзы были сняты. Пациентка отмечала уменьшение выраженности гиперемии, отсутствие дискомфорта и жжения. При осмотре констатировали отсутствие отека, следовую гиперемию век и конъюнктивы, уменьшение окрашивания конъюнктивы витальными красителями. Пациентка была переведена на поддерживающую терапию, включающую гигиену век: обработку краев век лечебными салфетками и увлажняющим гелем.

1. Лечебная силикон-гидрогелевая мягкая контактная линза, содержащая несквозные депо, заполненные лекарственным веществом, отличающаяся тем, что диаметр линзы составляет 14,3-15 мм, по краю линза имеет фаску шириной 1 мм и радиусом на 1 мм больше внутреннего радиуса линзы, а депо расположены в виде сетки на наружной поверхности линзы, кроме зрачковой зоны диаметром 5,0-8,0 мм, или в кольцевидных углублениях на периферии внутренней поверхности линзы, причем депо имеют форму полусферы, на внутренней поверхности которой расположены микронасечки.

2. Лечебная силикон-гидрогелевая мягкая контактная линза по п. 1, отличающаяся тем, что депо на наружной поверхности линзы расположены в количестве 50-750.

3. Лечебная силикон-гидрогелевая мягкая контактная линза по п. 1, отличающаяся тем, что депо на внутренней поверхности линзы расположены в количестве 50-300 в каждом из 1 до 3 кольцевидных углублений шириной по 1,0 мм.

4. Лечебная силикон-гидрогелевая мягкая контактная линза по п. 1, отличающаяся тем, что депо в форме полусферы имеет диаметр 100 мкм, глубину 30-40 мкм.

5. Лечебная силикон-гидрогелевая мягкая контактная линза по п. 1, отличающаяся тем, что микронасечки расположены в количестве 5-100 и имеют длину по 5-10 мкм и ширину по 500 нм - 4 мкм.



 

Похожие патенты:

Изобретение относится к медицине. Контактная линза содержит: бесцветную центральную область, соответствующую размеру и местоположению зрачка пользователя; центральную часть, которая окружает бесцветную центральную область и имеет размер, соответствующий размеру и местоположению радужной оболочки пользователя; периферическую часть, соответствующую склеральной области глаза, и имеющую кольцевую форму; и перламутровые пигменты на основе слюды, включенные в периферическую часть и выполненные с возможностью получения склеральной области, соответствующей склеральной части глаза.

Устройство офтальмологической линзы содержит вставку с изменяемыми оптическими свойствами, содержащую передний и задний криволинейные элементы. Задняя поверхность переднего криволинейного элемента и передняя поверхность заднего криволинейного элемента имеют различные радиусы кривизны.

Изобретение относится к силиконовым полимерам и гидрогелям из них. Предложен силиконовый полимер, имеющий общий коэффициент пропускания по меньшей мере 90%, полученный из реакционноспособных компонентов, содержащих (i) по меньшей мере один силиконовый компонент, представляющий собой сложный эфир (мет)крилата, и (ii) 2-гидроксиэтил акриламид.

Изобретение относится к области контактных линз для глаз, оснащенных электронными средствами индикации. Техническим результатом является возможность оповещения пользователя о событии из смартфона посредством использования запитанной офтальмологической контактной линзы.

Смещаемая пресбиопическая контактная линза содержит оптическую зону и псевдотрункацию, асимметричную относительно вертикального меридиана, в которой радиальное положение максимальной толщины псевдотрункации на любом меридиане линзы по существу одинаково, благодаря чему образуется дуга, которая является частью концентрической окружности, описанной вокруг геометрического центра линзы.

Заявленная группа изобретений описывает способы и устройства для оснащения офтальмологической линзы изменяемой оптической вставкой. Устройство офтальмологической линзы со вставкой с изменяемыми оптическими свойствами содержит криволинейную переднюю поверхность и криволинейную заднюю поверхность и расположена по меньшей мере в части оптической зоны устройства офтальмологической линзы.

Оптическая линза содержит переднюю и заднюю изогнутые линзы, внутренняя и внешняя поверхности которых имеют дугообразную форму, объем физиологического раствора и масла в полости между внутренними поверхностями передней и задней линз, образующих мениск между ними, стенку мениска на внутренней поверхности передней или задней линзы, проводящее покрытие на стенке мениска, складку мениска для ограничения перемещения мениска путем изменения его контактного угла.

Контактная линза содержит переднюю и заднюю поверхности, оптическую зону, периферийную зону, окружающую оптическую зону, и множество углублений на задней поверхности контактной линзы в периферийной зоне.

Система офтальмологической линзы содержит первую офтальмологическую линзу на первом глазу, выполненную с возможностью беспроводной связи с первым внешним устройством, и вторую офтальмологическую линзу на втором глазу, выполненную с возможностью беспроводной связи с одним из первой офтальмологической линзы, первого внешнего устройства и второго внешнего устройства.

Изобретение относится к офтальмологическому устройству, такому как контактная линза. В настоящем изобретении предложено устройство с наложенными друг на друга интегрированными компонентами с множеством элементов питания, содержащее первый слой, содержащий первую поверхность, и второй слой, содержащий вторую поверхность, причем по меньшей мере часть первой поверхности лежит поверх по меньшей мере части второй поверхности, по меньшей мере одно электрическое соединение между электрическим контактом на первой поверхности и электрическим контактом на второй поверхности, по меньшей мере один электрический транзистор, причем электрический транзистор(ы) содержится внутри устройства с наложенными друг на друга интегрированными компонентами, по меньшей мере первый и второй отдельные элементы питания, причем отдельные элементы питания содержатся в любом или обоих из первого и второго слоев, и схему внутренней диагностики, содержащую сенсорный элемент, выполненный с возможностью обнаруживать ток, протекающий через элементы питания, причем схема внутренней диагностики выполнена с возможностью определения того, не вызывает ли один из элементов питания состояние избыточного потребления тока.

Устройство офтальмологической линзы содержит вставку с изменяемыми оптическими свойствами, содержащую передний и задний криволинейные элементы. Задняя поверхность переднего криволинейного элемента и передняя поверхность заднего криволинейного элемента имеют различные радиусы кривизны.

Группа изобретений относится к медицине. Устройство офтальмологической линзы со вставкой с изменяемыми оптическими свойствами, расположенной в части оптической зоны устройства офтальмологической линзы, которая содержит: криволинейную переднюю и криволинейную заднюю поверхности, причем данные поверхности выполнены с возможностью формирования камеры; источник энергии, встроенный во вставку с изменяемыми оптическими свойствами на участке, содержащем неоптическую зону; и ориентирующий слой, содержащий участки жидкокристаллического материала, расположенный внутри камеры.

Группа изобретений относится к области медицины. Устройство контактной линзы со вставкой с изменяемыми оптическими свойствами расположена в части оптической зоны устройства контактной линзы.

Группа изобретений относится к области медицины. Офтальмологическая контактная линза для по меньшей мере одного из замедления, сдерживания или предупреждения прогрессирования миопии, содержащая: оптическую зону, выполненную с возможностью положительной асимметричной аберрации, для создания физиологического эффекта на глаз, причем положительная асимметричная аберрация включает в себя асимметричные радиальные профили оптической силы с увеличением оптической силы от центра к краю оптической зоны, причем асимметричные радиальные профили оптической силы могут изменяться вдоль различных радиальных меридианов, и при этом дифференциал оптической силы между центром и краем оптической зоны составляет от 0,5 дптр до 25 дптр, и периферийную зону, окружающую оптическую зону.

Офтальмологическое устройство содержит линзу, имеющую оптическую и периферическую зоны, выпуклую переднюю и вогнутую заднюю изогнутые поверхности, и текстурный узор, сформированный на одной или обеих из поверхностей на глубине и с интервалами, обеспечивающими повышение смачиваемости поверхности, тем самым улучшая комфорт и не нарушая нормальный обзор через устройство.

Изобретение относится к области офтальмохирургии. Способ определения радиуса кривизны передней поверхности интрастромальной оптической линзы (INLAY) для коррекции пресбиопии, включающий показатели преломления стромы роговицы (Nрогов), материала оптической линзы (Nматер) и радиус кривизны задней поверхности Rзадн.

Изобретение относится к медицине, а именно к области офтальмомикрохирургии. Искусственная радужка выполнена в виде плоского кольца и окрашенной, ее центральное отверстие выполнено в виде усеченного конуса.

Группа изобретений относится к медицине. Офтальмологическая линза содержит: оптическую зону, выполненную с возможностью коррекции зрения, причем оптическая зона образована из первого материала, имеющего первый модуль упругости; периферийную зону, окружающую оптическую зону и образующую верхнюю область, среднюю область и нижнюю область, причем периферийная зона образована из первого материала; и активные зоны увеличенной толщины, расположенные в средней области; и тонкие зоны, расположенные в верхней и нижней областях, и одну или более зон с высоким модулем упругости, встроенных в тонкие зоны в периферийной зоне, причем одна или более зон с высоким модулем упругости образованы из второго материала, имеющего второй модуль упругости, причем второй модуль упругости больше первого модуля упругости.

Изобретение относится к способам нанесения сшитого гидрофильного покрытия на силиконовую контактную линзу. Предложен способ изготовления силиконовой гидрогелевой контактной линзы, на которой находится сшитое гидрофильное покрытие, включающий нагревание силиконовой гидрогелевой контактной линзы в водном растворе в присутствии растворимого в воде сильно разветвленного термически сшивающегося гидрофильного полимерного материала, содержащего положительно заряженные азетидиниевые группы, при температуре от 40°С до 140°С в течение периода времени, достаточного для ковалентного связывания термически сшивающегося гидрофильного полимерного материала на поверхности силиконовой гидрогелевой контактной линзы с помощью ковалентных связей, каждая из которых образована между одной азетидиниевой группой и одной из реакционноспособных функциональных групп на поверхности силиконовой гидрогелевой контактной линзы и/или вблизи от нее, и, таким образом, образование сшитого гидрофильного покрытия на силиконовой гидрогелевой контактной линзе.

Изобретение относится к способам и прибору для оснащения офтальмологической линзы вставкой с изменяемыми оптическими свойствами. Вставка с изменяемыми оптическими свойствами может иметь внутри поверхности с различающимися радиусами кривизны.

Группа изобретений относится к области медицины. Способ изготовления глазного протеза заключается в формировании имитирующего склеру видимой части глаза непрозрачного основания и имитирующего роговицу прозрачного покрытия, получении и нанесении на основание изображения здорового глаза и закреплении покрытия на основании с помощью светоотверждаемого клея. Основание выполнено из окрашенного в светлый матовый цвет полиметилметакрилата, а покрытие - из прозрачного полиметилметакрилата. Изображение радужной оболочки со зрачком, склеры и кровеносных сосудов здорового глаза получают с помощью цифровой фотокамеры. Изображение наносят непосредственно на основание посредством тампонной печати или пьезоструйной УФ-отверждаемой печати. Основание и покрытие снабжены ответными поверхностями сопряжения с участками в форме усеченного конуса. На указанный участок основания наносят рельефный рисунок мышечных волокон и часть изображения с радужной оболочкой. Применение данной группы изобретений позволит повысить реалистичность глазного протеза. 2 н.п. ф-лы, 3 ил.
Наверх