Способ получения полимерного гидрогеля

Изобретение относится к области химии полимеров и медицины, а именно к способу получения полимерного гидрогеля, который может быть использован в качестве носителя биологически активных веществ при создании гидрогелевых покрытий для лечения ран и ожогов. Полимерный гидрогель получают сополимеризацией водного раствора, содержащего 1,0-4,0 мас.% акриламида, 1,0-4,0 мас.% акрилата натрия, 0,04-0,06 мас.% N,N-метиленбисакриламида и 2.5-3.0 мас.% гидрокарбоната натрия и затем полимерный гидрогель обрабатывают 5,0-10,0%-ным водным раствором соляной кислоты до достижения рН 1.5-2.0, после чего обрабатывают водным раствором, содержащим биологически активные вещества. Технический результат: сокращение времени проведения процесса с 30-40 часов до 3,5-4,5 часов. 1 табл., 4 пр.

 

Изобретение относится к области химии полимеров и медицины, а именно к способу получения полимерного гидрогеля, который может быть использован в качестве носителя биологически активных веществ при создании гидрогелевых покрытий для лечения ран и ожогов. По данным ВОЗ, травмы занимают третье место среди вызовов скорой медицинской помощи. В России одно только число вызовов скорой помощи, связанных с травмой, составляет 4,3-4,8 миллионов в год. Эта цифра не учитывает обращения населения в травматологические пункты и поликлиники, самопомощь при бытовой, производственной и дорожной травме, а также локальные конфликты и техногенные катастрофы. Количество травматических повреждений непрерывно увеличивается. При этом неуклонно возрастает частота травм с нарушением целостности кожных покровов. Рост травматизма сопровождается значительными экономическими потерями как для бюджета, так и всего общества в целом.

Местное консервативное лечение - неотъемлемая часть комплекса мероприятий при ожогах. При этом поверхностные ожоги лечатся в основном консервативно, а при глубоких поражениях медикаментозные методы применяются с целью подготовки ран к операции. Чаще используется повязочный метод лечения ожоговых ран.

Имеющиеся на вооружении медицинских работников технологии местного лечения больных с повреждениями кожных покровов связаны с использованием различных перевязочных средств, которые должны обеспечивать оптимальные условия для заживления ран. За последние годы в нашей стране и за рубежом создание повязок и препаратов для лечения ран и ожогов приобрело невиданные доселе масштабы. Вместе с тем универсальной повязки не существует, слишком разные процессы протекают в свежей или гнойной ране, восстанавливающихся тканях или ране, уже покрывающейся эпителием. Универсальным может быть только сам полимерный носитель, а эффективность покрытия в каждом конкретном случае будет определяться природой иммобилизованного на этом носителе лекарственного соединения.

Основными требованиями, предъявляемыми к таким покрытиям, являются: высокая абсорбционная способность в отношении раневого экссудата, способность предотвращать проникновение микроорганизмов, достаточная газопроницаемость для обеспечения протекания репаративных процессов, проницаемость для паров воды, но исключающая высушивание дна раны, возможность моделировать поверхности со сложным рельефом, отсутствие пирогенного, антигенного, токсического и местного раздражающего и аллергического действия. Кроме того, для искусственных раневых покрытий весьма желательны следующие свойства: прозрачность, возможность наблюдения за раной; возможность быть носителем лекарственных веществ (антибактериальных и влияющих на репаративные процессы). Покрытие должно легко и безболезненно удаляться с поверхности раны без повреждения грануляций и эпителия.

В настоящее время для лечения ран различной этиологии, ожогов, трофических язв, пролежней и т.д. наиболее полно всем этим условиям отвечают гидрогелевые покрытия на основе синтетических полимеров, в основном на основе сшитых полимеров и сополимеров акриламида. Эти покрытия обеспечивают пластифицирующее воздействие на ткани раны, размягчают некротические образования за счет регидратации тканей, облегчают их механическое удаление и предотвращают развитие инфекции на поверхности раны и под струпом. Гидрогелевые покрытия создают в ране влажную среду, оптимальную для нормального течения процессов регенерации. Гидрогели способствуют элиминации раневого отделяемого и микрофлоры. Повязки хорошо прилегают и моделируются на ранах со сложным рельефом. Они атравматичны, удаляются безболезненно [Лопатин В.В. Полиакриламидные материалы для эндопротезирования и их место в ряду полимерных материалов медицинского назначения // Анналы пластической реконструктивной и эстетической хирургии. 2000. №3. С. 57-60]. Известен способ получения полимерного гидрогеля сополимеризацией 85-95% мол. акриламида с 5-15% мол. метакрилатгуанидина в водном растворе под действием персульфата аммония с последующей обработкой образующегося гидрогеля дистиллированной водой в течение недели. Метакрилат гуанидина используют в качестве сшивающего агента [Патент РФ №2378290, C08F 20/56].

Недостатком этого способа является длительность процесса, обусловленная особенностями пористого строения гидрогеля [Кавалерская Н.Е., Струсовская Н.Л., Ферапонтов Н.Б. Кинетика набухания и сорбционные свойства геля сшитого полиакриламида // Сорбционные и хроматографические процессы. 2009. Т. 9. Вып. 6. С. 797-804] и связанная с необходимостью удаления из гидрогеля остатков незаполимеризовавшегося акриламида, который относится к токсичным веществам: он поражает нервную систему, печень, почки, а при нанесении его водного раствора на кожу вызывает ее раздражение [Энциклопедия полимеров, т. I, М., 1972, с. 29-32].

Известен способ получения полимерных гидрогелей сополимеризацией акриламида с N,N-метиленбисакриламидом в водном растворе под действием окислительно-восстановительного катализатора: персульфат аммония-N,N,N',N'-тетраметиленэтилендиамин, с последующей обработкой гидрогеля апирогенной водой или физиологическим раствором в течение 50-250 часов, обычно в течение 70-200 часов [Патент РФ №2301814, C08L 33/26]. Обработка гидрогеля служит для удаления почти всех, даже следовых, количеств токсичных для пациентов мономеров акриламида и N,N'-метилен-бис-акриламида. Содержание акриламида в гидрогеле должно быть менее 0.02 мг на 1.0 г полимера.

Недостатком этого способа является длительность процесса, обусловленная необходимостью удаления из набухшего гидрогеля остатков незаполимеризовавшегося акриламида.

Наиболее близким по технической сущности и достигаемым результатам является способ получения полимерного гидрогеля сополимеризацией водного раствора, содержащего 1.0-4.0% масс. акриламида, 1.0-4.0% масс. акрилата натрия, 0.04-0.06% масс. N,N-метиленбисакриламида и 2.5-3.0% масс. вспомогательного вещества - смеси глицерина и пропандиола, под действием окислительно-восстановительного катализатора полимеризации с последующей обработкой гидрогеля водным раствором, содержащим биологически активные вещества [Патент РФ №2157243, A61L 15/22, опубл. 10.10.2000]. Гидрогель промывают 7-8-кратным количеством водного раствора, содержащего вспомогательное вещество, в течение 30-40 часов. Затем набухший гидрогель вместе с содержащимися в нем вспомогательными веществами помещают в водный раствор биологически активного вещества до насыщения гидрогеля этим веществом. Время достижения равновесных концентраций биологически активного вещества в объеме гидрогеля и в водном растворе должно быть не менее 48 часов [М.П. Жиленко, Ю.Е. Папина, А.П. Руденко. Влияние сорбции ионов Ni (II) на синерезис и щелочной гидролиз набухших полиакриламидных гидрогелей. Вестник Моск. Ун-та. Сер. 2. Химия. 2000. Т. 41. №1. С. 48-52].

Недостатком этого способа является длительность процесса, обусловленная необходимостью удаления из набухшего гидрогеля остатков незаполимеризовавшегося акриламида.

Задачей изобретения является сокращение времени получения гидрогеля.

Техническим результатом, достигаемым при использовании изобретения, является сокращение времени получения гидрогеля.

Технический результат достигается тем, что в способе получения полимерного гидрогеля сополимеризацией водного раствора, содержащего 1.0-4.0% масс. акриламида, 1.0-4.0% масс. акрилата натрия, 0.04-0.06% масс. N,N-метиленбисакриламида и 2.5-3.0% масс. вспомогательного вещества, под действием окислительно-восстановительного катализатора полимеризации с последующей обработкой гидрогеля водным раствором, содержащим биологически активные вещества, в качестве вспомогательного вещества используют гидрокарбонат натрия, а перед обработкой указанным водным раствором осуществляют обработку гидрогеля 5.0-10.0%-ным водным раствором соляной кислоты до достижения рН 1.5-2.0.

В качестве биологически активных веществ могут использовать протеолитические ферменты, антисептики, локальные анестетики, жаропонижающие средства и т.д.

Окислительно-восстановительный катализатор полимеризации представляет собой катализатор, состоящий из окислительного компонента - пероксида водорода, других пероксидов, персульфатов и других перекисных соединений - и восстановительного компонента, в качестве которого могут использовать хлорид железа (II), хлорид меди, различные амины и др. В качестве такого катализатора могут применять, например, пероксид водорода и хлорид железа (II), пероксид водорода и хлорид меди, персульфат аммония и 25 мкл N,N,N',N'-тетраметилэтилендиамин, персульфат аммония и р-диметиламинопропионитрил и другие известные катализаторы получения полиакриламида.

Использование в качестве вспомогательного вещества гидрокарбоната натрия обеспечивает создание в растворе значения рН 7.5-8.0, что позволяет проводить сополимеризацию в гомогенных условиях. При обработке гидрогеля раствором соляной кислоты диссоциация карбоксильных групп подавляется, гидрогель коллапсирует, выдавливая из себя воду вместе с присутствующими в ней низкомолекулярными примесями. При погружении обезвоженного гидрогеля в раствор биологически активного вещества он набухает, поглощая весь раствор.

Нижеследующие примеры иллюстрируют предлагаемое изобретение, но не ограничивают его.

Пример 1

В стеклянный сосуд емкостью 150 мл вносят 50 мл водного раствора 0.77 г акриловой кислоты. Кислоту нейтрализуют добавлением 0.69 г гидрокарбоната натрия. Реакция нейтрализации сопровождается выделением большого количества углекислого газа, поэтому после ее завершения смесь выдерживают в течение 5-10 минут. В результате получают 1.0 г акрилата натрия. Затем в сосуд вносят 3.0 г акриламида и 0.04 г N,N-метиленбисакриламида (БИС), 44 мл бидистиллированной воды, содержащей 2.0 г гидрокарбоната натрия. В полученном растворе растворяют компоненты окислительно-восстановительного катализатора полимеризации: 20 мг персульфата аммония и 25 мкл N,N,N',N'-тетраметилэтилендиамина. Раствор вакуумируют для удаления растворенного кислорода до давления 10-15 мм рт.ст. и выдерживают при комнатной температуре в течение 1-2 часов до завершения реакции сополимеризации. К полученному гидрогелю добавляют 80 мл водного раствора соляной кислоты. При этом гидрогель коллапсирует, выделяя в раствор все присутствующие в нем примеси. Осадок отфильтровывают и на фильтре промывают раствором соляной кислоты. Время обработки гидрогеля соляной кислотой и отделения выпавшего в осадок гидрогеля составляет 30-60 минут. Суммарное время получения гидрогеля составляет 3,5 часа. Для определения содержания акриламида в гидрогеле 1 г обезвоженного осадка заливают 50 мл бидистиллированной воды, выдерживают в течение 48 часов. Полученные вытяжки анализируют на приборе "Hitachi-3410" (Япония), измеряя оптическую плотность при длине волны 220 нм. Концентрацию акриламида определяют по величине оптической плотности, используя предварительно построенную калибровочную прямую. Концентрация акриламида в равновесно набухшем гидрогеле не превышает 0.007 мг на 1.0 г гидрогеля.

Процентное содержание компонентов гидрогеля приведено в таблице.

Выпавший в осадок гидрогель помещают в водный раствор биологически активного вещества - антисептика, в котором происходит набухание гидрогеля до первоначальных размеров.

Примеры 2-4

Процесс проводят по примеру 1.

Результаты получения гидрогеля приведены в таблице.

Таким образом, предлагаемое изобретение позволяет существенно сократить время получения полимерных гидрогелей с 30-40 часов до 3-4 часов. Предельные количества используемых соединений определяются физико-механическими свойствами полимерных гидрогелей и оптимальными значениями рН, необходимыми для проведения процесса сополимеризации и осаждения образующегося гидрогеля.

Выбор биологически активного вещества, а также окислительно-восстановительного катализатора полимеризации не оказывает влияния на время получения гидрогеля.

Способ получения полимерного гидрогеля сополимеризацией водного раствора, содержащего 1.0-4.0% масс. акриламида, 1.0-4.0% масс. акрилата натрия, 0.04-0.06% масс. N,N-метиленбисакриламида и 2.5-3.0% масс. вспомогательного вещества, под действием окислительно-восстановительного катализатора полимеризации с последующей обработкой гидрогеля водным раствором, содержащим биологически активные вещества, отличающийся тем, что в качестве вспомогательного вещества используют гидрокарбонат натрия, а перед обработкой указанным водным раствором осуществляют обработку гидрогеля 5.0-10.0%-ным водным раствором соляной кислоты до достижения рН 1.5-2.0.



 

Похожие патенты:
Изобретение может быть использовано для ускорения процессов сгущения и фильтрации суспензий путем образования рыхлых хлопьевидных агрегатов из мелких частиц дисперсной фазы.

Изобретение относится к области получения огнестойких композиций на основе полимерного связующего и может найти применение в производстве деталей и изделий в электротехнике, радиотехнике и других отраслях промышленности.

Изобретение относится к области получения огнестойких композиций на основе полимерного связующего и может найти применение в производстве деталей и изделий в электротехнике, радиотехнике и других отраслях промышленности.

Изобретение относится к области получения огнестойких композиций на основе полимерного связующего и может найти применение в производстве деталей и изделий в электротехнике, радиотехнике и других отраслях промышленности.

Изобретение относится к области получения огнестойких композиций на основе полимерного связующего и может найти применение в производстве деталей и изделий в электротехнике, радиотехнике и других отраслях промышленности.

Изобретение относится к способам получения полимерных композиций из трех видов водорастворимых полимеров и может использоваться для изготовления пленочных материалов.

Изобретение относится к новым полимерам для очистки от металлов и их применениям. Описаны применения композиции, содержащей полимер, полученный, по крайней мере, из двух мономеров: акрил-х и алкиламин, где указанный полимер модифицирован таким образом, что содержит более 55 мол.% дитиокарбаминовой кислоты, способной очищать одну или несколько композиций, содержащих один или более описанных металлов.

Группа изобретений относится к композиции и способам подавления образования накипи и отложений в мембранных системах. Композиция для подавления образования накипи в мембранных системах содержит 5-40 мас.% сополимера акриловой кислоты-2акриламидо-2-метилпропансульфоновой кислоты и 5-40 мас.% полималеиновой кислоты.

Настоящее относится к композициям альдегид-функционализированных полимеров, стабилизированных неорганическими солями, органическими добавками или их комбинациями, к способу увеличения срока хранения композиции.

Изобретение относится к композициям для повышения вязкости водных сред. Композиция содержит смесь по меньшей мере одного катионного или поддающегося катионизации полимера и по меньшей мере одного анионного или поддающегося анионизации полимера.

Изобретение относится к медицине, а именно к эндоваскулярной хирургии, и раскрывает биоразрушаемую частицу для эмболизации и способ получения стерилизованной биоразрушаемой частицы.
Изобретение относится к гидрофильному пластилину. Гидрофильный пластилин является продуктом глубокой утилизации концентрированных замочных вод крахмало-паточных производств, обладающий достаточными пластичными свойствами.

Изобретение относится к порошкообразному водопоглощающему агенту, применяемому в адсорбирующей структуре поглощающего изделия. .

Изобретение относится к водопоглощающим материалам и изделиям из них. .

Изобретение относится к биотехнологии, а именно к полимерным матрицам для гигиенического изделия в виде однослойной пленки, включающим в себя бактерии, продуцирующие молочную кислоту в фармацевтически приемлемом полимере или полимерах.

Изобретение относится к водопоглощающему агенту в виде частиц, содержащему в качестве основного компонента водопоглощающую смолу, используемому в поглощающих изделиях.

Изобретение относится к абсорбирующим различные жидкости порошкообразным, сшитым полимерным продуктам на основе частично нейтрализованных, этиленово-ненасыщенных, содержащих кислотные группы мономеров.

Изобретение относится к способу получения полимеров. Описан способ получения полимерного продукта.
Наверх