Гибридная кровельная солнечная панель

Изобретение относится к устройству кровельных панелей для крыш зданий и сооружений со встроенными солнечными модулями. Гибридная кровельная солнечная панель, установленная на крыше здания, нормаль к поверхности крыши находится в меридиональной плоскости, содержит корпус и защитное покрытие на рабочей поверхности, выполненное в виде оптической отклоняющей системы из набора призм, на которую падает солнечное излучение с углом входа лучей β0, полупараболоцилиндрический зеркальный отражатель и приемник излучения в виде полосы, установленной между фокальной осью и вершиной полупараболоцилиндрического зеркального отражателя, при этом приемник излучения выполнен в виде гибридного когенерационного солнечного фотоэлектрического модуля со вторым защитным покрытием, установленным под углом ≤90° к защитному покрытию гибридной кровельной солнечной панели, второе защитное покрытие и корпус гибридной кровельной солнечной панели образуют герметичную полость, заполненную полисилоксановым гелем, в которой размещен приемник излучения из скоммутированных солнечных элементов, наружная стенка корпуса со стороны герметичной полости содержит каналы, в которых размещены встроенные трубы для прокачки теплоносителя, корпус гибридной кровельной солнечной панели и трубы за пределами корпуса снабжены теплоизоляцией, гибридная кровельная солнечная панель содержит электрические и гидравлические разъемы для соединения с соседними гибридными кровельными солнечными панелями. Изобретение обеспечивает повышение эффективности использования солнечной энергии в кровельной солнечной панели и снижение стоимости получения электрической энергии и теплоты. 19 з.п. ф-лы, 8 ил., 1 табл.

 

Изобретение относится к устройству кровельных панелей для крыш зданий и сооружений со встроенными солнечными модулями.

Известна кровельная панель с солнечной батареей, включающая несущее основание в виде криволинейной поверхности с размещенной на нем солнечной батареей на базе полупроводниковых фотоэлектрических преобразователей с электрокабелем токосъема. Солнечная батарея размещена на утопленной относительно верхней поверхности основания на глубину до 20 мм плоской площадке и зашита до верхней поверхности основания герметизирующей отверждающей композицией с уровнем пропускания светового излучения не менее 30% в диапазоне работы солнечной батареи (Пат. РФ №2194827, опубл. 20.12.2002).

Недостатком известной кровельной панели является большой расход полупроводникового материала для фотопреобразователей и низкая мощность солнечной батареи из-за оптических потерь в герметизирующей композиции.

Известна кровельная солнечная панель фирмы "HEDA Solar" (КНР), содержащая встроенные солнечные модули из четырех или восьми скоммутированных кремниевых солнечных элементов размером 156×156 мм или 125×125 мм. Кровельная солнечная панель имеет защитное покрытие из закаленного стекла и электрическую мощность 8-20 Вт, рабочее напряжение 1-2 В в зависимости от количества скоммутированных солнечных элементов (Проспект фирмы "HEDA Solar" www.hedasolar.com).

Недостатком известной кровельной солнечной панели является большой расход солнечного кремния для солнечных элементов и высокая стоимость.

Известен солнечный модуль с концентратором солнечной энергии, установленный на крыше и фасаде здания, содержаний плоское защитное прозрачное ограждение и установленный на защитном прозрачном ограждении в фокусе линейно-фокусирующего цилиндрического концентратора приемник излучения в виде полосы, концентратор выполнен в виде несимметричного отражателя, состоящего из двух разновеликих частей, разделенных плоскостью симметрии, проходящей через вершину и фокальную ось отражателя, причем большая часть отражателя выполнена в виде половины параболоцилиндрического (в дальнейшем - полупараболоцилиндрического) отражателя, а меньшая часть - в виде кругового цилиндрического отражателя с радиусом, равным расстоянию от фокальной оси до вершины полупараболоцилиндрического отражателя, фокальная ось смещена к одной из сторон защитного ограждения, параллельно его основанию, и совпадает с краем полосы приемника излучения.

Недостатком известного солнечного модуля является необходимость установки на крыше под солнечным модулем кровельного покрытия для защиты зданий и сооружений от внешних воздействий, что увеличивает стоимость зданий и сооружений.

Известна кровельная солнечная панель, установленная на крыше здания или сооружения, нормаль к поверхности крыши находится в меридиональной плоскости, содержащая корпус с внутренней полостью с защитным покрытием на рабочей поверхности, на которую падает солнечное излучение с углом входа лучей β0, и приемники из скоммутированных солнечных элементов, в полости корпуса 1 под защитным покрытием установлен составной концентратор, выполненный в виде прозрачной для излучения отклоняющей оптической системы из множества призм с острым углом Ψ между поверхностью входа и выхода лучей и нескольких полупараболоцилиндрических зеркальных отражателей с параметрическим углом δ, имеющих поверхности входа и выхода лучей, фокальные области всех полупараболоцилиндрических зеркальных отражателей смещены к нижней или верхней стороне кровельной солнечной панели, а приемники излучения из скоммутированных солнечных элементов установлены параллельно фокальной оси и перпендикулярно плоскости кровельной солнечной панели между фокальной осью и зеркальным покрытием каждого полупараболоцилиндрического зеркального отражателя, плоскости поверхности входа лучей отклоняющей оптической системы и плоскости поверхности входа лучей полупараболоцилиндрического зеркального отражателя параллельны плоскости защитного покрытия, а угол входа лучей β0, острый угол Ψ и коэффициент преломления n материала отклоняющей оптической системы связаны с параметрическим углом δ полупараболоцилиндрического зеркального отражателя следующим соотношением:

(Пат. РФ №2557272, опубл. 20.07.2015 г.)

Недостатком известной кровельной солнечной панели является необходимость установки дополнительного солнечного модуля для горячего водоснабжения и отопления зданий.

Известен гибридный фотоэлектрический модуль для получения электрической и тепловой энергии, содержащий защитное стеклянное покрытие, соединенные солнечные элементы, размещенные между стеклом и корпусом с теплообменником, солнечные элементы электроизолированы от теплообменника, пространство между солнечными элементами и теплообменником, а также между стеклянным покрытием и теплообменником заполнено слоем силоксанового геля толщиной 0,5-5 мм, защитное стеклянное покрытие выполнено в виде вакуумированного стеклопакета из двух стекол с вакуумным зазором 0,1-0,2 мм с вакуумом 10-3-10-5 мм рт. ст., теплообменник выполнен в виде герметичной камеры с патрубками для циркуляции теплоносителя, а общая площадь соединенных солнечных элементов соизмерима с площадью верхнего основания корпуса теплообменника (пат. РФ №2546332, опубл. 10.04.2015).

Недостатком известного модуля является большой расход солнечных элементов и материалов теплообменника и низкая температура теплоносителя при освещении неконцентрированным солнечным излучением.

Задачей изобретения является создание гибридной кровельной солнечной панели с высоким оптическим КПД и низким расходом полупроводникового материала и низкой стоимостью при производстве электрической и тепловой энергии.

Технический результат заключается в повышении эффективности использования солнечной энергии в кровельной солнечной панели и в снижении стоимости получения электрической энергии и теплоты.

Указанный технический результат достигается тем, что в гибридной кровельной солнечной панели, установленной на крыше здания, нормаль к поверхности крыши находится в меридиональной плоскости, содержащей корпус и защитное покрытие на рабочей поверхности, выполненное в виде оптической отклоняющей системы из набора призм, на которую падает солнечное излучение с углом входа лучей β0, полупараболоцилиндрический зеркальный отражатель и приемник излучения в виде полосы, установленной между фокальной осью и вершиной полупараболоцилиндрического зеркального отражателя, приемник излучения выполнен в виде гибридного когенерационного солнечного фотоэлектрического модуля со вторым защитным покрытием, установленным под углом ≤90° к защитному покрытию гибридной кровельной солнечной панели, второе защитное покрытие и корпус гибридной кровельной солнечной панели образуют герметичную полость, заполненную полисилоксановым гелем, в которой размещен приемник излучения из скоммутированных солнечных элементов, наружная стенка корпуса со стороны герметичной полости содержит каналы, в которых размещены встроенные трубы для прокачки теплоносителя, корпус гибридной кровельной солнечной панели и трубы за пределами корпуса снабжены теплоизоляцией, гибридная кровельная солнечная панель содержит электрические и гидравлические разъемы для соединения с соседними гибридными кровельными солнечными панелями.

В варианте гибридной кровельной солнечной панели трубы для прокачки теплоносителя выполнены в виде металлопластовых труб для обогреваемых полов с коэффициентом теплопроводности не менее .

В другом варианте гибридной кровельной солнечной панели трубы для прокачки теплоносителя выполнены из металла внутри корпуса и из металлопласта за пределами корпуса гибридной кровельной солнечной панели.

В варианте гибридной кровельной солнечной панели теплоизоляция корпуса и труб для прокачки теплоносителя выполнена жидкой краской типа RE-TERM.

В варианте гибридной кровельной солнечной панели трубы для прокачки теплоносителя установлены в горизонтальной плоскости по всей ширине крыши и соединены с корпусами всех установленных в одном ряду гибридных кровельных солнечных панелей.

В другом варианте гибридной кровельной солнечной панели трубы для прокачки теплоносителя установлены в вертикальной плоскости и соединены с корпусами всех установленных в одном ряду в вертикальной плоскости гибридных кровельных солнечных панелей.

В варианте гибридной кровельной солнечной панели корпус кровельной солнечной панели выполнен из теплопроводящей пластмассы.

В другом варианте гибридной кровельной солнечной панели корпус кровельной солнечной панели выполнен из теплопроводящей керамики.

В другом варианте гибридной кровельной солнечной панели корпус кровельной солнечной панели выполнен из теплопроводящей смеси песка и пластмассы.

В варианте гибридной кровельной солнечной панели внутренняя полость корпуса отформована для размещения защитного покрытия, полупараболоцилиндрического зеркального отражателя, отклоняющей оптической системы и приемников из скоммутированных солнечных элементов.

В варианте гибридной кровельной солнечной панели полупараболоцилиндрический зеркальный отражатель имеют плоские отформованные участки, параллельные фокальной оси, а ширина этих участков в меридиональной плоскости соизмерима или превышает ширину приемника из скоммутированных солнечных элементов.

В варианте гибридной кровельной солнечной панели зеркальное покрытие полупараболоцилиндрического зеркального отражателя выполнено в виде металлической пленки толщиной 0,1-5 мм, нанесенной на плоские отформованные участки внутренней полости корпуса.

В варианте гибридной кровельной солнечной панели полупараболоцилиндрический зеркальный отражатель выполнен из плоских зеркальных фацет, плоскости которых параллельны фокальной оси, а ширина зеркальных фацет в меридиональной плоскости соизмерима или превышает ширину приемника из скоммутированных солнечных элементов.

В варианте гибридной кровельной солнечной панели боковые стенки внутренней формообразующей полости корпуса для размещения полупараболоцилиндрического зеркального отражателя расположены в меридиональной плоскости и снабжены зеркальным отражающим покрытием.

В варианте гибридной кровельной солнечной панели внутри корпуса выполнена панель для кабельного соединения приемников из скоммутированных солнечных элементов к коммутационной коробке, которая установлена в полости корпуса между полупараболоцилиндрическим зеркальным отражателем с обратной стороны кровельной солнечной панели и снабжена токопроводящим кабелем для коммутации с другими кровельными солнечными панелями.

В варианте гибридной кровельной солнечной панели на обратной стороне снаружи корпуса выполнены каналы для прокладки трубы с теплоносителем и токопроводящего кабеля к расположенным рядом кровельным солнечным панелям.

В варианте гибридной кровельной солнечной панели герметичная полость с приемником излучения расположена на крыше в верхней части корпуса, а угол наклона защитного покрытия к горизонтальной поверхности при установке на крыше составляет θ1=ϕ-23,5°, где ϕ - широта местности, а угол между направлением на солнце и горизонтальной поверхностью равен γ1=90°-θ10, где β0 - угол входа лучей.

В другом варианте гибридной кровельной солнечной панели герметичная полость с приемником излучения расположена на крыше в нижней части корпуса, а угол наклона защитного покрытия к горизонтальной поверхности при установке на крыше составляет θ2=ϕ+23,5°, где ϕ - широта местности, а угол между направлением на солнце и горизонтальной поверхностью равен γ2=90°-θ20, где β0 - угол входа лучей.

Еще в одном варианте гибридной кровельной солнечной панели в верхней части крыши герметичная полость с приемником излучения расположена в верхней части корпуса, а угол наклона защитного покрытия к горизонтальной поверхности составляет θ1=ϕ-23,5°, а в нижней части крыши герметичная полость с приемником излучения расположена в нижней части корпуса, угол наклона защитного покрытия к горизонтальной поверхности составляет θ2=ϕ+23,5°, где ϕ - широта местности.

В варианте гибридной кровельной солнечной панели в качестве теплоносителя используется жидкость, например вода или антифриз.

В другом варианте гибридной кровельной солнечной панели в качестве теплоносителя используется воздух.

Сущность изобретения поясняется на фиг. 1, 2, 3, 4, 5, 6, 7, 8, где на фиг. 1 - общий вид с наружной гибридной кровельной солнечной панели. На фиг. 2 - общий вид с обратной стороны панели, у которой трубы для прокачки теплоносителя установлены в горизонтальной плоскости. На фиг. 3 - продольное сечение гибридной кровельной солнечной панели в меридиональной плоскости. На фиг. 4 - оптическая схема и ход лучей в гибридной кровельной солнечной панели. На фиг. 5 - установка гибридной кровельной солнечной панели на крыше дома для получения максимальной энергии в летнее время. На фиг. 6 - установка гибридной кровельной солнечной панели для получения максимальной энергии в зимнее время. На фиг. 7 - установка гибридной кровельной солнечной панели для получения энергии равномерно в течение года. На фиг. 8 - электрическая и гидравлическая схема соединений гибридной кровельной солнечной панели для электроснабжения и горячего водоснабжения зданий.

Гибридная кровельная солнечная панель на фиг. 1 имеет корпус 1, в котором сформирована герметичная с обратной стороны (фиг. 2, 3) полость 2 для размещения защитного покрытия 3 составного концентратора, состоящего из оптической отклоняющей системы 4 (фиг. 4) и полупараболоцилиндрического зеркального отражателя 5, приемника 6 из скоммутированных солнечных элементов 7, установленных между фокальной осью 8 и вершиной 9 полупараболоцилиндрического зеркального отражателя 5. Второе защитное покрытие 10 из стекла или прозрачного пластика приемника 6 установлено под углом α≤90° к плоскости защитного покрытия 3. Второе защитное покрытие 10 и корпус 1 гибридной кровельной солнечной панели образуют вторую герметичную полость 11, в которой установлен приемник 6 и которая заполнена прозрачным полисилоксановым гелем 12. Боковые стенки 13 и 14 внутренней формообразующей полости 2 корпуса 1 снабжены зеркальными покрытиями 15 и 16. Наружная стенка 17 корпуса 1 со стороны второй герметичной полости 11 содержит каналы 18, в которых размещены встроенные трубы 19 со стенками из металлопласта или металла для прокачки теплоносителя 20. Корпус 1 панели и трубы 19 за пределами корпуса 1 имеют теплоизоляцию 21. Приемник 6 во второй герметичной полости 11 и каналы 18 с трубами 19 для прокачки теплоносителя 20 образуют гибридный фотоэлектрический модуль, а наружная стенка 17 корпуса 1 со стороны второй герметичной полости 11 выполняет функции радиатора для передачи тепла от приемника 6 к теплоносителю 20. Гибридная кровельная солнечная панель содержит электрическую коммутационную коробку 22 и гидравлические разъемы 23 для соединения с соседними гибридными кровельными солнечными панелями. Коммутационная коробка 22 установлена с обратной стороны корпуса 1 и имеет токопроводящий кабель 24 для коммутации с другими кровельными солнечными панелями. Снаружи корпуса 1 на обратной стороне выполнены каналы 25 для прокладки кабеля 24 и каналы 18 для прокладки трубы 19 с теплоносителем 20. Плоскость поверхности входа лучей 25 оптической отклоняющей системы 4 и плоскость поверхности входа лучей 26 полупараболоцилиндрического зеркального отражателя 5 параллельны плоскости защитного покрытия 3.

На фиг. 4 оптическая отклоняющая система 4 выполнена из множества ориентированных в одном направлении призм 27 с острым углом Ψ между поверхностью 25 входа и поверхностью 28 выхода лучей.

На фиг. 4 показан ход лучей в составном концентраторе, состоящем из отклоняющей оптической системы 4 и полупараболоцилиндрического зеркального отражателя 5, где β0 - угол входа лучей на поверхности входа 25 в оптическую отклоняющую систему 4, β1 - угол преломления лучей в поверхности входа 25 внутри оптической отклоняющей системы 4, β2 - угол между лучом и нормалью к поверхности выхода 28 лучей внутри оптической отклоняющей системы 4, β3 - угол выхода лучей на поверхности выхода 28 снаружи отклоняющей оптической системы 4, β4 - угол входа лучей у поверхности входа 26 полупараболоцилиндрического зеркального отражателя 4.

Углы β0, β1, β2, β3 и β4 являются углами между направлениями лучей и нормалью к соответствующей поверхности. Поскольку поверхности входа 25 и 26 лучей параллельны, угол β0, ответственный за косинусные потери, равен углу β4 между направлением лучей входа в полупараболоцилиндрический зеркальный отражатель 5 и поверхностью входа 26 полупараболоцилиндрического зеркального отражателя 5 с параметрическим углом δ.

Полупараболоцилиндрический зеркальный отражатель 5 на фиг. 4 выполнен в виде металлизированной зеркальной пленки 29 толщиной 0,1-5 мм, нанесенной на внутреннюю поверхность полости 2 корпуса 1, которая содержит плоские отформованные участки а на внутренней поверхности полости 2 корпуса 1, параллельные фокальной оси 8. Ширина плоских участков а в меридиональной плоскости соизмерима с шириной d приемника 6 из скоммутированных солнечных элементов 7, что обеспечивает равномерное освещение приемника 6 и отсутствие перегрева локальных участков приемника 6. В варианте конструкции полупараболоцилиндрический зеркальный отражатель 5 выполнен из полированной алюминиевой фольги.

На фиг. 5 кровельные солнечные панели установлены на южном скате 30 крыши 31 здания 32, герметичная полость 11 с приемником излучения расположена на крыше 31 в верхней части корпуса 1, а угол наклона защитного покрытия 3 кровельной солнечной панели к горизонтальной поверхности 33 при установке на крыше 31 составляет θ1=ϕ-23,5°, где ϕ - ширина местности. При этом нормаль 34 к поверхности защитного покрытия 3 в меридиональной плоскости направлена на положение Солнца в полдень 22 июня в день летнего солнцестояния. Угол между направлением на солнце 35 и горизонтальной поверхностью 33 в любой заданный момент времени равен γ1=90°-ϕ-23,75°-β0=90°-θ10. При такой установке кровельная солнечная панель получает максимальное количество солнечной энергии в летние месяцы. С уменьшением высоты положения Солнца количество поступающей солнечной энергии будет уменьшаться пропорционально cos β0.

На фиг. 6 кровельные солнечные панели установлены на южном скате 30 крыши 31 здания 32 таким образом, чтобы использовать максимальное количество поступающей солнечной энергии в зимнее время. Герметичная полость 11 с приемником 6 расположена в нижней части корпуса 1, а угол наклона защитного покрытия 3 кровельной солнечной панели к горизонтальной поверхности 33 при установке на крыше 31 составляет θ2=ϕ+23,5°. При этом нормаль 34 к поверхности защитного покрытия 3 в меридиональной плоскости направлена на положение Солнца в полдень 22 декабря. Угол между направлением на солнце 36 и горизонтальной поверхностью 33 в любой заданный момент времени равен γ2=90°-ϕ+23,75°+β0=90°-θ20.

На фиг. 7 крыша дома имеет два участка 37 и 38 с разным наклоном к горизонтальной поверхности. В верхней части крыши на участке 37 герметичная полость 11 с приемником 6 расположена в верхней части корпуса 1, а угол наклона защитного покрытия к горизонтальной поверхности 33 составляет θ1=ϕ-23,5°. В нижней части крыши на участке 38 герметичная полость 11 с приемником излучения 6 расположена в нижней части корпуса 1 гибридной кровельной солнечной панели, а угол наклона защитного покрытия 3 к горизонтальной поверхности 33 составляет θ2=ϕ+23,5°. Углы между направлением на солнце и горизонтальной поверхностью равны

γ1=90°-θ10,

γ2=90°-θ20.

Такое размещение гибридных кровельных солнечных панелей обеспечивает более равномерное производство электрической энергии и горячей воды в течение года по сравнению с размещением гибридной кровельной солнечной панели на фиг. 5 и 6.

На фиг. 8 металлопластовые трубы 19 установлены горизонтально по всей ширине южного ската крыши 31 в каждом ряду 38 установки гибридных кровельных солнечных панелей. При монтаже гибридных кровельных солнечных панелей на крыше 31 металлопластовые трубы 19 вставляются в каналы 18 с обратной стороны 23 корпуса 1 каждой панели (фиг. 2, 3, 4) и закрепляются в канале 18 специальной крышкой 39 для обеспечения плотного контакта металлопластовой трубы 19 с корпусом 1 панели. Металлопластовые трубы 19 расположенных горизонтально соседних рядов 38 соединены между собой последовательно или параллельно по краям крыши 31. Входной 40 и выходной патрубок 41 от системы труб 19 на крыше 31 соединены с баком-аккумулятором 42 с теплообменником 43 внутри бака-аккумулятора 42, установленным в здании. Для прокачки теплоносителя 20 через панели на выходе теплообменника 43 установлен электрический насос 44, который приводится в действие от гибридных кровельных солнечных панелей. Из бака аккумулятора 42 горячая вода поступает в здание по трубам 46 и 47.

Гибридные кровельные солнечные панели соединены друг с другом через коммутационную коробку 22 кабелем 24 параллельно и последовательно для получения напряжения 12 В - 96 В и с инвертором 45 для включения в электрическую сеть. При необходимости между панелями и инвертором 45 устанавливают аккумуляторную батарею с контроллером заряда (на фиг. 8 не показаны).

Гибридная кровельная солнечная панель работает следующим образом (фиг. 3). Солнечное излучение через защитное покрытие 3 поступает под углом β0 на поверхность входа лучей 25 отклоняющей оптической системы 4 из набора призм 27 с острым углом Ψ с коэффициентом преломления n, входит в призму 27 под углом β1, выходит из призмы 27 под углом β3 и поступает на поверхность входа 26 полупараболоцилиндрического зеркального отражателя 5 под углом β4, отражается от полупараболоцилиндрического зеркального отражателя 5 и поступает на приемник 6 при условии β4≥90°-2δ.

Косинусные потери за счет отклонения потока солнечного излучения от нормали к поверхности входа лучей 25 полупараболоцилиндрического зеркального отражателя 5:

Расчеты по формулам (1)-(7) для δ=26,1° приведены в таблице 1.

Согласно таблице 1 предлагаемая конструкция гибридной кровельной солнечной панели позволяет уменьшить косинусные потери по сравнению с прототипом с 21% (Ψ=0) до 4,8% при Ψ=24°. Эффективный апертурный угол при наличии отклоняющей оптической системы 4 увеличивается с δ до величины . Для Ψ=24° β0=17,8°, эффективный апертурный угол солнечного модуля с концентратором увеличивается с до , что при изменении солнечного склонения на 7,83° в месяц соответствует увеличению продолжительности работы в стационарном режиме с месяца до месяца.

Коэффициент концентрации солнечного излучения в гибридной кровельной солнечной панели с учетом косинусных потерь равен

Кровельная солнечная панель работает в стационарном режиме без слежения за Солнцем и собирает на приемнике 6 прямую и диффузную солнечную радиацию в пределах апертурного угла δ.

Пример выполнения кровельной солнечной панели

Отклоняющая оптическая система 4 состоит из набора призм 27 с острым углом Ψ=24°. Угол входа лучей β0=17,8°, угол β4=37,8°, апертурный угол δ полупараболоцилиндрического зеркального отражателя 5 из полированного алюминия δ=26,1°. Приемник 6 имеет размеры 78×624 мм, состоит из четырех кремниевых солнечных элементов 7 размером 78×156 мм, соединенных параллельно. Геометрический коэффициент концентрации к=4,92, косинусные потери 4,8%, оптический КПД 80%, КПД приемника 6 15%. Активная площадь кровельной солнечной панели для использования солнечной энергии равна 0,192 м2. Электрический КПД с учетом оптических потерь 10%. Пиковая электрическая мощность 20 Вт при освещенности 1 кВт/м2 и температуре 25°С. Приемник 6 выполнен с устройством отвода тепла для получения электроэнергии и горячей воды или горячего воздуха. При использовании теплоносителя 20 в виде горячей воды общий КПД составит 40%, тепловая мощность 30 Вт, с температурой воды 65°С. Годовое количество солнечной энергии для Краснодарского края, г. Анапа, поступающее на южный скат 30 крыши 31, установленной под углом 40° к горизонтальной поверхности, составляет 1680 кВт⋅ч/м2. Установленная на крыше гибридная кровельная солнечная панель общей электрической мощностью 1 кВт вырабатывает за год 1680 кВт⋅ч электрической и 5040 кВт⋅ч тепловой энергии в виде горячей воды.

При стоимости полупараболоцилиндрических зеркальных отражателей 5 20 долл./м2, концентрации 4,92, оптическом КПД 0,8 и электрическом КПД 15% стоимость кровельной солнечной панели составит 30 долл., или 1,5 долл.//Вт, при существующей стоимости 3 долл./Вт, т.е. снизится в 2 раза, при этом стоимости составного концентратора и приемника 6 будут примерно равны и составлять по 50% от стоимости кровельной солнечной панели.

По сравнению с прототипом солнечный модуль с концентратором имеет небольшие косинусные потери, большой срок службы и низкую стоимость.

1. Гибридная кровельная солнечная панель, установленная на крыше здания, нормаль к поверхности крыши находится в меридиональной плоскости, содержащая корпус и защитное покрытие на рабочей поверхности, выполненное в виде оптической отклоняющей системы из набора призм, на которую падает солнечное излучение с углом входа лучей β0, полупараболоцилиндрический зеркальный отражатель и приемник излучения в виде полосы, установленной между фокальной осью и вершиной полупараболоцилиндрического зеркального отражателя, отличающаяся тем, что приемник излучения выполнен в виде гибридного когенерационного солнечного фотоэлектрического модуля со вторым защитным покрытием, установленным под углом ≤90° к защитному покрытию гибридной кровельной солнечной панели, второе защитное покрытие и корпус гибридной кровельной солнечной панели образуют герметичную полость, заполненную полисилоксановым гелем, в которой размещен приемник излучения из скоммутированных солнечных элементов, наружная стенка корпуса со стороны герметичной полости содержит каналы, в которых размещены встроенные трубы для прокачки теплоносителя, корпус гибридной кровельной солнечной панели и трубы за пределами корпуса снабжены теплоизоляцией, гибридная кровельная солнечная панель содержит электрические и гидравлические разъемы для соединения с соседними гибридными кровельными солнечными панелями.

2. Гибридная кровельная солнечная панель по п. 1, отличающаяся тем, что трубы для прокачки теплоносителя выполнены в виде металлопластовых труб для обогреваемых полов с коэффициентом теплопроводности не менее .

3. Гибридная кровельная солнечная панель по п. 1, отличающаяся тем, что трубы для прокачки теплоносителя выполнены из металла внутри корпуса и из металлопласта за пределами корпуса гибридной кровельной солнечной панели.

4. Гибридная кровельная солнечная панель по п. 1, отличающаяся тем, что теплоизоляция корпуса и труб для прокачки теплоносителя выполнена жидкой краской типа RE-TERM.

5. Гибридная кровельная солнечная панель по п. 1, отличающаяся тем, что трубы для прокачки теплоносителя установлены в горизонтальной плоскости по всей ширине крыши и соединены с корпусами всех установленных в одном ряду гибридных кровельных солнечных панелей.

6. Гибридная кровельная солнечная панель по п. 1, отличающаяся тем, что трубы для прокачки теплоносителя установлены в вертикальной плоскости и соединены с корпусами всех установленных в одном ряду в вертикальной плоскости гибридных кровельных солнечных панелей.

7. Гибридная кровельная солнечная панель по п. 1, отличающаяся тем, что корпус кровельной солнечной панели выполнен из теплопроводящей пластмассы.

8. Гибридная кровельная солнечная панель по п. 1, отличающаяся тем, что корпус кровельной солнечной панели выполнен из теплопроводящей керамики.

9. Гибридная кровельная солнечная панель по п. 1, отличающаяся тем, что корпус кровельной солнечной панели выполнен из теплопроводящей смеси песка и пластмассы.

10. Гибридная кровельная солнечная панель по п. 1, отличающаяся тем, что внутренняя полость корпуса отформована для размещения защитного покрытия, полупараболоцилиндрического зеркального отражателя, отклоняющей оптической системы и приемника из скоммутированных солнечных элементов.

11. Гибридная кровельная солнечная панель по п. 1, отличающаяся тем, что полупараболоцилиндрический зеркальный отражатель имеет плоские отформованные участки, параллельные фокальной оси, а ширина этих участков в меридиональной плоскости соизмерима или превышает ширину приемника из скоммутированных солнечных элементов.

12. Гибридная кровельная солнечная панель по п. 1 или 11, отличающаяся тем, что зеркальное покрытие полупараболоцилиндрического зеркального отражателя выполнено в виде металлической пленки толщиной 0,1-5 мм, нанесенной на плоские отформованные участки внутренней полости корпуса.

13. Гибридная кровельная солнечная панель по п. 1, отличающаяся тем, что полупараболоцилиндрический зеркальный отражатель выполнен из плоских зеркальных фацет, плоскости которых параллельны фокальной оси, а ширина зеркальных фацет в меридиональной плоскости соизмерима или превышает ширину приемника из скоммутированных солнечных элементов.

14. Гибридная кровельная солнечная панель по п. 1, отличающаяся тем, что боковые стенки внутренней формообразующей полости корпуса для размещения полупараболоцилиндрического зеркального отражателя расположены в меридиональной плоскости и снабжены зеркальным отражающим покрытием.

15. Гибридная кровельная солнечная панель по п. 1, отличающаяся тем, что внутри корпуса выполнена панель для кабельного соединения приемника из скоммутированных солнечных элементов к коммутационной коробке, которая установлена в полости корпуса между полупараболоцилиндрическим зеркальным отражателем с обратной стороны кровельной солнечной панели и снабжена токопроводящим кабелем для коммутации с другими кровельными солнечными панелями.

16. Гибридная кровельная солнечная панель по п. 1, отличающаяся тем, что герметичная полость с приемником излучения расположена на крыше в верхней части корпуса, а угол наклона защитного покрытия к горизонтальной поверхности при установке на крыше составляет θ1=ϕ-23,5°, где ϕ - широта местности, а угол между направлением на солнце и горизонтальной поверхностью равен γ1=90°-θ10, где β0 - угол входа лучей.

17. Гибридная кровельная солнечная панель по п. 1, отличающаяся тем, что герметичная полость с приемником излучения расположена на крыше в нижней части корпуса, а угол наклона защитного покрытия к горизонтальной поверхности при установке на крыше составляет θ2=ϕ+23,5°, где ϕ - широта местности, а угол между направлением на солнце и горизонтальной поверхностью равен γ2=90°-θ20, где β0 - угол входа лучей.

18. Гибридная кровельная солнечная панель по п. 1, отличающаяся тем, что в верхней части крыши герметичная полость с приемником излучения расположена в верхней части корпуса, а угол наклона защитного покрытия к горизонтальной поверхности составляет θ1=ϕ-23,5°, а в нижней части крыши герметичная полость с приемником излучения расположена в нижней части корпуса, угол наклона защитного покрытия к горизонтальной поверхности составляет θ2=ϕ+23,5°, где ϕ - широта местности.

19. Гибридная кровельная солнечная панель по п. 1, отличающаяся тем, что в качестве теплоносителя используется жидкость, например вода или антифриз.

20. Гибридная кровельная солнечная панель по п. 1, отличающаяся тем, что в качестве теплоносителя используется воздух.



 

Похожие патенты:

Изобретение относится к области преобразования солнечной энергии в электрическую и тепловую, к конструкции солнечных электростанций с концентраторами. Солнечная электростанция содержит концентраторы, систему слежения и фотоприемники в фокальной области каждого концентратора, установленные в прозрачной для солнечного излучения оболочке и снабженные устройством для отвода теплоты, прозрачная оболочка содержит гомогенизатор концентрированного солнечного излучения из набора плоских тонких пластин из оптически прозрачного материала, размеры поперечного сечения гомогенизатора соизмеримы с размерами рабочей поверхности фотоприемника, ширина каждой пластины равна расстоянию между токоотводами, произведение толщины пластин на их количество определяет размер гомогенизатора вдоль плоскости р-n переходов диодных структур, длина гомогенизатора в 2-10 раз больше размеров рабочей поверхности фотоприемника, плоскости диодных структур параллельны двум из четырех граней гомогенизатора, а устройство отвода тепла выполнено в виде тонких пластин из теплопроводящего материала, присоединенных к токоподводам каждой секции твердотельной матрицы путем пайки или сварки параллельно плоскости р-n переходов диодных структур, размер секций между пластинами теплообменника составляет 4-20 мм, а суммарная их площадь при естественном охлаждении равна площади миделя концентратора.

Изобретение относится к ветровым и солнечным энергетическим установкам, объединенным в единую конструкцию. Энергоэффективная солнечно-ветровая энергетическая установка содержит: трехлопастную конусно-шнековую ветроэнергетическую установку с горизонтальным вращающимся валом, которая образована тремя половинками спиральных цилиндров, расположенных относительно друг друга под углом 120°, усеченных криволинейными поверхностями второго порядка; поворотную платформу с вертикальным валом; солнечную энергетическую установку, представляющую собой пленочную солнечную фотоэлектронную батарею, нанесенную на внешнюю поверхность трех лопастей конусно-шнековой ветроэнергетической установки; вертикальную пластину, расположенную под поворотной платформой; монтажные фигурные пластины для крепления к ним примыкающей части половинок спиральных цилиндров, неподвижно соединенные с горизонтальным вращающимся валом; основание, к которому крепятся примыкающие части трех лопастей конусно-шнековой ветроэнергетической установки; переднюю треугольную опорную стойку с подшипниковым узлом; две задние параллельные стойки с подшипниковым узлом, установленным между ними и служащим для крепления задней части горизонтального вращающегося вала; две поперечные планки, прикрепленные к двум задним параллельным стойкам; тихоходный магнитоэлектрический генератор, установленный на двух параллельных стойках и двух поперечных планках; конфузор-диффузор с цилиндрической частью между ними, выполненные из прозрачного поликарбоната, причем трехлопастная конусно-шнековая ветроэнергетическая установка с горизонтальным вращающимся валом, подшипниковыми узлами, передней треугольной стойкой и двумя задними параллельными стойками расположены в цилиндрической части конфузора-диффузора; передний и задний ложементы, служащие для крепления к ним цилиндрической части конфузора-диффузора, прикрепленные к поворотной платформе; двояковыпуклые продольные линзы, встроенные вдоль цилиндрической части конфузора-диффузора; литиевые аккумуляторные батареи; контроллер заряда-разряда литиевых аккумуляторных батарей; инвертор.

Система управления платформой концентраторных солнечных модулей содержит платформу (6) с концентраторными каскадными солнечными модулями, оптический солнечный датчик (24), выполненный в виде CMOS матрицы, подсистему (7) азимутального вращения, подсистему (8) зенитального вращения, включающую датчик положения платформы по зенитальному углу, центральный блок (23) управления, содержащий контроллер, блок (26) часов реального времени, датчик (13) числа оборотов первого электродвигателя (12), датчик (19) числа оборотов второго электродвигателя (18).

Изобретение относится к энергетике, может использоваться в солнечной электростанции с использованием концентрированного солнечного излучения и может найти применение в других отраслях науки и техники вплоть до разработки плазменно-ракетных двигателей для полетов в космосе и создания плазмы в термоядерном синтезе благодаря полученной высокотемпературной зоне с большой энергией в ограниченном пространстве.

Изобретение относится к гелиотехнике, в частности к солнечным модулям с концентраторами солнечного излучения для получения электричества и тепла. В солнечном модуле с концентратором, имеющем рабочую поверхность, на которую падает солнечное излучение, концентратор и приемник излучения, на рабочей поверхности установлена отклоняющая оптическая система, выполненная в виде жалюзи из зеркальных фацет, имеющая поверхности входа и выхода лучей, зеркальные фацеты выполнены в виде цилиндрических зеркальных отражателей с радиусом кривизны R и плоскостью входа лучей шириной d и помещены в оптически прозрачную среду с коэффициентом преломления n, угол выхода лучей β1 для цилиндрических зеркальных отражателей, угол выхода лучей отклоняющей оптической системы β2, угол ϕ0 наклона плоскости входа лучей цилиндрических зеркальных отражателей и их радиус кривизны R при нормальном падении лучей на рабочую поверхность модуля связаны соотношениями, указанными в формуле изобретения, расстояние между цилиндрическими зеркальными отражателями на рабочей поверхности и ширина поверхности входа цилиндрических зеркальных отражателей удовлетворяет соотношению , при котором для любых углов ϕ0 нижняя грань цилиндрического зеркального отражателя и верхняя грань следующего цилиндрического зеркального отражателя находятся в одной вертикальной плоскости.

Изобретение раскрывает приемник солнечного излучения для преобразования солнечной энергии в тепловую и электрическую энергию. Приемник (2) солнечного излучения (1) для гелиотермальной параболической антенны имеет тепловой двигатель, расположенный в его фокусе, впускной и выпускной коллекторы (9), группу трубок (8), идущих от впускного коллектора к выпускному коллектору, по которым течет нагреваемая при приеме солнечного излучения (1) рабочая текучая среда.

Изобретение относится к системе генерации электроэнергии, использующей экологически чистую энергию - солнечную и внешнюю паровую гибридную систему генерации электроэнергии.

Изобретение относится к альтернативной (солнечной) энергетике и может быть использовано для преобразования энергии солнца в электрическую. Технический результат заключается в увеличении поверхностной плотности солнечной энергии, воздействующей на поверхность солнечных батарей или на спаи термоэлектрического генератора, которая происходит за счет суммарного отражения солнечных лучей от отражающих поверхностей, облучаемых лучевой энергией, проходящей через оптические линзы.

Комплементарная система подачи тепловой энергии с использованием солнечной энергии и биомассы принадлежит к области использования чистой энергии. Система содержит устройство, концентрирующее солнечные лучи, емкость (1) для хранения солнечного тепла, энергоустановку на биомассе, устройство охлаждения и замораживания для охлаждения и систему нагревания воды для центрального нагревания.

Изобретение относится к гелиотехнике, в частности к солнечным модулям с концентраторами солнечного излучения для получения электричества и тепла. В солнечном модуле, содержащем концентратор и приемник излучения и имеющем рабочую поверхность, на которую падает солнечное излучение и на которой установлена отклоняющая оптическая система, выполненная в виде жалюзи из зеркальных фацет, имеющая поверхности входа и выхода лучей, согласно изобретению зеркальные фацеты выполнены в виде цилиндрических зеркальных отражателей с радиусом кривизны R и плоскостью входа лучей шириной d, угол выхода лучей β1 для цилиндрических зеркальных отражателей, угол φ0 наклона плоскости входа лучей цилиндрических зеркальных отражателей и их радиус кривизны R при нормальном падении лучей на рабочую поверхность модуля связаны соотношениями, указанными в формуле изобретения.

Изобретение относится к системам питания электронных устройств с помощью оптического излучения и может найти применение в измерительных устройствах с гальванической развязкой области измерений и области отображения информации, например в высоковольтных или взрывоопасных устройствах. Оптическая система электропитания электронных устройств содержит регулируемый источник 1 тока лазера 2, оптический тракт, (например, волоконно-оптический) передачи излучения от лазера 2 до фотовольтаического элемента 3, выход которого подключен к входу повышающего преобразователя 4 напряжения, питаемое электронное устройство 5, измеритель 6 напряжения, вход которого подключен к выходу фотовольтаического элемента 3 или к выходу повышающего преобразователя 4 напряжения, а выход измерителя 6 напряжения подключен к входу волоконно-оптической системы 7 передачи информации (ВОСПИ), выход которой подключен к управляющему входу регулируемого источника тока 1. Волоконно-оптическая система 7 передачи информации содержит источник 8 излучения и фотоприемник 9. Вход источника 8 излучения соединен с выходом измерителя 6 напряжения, а выход фотоприемника 9 соединен с управляющим входом регулируемого источника 1 тока. Излучение источника 8 передается на фотоприемник 9 посредством оптического тракта, который может быть выполнен как открытым, так и волоконно-оптическим. Измеритель 6 напряжения может быть выполнен в виде аналого-цифрового преобразователя (АЦП) или преобразователя напряжение - частота. Технический результат, достигаемый при применении предложенной оптической системы электропитания электронных устройств, состоит в уменьшении оптической мощности, необходимой для нормального функционирования питаемого электронного устройства. При этом по сравнению с прототипом повышается КПД системы питания, уменьшается нагрузка на лазер питания и фотовольтаический элемент, что обеспечивает увеличение ресурса работы системы питания. 2 з.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к солнечной энергетике, в частности касается концентраторов для солнечных батарей. Концентратор солнечных лучей для солнечной батареи выполнен в форме полуцилиндра с веерным расположением зеркальных отражающих электродов и прозрачных полупроводниковых солнечных батарей. Причем концентратор и солнечная батарея являются интегрально единым устройством. Если расположить солнечную батарею таким образом, чтобы ось полуцилиндра была направлена параллельно оси вращения земного шара, то вне зависимости от угла падения солнечных лучей в течение дня излучение будет проходить через все p-n-переходы, причем практически все фотоны будут поглощены и преобразованы в электрический ток. Изобретение должно повысить эффективность солнечной батареи. 1 ил.

Изобретение относится к гелиотехнике и к конструкции солнечных модулей с фотоэлектрическими и тепловыми приемниками солнечного излучения и концентраторами для получения электрической энергии и теплоты. Солнечный модуль с асимметричным параболоцилиндрическим концентратором солнечного излучения состоит из одной ветви параболоцилиндрического концентратора солнечного излучения и линейчатого фотоприемника, расположенного в фокальной области с равномерным распределением концентрированного излучения вдоль параболоцилиндрической оси, концентратор выполнен с зеркальной внутренней поверхностью отражения, форма отражающей поверхности концентратора соответствует условию равномерной, вдоль и перпендикулярно параболоцилиндрической оси, освещенности поверхностей фотоприемника, размещенного перед фокусом и выполненного в виде трех линеек из соединенных последовательно-параллельно фотоэлектрических преобразователей. Фотоприемник имеет трапецеидальную форму в поперечном сечении и устройство протока теплоносителя. Техническим результатом является обеспечение работы теплофотоэлектрического приемника солнечного модуля при средних концентрациях и равномерном освещении, нагрева теплоносителя, например воды, и снижения стоимости вырабатываемой энергии. 2 з.п. ф-лы, 8 ил.

Изобретение относится к области преобразования солнечной энергии в электрическую и тепловую, в первую очередь к конструкции солнечных электростанций с концентраторами. Солнечная электростанция содержит концентраторы, систему слежения и фотоприемники в фокальной области каждого концентратора на основе скоммутированных солнечных элементов с р-n переходами. Каждый фотоприемник выполнен в виде секций твердотельной матрицы из последовательно скоммутированных миниатюрных солнечных элементов с диодными структурами и двухсторонней рабочей поверхностью, плоскости р-n переходов диодных структур параллельны двум из четырех боковых граней и перпендикулярны рабочей поверхности фотоприемника, плоскости миделя и фокальной плоскости концентратора. Фотоприемник установлен в прозрачной для солнечного излучения оболочке и снабжен устройством для отвода теплоты, прозрачная оболочка содержит гомогенизатор концентрированного солнечного излучения в виде стержня прямоугольного сечения из оптически прозрачного материала, размеры поперечного сечения гомогенизатора соизмеримы с размерами рабочей поверхности фотоприемника, а длина стержня в 2-10 раз больше размеров рабочей поверхности фотоприемника. Устройство отвода тепла выполнено в виде тонких пластин из теплопроводящего материала, присоединенных к токоподводам каждой секции твердотельной матрицы путем пайки или сварки параллельно плоскости р-n переходов диодных структур, размер секций между пластинами теплообменника составляет 4-20 мм, а суммарная площадь пластин теплообменника при естественном охлаждении равна площади миделя концентратора. Технический результат заключается в снижении потерь электроэнергии и увеличении КПД и срока службы солнечной электростанции. 4 з.п. ф-лы, 4 ил.

Изобретение относится к устройствам преобразования солнечной энергии в электрическую, в частности к конструкциям солнечных фотоэлектрических станций, размещенных на строительных конструкциях зданий (козырьки или навесы над крыльцом, балконом, террасой и т.д.). Станция состоит из солнечной батареи и опорной конструкции, закрепленной на стене здания. Опорная конструкция выполнена из нескольких дугообразных профилей, по крайней мере двух, причем верхние концы профилей соединены между собой горизонтальным профилем и прикреплены к стене, нижние концы профилей выполнены упирающимися в вертикальные опоры, опорная конструкция по всей площади покрыта гибким кровельным материалом, над каждым профилем на бобышках жестко установлены дугообразные трубы с отверстиями, выполненными с равным шагом, дугообразные трубы являются направляющими для передвижного каркаса солнечной батареи в виде отдельных прямоугольных каркасов для отдельных солнечных модулей, коаксиально на каждую дугообразную трубу установлена с небольшим зазором разрезанная вдоль дугообразная труба, являющаяся частью передвижного каркаса, большего сечения и меньшей длины, с отверстиями того же диаметра, что и на внутренней трубе, и тем же шагом, с возможностью перемещения наружной трубы относительно внутренней и фиксацией ее положения относительно горизонтальной плоскости путем жесткого соединения труб через совпавшие отверстия. Опорная конструкция позволяет регулировать угол наклона солнечной батареи. 2 з.п. ф-лы, 8 ил.

Группа изобретений относится к средствам хранения и выдачи носителей информации (футляров) в особо оборудованных помещениях, к объединенным с этими средствами высотным источникам комбинированного лазерного освещения территорий и к носовым опорам светозащитных очков для работы на участках разной освещенности. Хранение информации организовано по генетической аналогии (как в двойных цепочках ДНК). Футляры нанизаны на скрепленные парами вертикально подвешенные нити, каждая из которых может быть быстро изъята по коду на чипах внутри головного футляра нити. В футлярах хранится информация, необходимая для работы лицам определенных профессий. Освещение производится отдельными группами лазеров, генерирующих лучи разного цвета. Группа лазеров включается, когда из хранилища изымается соответствующая нить с футлярами (при возвращении нити лазеры выключаются). Лазеры снабжаются электроэнергией от сферических солнечных батарей, расположенных предпочтительно выше облаков. Техническим результатом является регулирование поступления энергии на Землю в местах интенсивного развития техники. 2 н. и 2 з.п. ф-лы, 22 ил.

Использование – в области электротехники. Технический результат – повышение компактности и надежности. Согласно изобретению автономный интеллектуальный источник питания содержит по меньшей мере одну батарею, цилиндрическую солнечную батарею из хотя бы двух солнечных элементов, к которой присоединены блоки заряда аккумулятора и конденсатора, к которым в свою очередь присоединены аккумулятор и буферный конденсатор соответственно, причем выходы батареи, цилиндрической солнечной батареи, аккумулятора и буферного конденсатора соединены со входами блока измерения, управления и связи и входами коммутатора, выход которого соединен со входом преобразователя/стабилизатора, выход которого соединен со одним из входов блока измерения, управления и связи, выходы которого соединены с управляющим входом коммутатора и управляющими входами блоков заряда аккумулятора и конденсатора. 4 з.п. ф-лы, 5 ил.

Изобретение относится к области солнечной фотоэнергетики, в частности к устройствам для прямого преобразования солнечной энергии в электрическую с использованием концентраторов солнечного излучения, и может быть использовано в солнечных энергоустановках для работы в условиях как высокой, так и низкой освещенности. Предложены два варианта солнечного фотоэлектрического модуля со стационарным концентратором, содержащим отражатели в качестве концентрирующих элементов, включающего фотоприемник излучения с двусторонней фоточувствительностью, расположенный в фокальной области концентратора. Концентратор содержит две симметричные ветви параболоцилиндрического отражателя, разделенные плоским прямоугольным отражателем, либо он выполнен в виде параболической полусферы с плоским круглым дном в качестве отражателя, а фотоприемник излучения с двусторонней фоточувствительностью является полупрозрачным для падающего на него солнечного света и выполнен либо прямоугольным, либо круглым, при этом его площадь равна или превышает площадь плоского отражателя. Фотоэлектрический модуль обеспечивает увеличение удельной мощности модуля и снижение стоимости вырабатываемой электроэнергии даже при низких значениях коэффициента концентрации солнечного излучения. 2 н. и 6 з.п. ф-лы, 1 ил.
Изобретение относится к летательным аппаратам легче воздуха. Привязной летательный аппарат с всепогодной комплексной ветровой и солнечной электростанцией выполнен с возможностью использовать горячий пар для создания подъемной силы и получения электроэнергии. Он состоит из ветровой части, которая расположена в сквозном ветровом канале внутри корпуса, состоящего: из входного и выходного сопел, соединительных рукавов и секций, состоящих из электростанций, каждая из которых включает ветровое колесо, шкивы с осями, соединенные гибкими связями, которые передают вращательное движение от ветрового колеса генераторам электрического тока; и солнечной части, гибкие фотоэлементы которой расположены на внешней защитной обшивке мягкого корпуса. Корпус собран из сегментов с теплоизоляцией наружной стороны. Ветровое колесо выполнено с возможностью привода во вращение ветровым потоком, который возникает при прохождении его через корпус, представляющий цилиндр, вертикально прикрепленный к земле с помощью электролебедок. Сегменты корпуса теплоизолированы с атмосферной стороны и обеспечивают нагрев воздуха в нем и создание ветрового потока, скорость которого регулируют подбором площади сечения входного сопла и площади сечения соединительного рукава. Изобретение направлено на улучшение экологии.

Изобретение относится к теплоэлектроэнергетике и может быть использовано для утилизации возобновляемых, вторичных тепловых энергоресурсов и тепловой энергии природных источников. Походная гелиотермоэлектростанция включает ковер, собранный из прямоугольных секций, каждая из которых представляет собой фототермоэлектрический преобразователь, покрытый гидроизоляционной пленкой, внутри которой помещены фотоэлементы и термоэлектрический преобразователь. В массив термоэлектрического преобразователя, выполненного из диэлектрического материала с высокой теплопроводностью, помещена контурная арматура, состоящая из термоэмиссионных элементов, представляющих собой парные проволочные отрезки, выполненные из разных металлов М1 и М2. Отрезки спаяны на концах между собой таким образом, что их спаи согнуты под углом 90° и располагаются вблизи наружной поверхности корпуса термоэлектрического преобразователя параллельно ей, не касаясь ее. Сами парные проволочные отрезки расположены параллельно друг другу, образуя П–образные ряды. Крайние проволочные отрезки крайних П–образных рядов термоэлектрических преобразователей и фотоэлементы через свои клеммы в каждом вертикальном ряду фототермоэлектрических преобразователей ковра соединены между собой последовательно через электрические конденсаторы и через перемычки с выходными коллекторами, выходные клеммы которых соединены с накопительным блоком. Изобретение обеспечивает повышение эффективности и надежности походной гелеотермоэлектростанции. 8 ил.
Наверх