Схема для определения распределения по фазам в многофазовых средах, содержащих, по меньшей мере, одну высокопроводимую фазу

Использование: для определения распределения по фазам в многофазных средах. Сущность изобретения заключается в том, что схема включает три расположенные друг над другом плоскости из проволочных электродов, которые натянуты в корпусе сенсора, при этом электроды расположены в каждой плоскости на небольшом расстоянии друг от друга; две из плоскостей электродов изолированы от исследуемой среды с помощью изоляционного слоя и одна из этих двух плоскостей электродов функционирует как плоскость излучения, и другая плоскость функционирует как плоскость-приемник, и обе эти плоскости повернуты относительно друг друга под углом и расположены параллельно; третья плоскость электродов напротив не изолирована и имеет заземление и тем самым находящиеся с ней в контакте высокопроводимые части фазы аналогично заземлены, и при этом схема соединена с электронным измерительным устройством, чтобы измерять электрическую емкость или проницаемость среды в отдельных пунктах пересечения, которые образуются электродами излучения и электродами-приемниками, при этом электронное измерительное устройство загружает последовательно соответствующие электроды излучения переменным напряжением, в то время как другие электроды излучения включаются на массу и электронное измерительное устройство одновременно параллельно на всех электродах-приемниках осуществляет функцию моментального ответа сигнала тока. Технический результат: обеспечение возможности быстрого определения распределения по фазам или компонентам в сечении потока. 2 н. и 8 з.п. ф-лы, 3 ил.

 

Техническая область.

[0001] Настоящее изобретение касается схемы для определения распределения по фазам в многофазовых средах, содержащих газообразные и жидкие компоненты при наличии высокопроводимой фазы. Под высокопроводимой фазой понимаются далее среды с высокой проводимостью, например соленая вода или жидкие металлы.

[0002] Областью применения заявленного изобретения является, например, определение распределения жидкости и уровня наполнения жидкости в емкостях, а также исследование многофазовых жидких и газовых потоков, в частности, в трубопроводах, например, при добыче нефти и ее обработке.

Уровень техники.

[0003] Для исследования двухфазовых потоков или распределения жидкости в трубопроводах и емкостях применяются часто решетчатые сенсорные датчики. В патентах US 4363 A, US 5210499 А и DE 19649011 С2 описываются схемы, с помощью которых может измеряться электрическая проводимость в пределах замеряемого сечения с помощью решетчатой электрической схемы и приданной электроники. В таких схемах проволочные электроды возбуждаемой электродной плоской решетки, которые находятся в электрическом контакте со средой, возбуждаются последовательно электрическим сигналом. На проволочные электроды приемной плоской электродной решетки, расположенной параллельно на небольшом расстоянии от них и закрученной под углом в плоскости, подается сигнал тока. Благодаря этому могут эти схемы определять проводимость между обеими плоскостями в точках проектируемых электродов (далее обозначаются как «точки пересечения») при очень высокой частоте измерений.

[0004] Для двухфазового потока с одной обязательно проводимой фазой, например, смесь воды и газа, может определяться распределение по фазам в поперечном сечении потока путем измерения распределения проводимости. Различие фаз для аналогично хорошо или плохо проводимых фаз или компонентов потока не может определяться непосредственно с помощью таких схем.

[0005] В патенте DE 102007019926 В4 описан решетчатый сенсорный датчик, который в результате комплексного измерения полной электрической проводимости измеряемой плоскости может также различать между собой непроводимые компоненты в измеряемой плоскости и определять их составные части.

[0006] В патенте DE 10136458 А1 предлагается использовать канал для измерения проводимости однородной жидкости. Применение для определения проводимости смешанных жидкостей не предусмотрено. Тем самым возможно использование только в установках Батша, когда различные не смешанные между собой жидкости протекают последовательно друг за другом.

[0007] В патенте DE 102006019178 А1 описывается решетчатый сенсорный датчик, в котором используются измерения непроводящих компонентов путем определения комплексных величин полной электрической проводимости.

[0008] В патенте DE 102005019739 В3 описывается решетчатый сенсорный датчик, который может применяться при переменных температурах и давлениях, в котором проволоки в плоскости электродов крепятся не неподвижно, но таким образом в теле сенсорного датчика, что они могут растягиваться при изменениях температуры и/или давления.

[0009] Известные до настоящего времени предложения по решению этой проблемы не могли применяться для сред с высокой проводимостью, так как в подобных случаях проводимость, по крайней мере, одного компонента потока находилась на уровне проводимости проволок сенсора. В результате этого замыкаются все смоченные средой проволоки и тем самым не могут считываться отдельные точки пересечения независимо друг от друга.

[0010] Альтернативой для определения полного распределения по фазам в одной плоскости измерения является рентгеновская томография. Многие различные рентгеновские цепи должны в этом случае реконструироваться с дополнительными затратами. Рентгеновская томография имеет то преимущество, что она подключается к процессу без труда, так как она может быть расположена за пределами протекания процесса, но требует больших затрат для защиты сотрудника от облучения и поэтому часто ее применение отклоняется в промышленности.

Описание изобретения.

Техническая задача.

[0011] Задача заявленного изобретения состоит в том, чтобы создать схему для быстрого определения распределения по фазам или компонентам в сечении потока, состоящего из смеси веществ как с непроводимыми компонентами, например нефть или газ, так и с высокопроводимыми компонентами, например соленая вода. Под быстрыми измерениями понимаются измерения с дискретным временем различения менее 1 мс, предпочтительно примерно 100 мкс или менее.

Решение технической задачи.

[0012] Поставленная задача решается с помощью схемы согласно п. 1 формулы изобретения. Предпочтительные варианты конструктивного исполнения описываются в зависимых пунктах формулы изобретения.

[0013] Измерение распределения по фазам происходит с использованием свойств, которые различают различные фазы. Поскольку многофазовые помехи не являются транспарентными, то использование света, как правило, невозможно, за исключением точечных замеров игольчатыми зондами, выполняемых для локальной идентификации пузырьков.

[0014] Заявленная схема (Фиг. 1) включает решетчатый сенсорный датчик (1) с, по крайней мере, тремя расположенными на небольшом расстоянии друг от друга электродными плоскостями и приданной измерительной электроникой (2). Решетчатый сенсорный датчик имеет три плоскости проволочных электродов, которые обозначены как электроды излучения (3а), электроды-приемники (3b), а также электроды заземления (3c) и которые располагаются внутри каждой плоскости на небольшом расстоянии друг от друга и параллельно. Каждая плоскость выполняет тем самым точно одну задачу.

[0015] Электроды различных плоскостей ориентированы таким образом относительно друг друга, что они развернуты под углом относительно друг друга, так что образуются точки пересечения между плоскостями электродов излучения и электродами-приемниками. Преимущественно этот разворот является прямоугольным. Измеряется электрическая емкость (или электрическая проницаемость) среды между электродами излучения (3а) и электродами-приемниками (3b) в одной единственной точке пересечения (4) электродной решетки. При этом (Фиг. 2) электроды излучения (3а) и электроды-приемники (3b) покрываются электрически изоляционным слоем (5), который позволяет получить гальваническое разделение среды, в то время как заземляющие проволоки (3c) остаются чистыми, чтобы замкнуть всю жидкость на массу.

[0016] Для измерения электрической емкости (или проницаемости) (Фиг. 2) среды в единственном пункте пересечения (4) возбуждается соответствующий электрод излучения (3а) с помощью частотного генератора (6) током переменного напряжения, в то время как другие электроды излучения включаются на массу. Одновременно на всех электродах-приемниках (3b) принимается параллельно функция моментального ответа, протекающего в точке пересечения (4) исследуемой среды емкостного тока смещения с помощью преобразователя напряжения тока, подсоединенного к электродам-приемникам, и преобразуется в эквивалентный сигнал напряжения. В качестве переменного тока используются преимущественно прямоугольные и трапецеидальные переменные напряжения, потому что тем самым могут наилучшим образом оцениваться результаты измерения.

[0017] Моментальный ответ (Фиг. 3) системы на фронте сигнала возбуждения зависит от усиления широкополосного продукта преобразователя напряжения тока (7), сопротивления обратной связи, а также электрической проницаемости среды в точке пересечения (4). При соблюдении постоянными условий усиления и геометрии может тем самым моментальный ответ на проницаемость появляться в точке пересечения. Для этого оцифровывается во время одного или нескольких определенных моментов времени tsamp после проследования фронта аналого-цифрового преобразователя (8) выходное напряжение преобразователя напряжения тока (7) и принимается электроникой. Для синхронизации по времени импульса возбуждения и аналого-цифрового преобразователя предназначается блок управления (9), например микроконтроллер.

Преимущества изобретения.

[0018] Новым в заявленном изобретении является возможность быстрого двухмерного измерения распределения непроводимых, проводимых и/или высокопроводимых компонентов в поперечном сечении многофазового потока, что позволяет выполнить измерение частей фаз и распределения по фазам в соленой воде, в смеси газа и нефти.

Область применения изобретения.

[0019] В промышленных установках существуют часто потоки, состоящие из более чем одной фазы, как, например, в нефтяной промышленности, где могут появляться потоки из нефти, газа, воды и песка, в установках химической промышленности, где выполняются процессы смешения и разделения, или в сталелитейной промышленности (жидкая сталь/шлаки/воздух). Для того чтобы иметь возможность изучить или проверить смешивание или же разделение различных фаз, эти фазы должны быть замерены и определены.

[0020] Относительная проницаемость отличается, как правило, между различными средами и тем самым между фазами смешанного потока. Принцип измерения решетчатых сенсорных датчиков использует эти физические свойства, чтобы генерировать двухмерные изображения распределения фаз в плоскости измерения с высокой пространственной и временной разрешимостью. Этот метод использовался сначала для квази DC-возбуждения при измерении газов в проводимых средах. Для непроводимых сред может определяться диэлектрическая константа путем АС-возбуждения и измерения распределения по фазам и затухания амплитуды.

[0021] В средах с очень низким сопротивлением, то есть с высокой проводимостью, проводимость которых находится в области электродов в сенсорной решетке (как, например, соленая вода), измерения искажаются в результате квази короткого замыкания всех проволок, находящихся в контакте с высокопроводимой средой, если не используются какие-либо средства заземления. Решетчатый сенсор со средством заземления решает эту проблему путем полного заземления поперечного сечения жидкости и изоляции проволок излучения и проволок-приемников.

[0022] Многие случаи использования многофазовых потоков содержат высокопроводимые жидкости. При транспортировке нефти в ней часто находится соль (соленая вода) вместе с нефтью, которые транспортируются вместе. Распределение по фазам в трубопроводе с нефтью и соленой водой не может вследствие этого определяться с помощью известного решетчатого сенсорного датчика, измеряющего проводимость или же емкость. Заявленная схема, напротив, позволяет осуществлять измерение распределения по фазам в таких случаях.

Примеры выполнения.

[0023] Примеры выполнения изобретения описываются со ссылкой на чертежи.

[0024] Чертежи Фиг. 1, Фиг. 2 показывают схематически в качестве примера конструктивного выполнения схемы решетчатых сенсорных датчиков с 4 электродами излучения, 4 электродами-приемниками и 4 электродами заземления и одной круглой геометрической фигурой. Решетчатые сенсорные датчики могут также быть построены в виде других геометрических фигур, например прямоугольного поперечного сечения. Далее количество электродов теоретически может быть также любым.

[0025] Фиг. 1 изображает схематически решетчатый сенсорный датчик (1) с тремя плоскостями электродов и приданную им измерительную электронику (2). Решетчатый сенсор имеет по четыре металлических проволоки на каждую плоскость (3а - электроды излучения, 3b - электроды-приемники, 3c - электроды заземления), которые изолированы друг от друга электрически и получают напряжение через поперечное сечение сенсорного датчика. Крепление проводов на корпусе сенсорного датчика выполняется таким образом, что каждый электрод излучения и электрод-приемник полностью изолированы электрически от других электродов, а также от корпуса.

[0026] Измерительная электроника (Фиг. 2) состоит со стороны входа из прямоугольного генератора (6), мультиплексора (10) и одного блока управления (9). Отдельные электроды излучения (3а) в плоскости излучения сенсорного датчика имеют электрический контакт с выходами мультиплексора (10). Со стороны приема соединяется каждый из электродов приемников (3b) в плоскости приемника с преобразователем электрического напряжения (7). К преобразователю электрического напряжения (7) подсоединяются аналого-цифровые преобразователи (8) для обозначения моментального ответа, которые с помощью блока управления (9) принимают синхронно в определенный момент времени tsamp после успешного фронтального возбуждения актуальную величину изменения напряжения на преобразователе электрического напряжения (7).

[0027] Схема измерения изображенного схематически на Фиг. 1 и Фиг. 2 сенсорного датчика работает следующим образом.

Через блок управления или микропроцессор (9), предназначенный для управления схемой, подается прямоугольный или трапецеидальный сигнал напряжения генератора частоты (6) последовательно на отдельные электроды излучения (3а) по мультиплексору (10). Мультиплексор (10) выполнен таким образом, что прямоугольное или трапецеидальное напряжение получает только один электрод излучения (3a), в то время как другие электроды излучения имеют нулевой потенциал. По соответственно активированному электроду излучения протекает в виртуальных точках пересечения (4) проволочных электродов емкостный ток смещения к электродам-приемникам (3b), соединенным с виртуальной массой. Появление потока тока DC на электродах излучения (3а) и электродах-приемниках (3b) исключается благодаря изоляционному покрытию (5) (например, изоляционный лак или изоляционная оболочка). После появления скачкообразного напряжения на электроде излучения (3a) ток протекает по электроду-приемнику (3b) в качестве емкостного тока смещения к электроду излучения (3а) как ток возбуждения по экспотенциальной функции

I(t)=-U0/Rv⋅et/τ

при

τ=Rv⋅C

[0028] при этом U0 означает амплитуду напряжения возбуждения, Rv означает сопротивление (сумма сопротивления проводов и сопротивления проволоки) и С означает емкость в точке пересечения. Емкость С зависит со своей стороны от электрической проницаемости в точке пересечения , так как геометрия вертикальной точки пересечения может приниматься как постоянная.

[0029] Тем самым действительным является уравнение:

[0030] Поскольку электрический ток, проходящий через преобразователь напряжения тока (7), преобразуется линейно в эквивалентное напряжение, может замеренное напряжение рассматриваться как косвенно пропорциональное к диэлектрической константе среды в точке пересечения. Преимущество экспоненциальной зависимости состоит в том, что даже небольшие изменения, например воздуха и нефти , должны хорошо различаться между собой, даже в присутствии воды без перехода в динамическую зону. Предлагаемая схема оказывается также в состоянии определять относительную проницаемость . Для специалиста очевидно, что требуется калибровка с известной средой, как вода или воздух. По результатам калибровки определяется геометрический фактор. Следовательно, может тем самым по результатам измерений определяться относительная проницаемость .

Перечень ссылочных номеров.

1 - решетчатый сенсорный датчик

2 - измерительная электроника

3a - электроды излучения - обозначены пунктирной линией на Фиг. 1 или Фиг. 2

3b - электроды-приемники - обозначены штриховой линией на Фиг. 1 или Фиг. 2

3c - электроды заземления

4 - точка пересечения

5 - изоляционный слой

6 - генератор частоты

7 - преобразователь напряжения тока

8 - аналого-цифровой преобразователь

9 - блок управления

10 - мультиплексор

1. Схема для определения распределения по фазам в многофазовой среде с, по крайней мере, одной высокопроводимой фазой при наличии других непроводимых и/или проводимых компонентов, включающая три расположенные друг над другом плоскости из проволочных электродов, которые натянуты в корпусе сенсора,

а) при этом электроды расположены в каждой плоскости на небольшом расстоянии друг от друга;

б) при этом две из плоскостей электродов изолированы от исследуемой среды с помощью изоляционного слоя (5) и одна из этих двух плоскостей электродов функционирует как плоскость излучения (3а), и другая плоскость функционирует как плоскость-приемник (3b), и обе эти плоскости повернуты относительно друг друга под углом и расположены параллельно;

в) отличающаяся тем, что третья плоскость электродов (3с) напротив не изолирована, и имеет заземление, и тем самым находящиеся с ней в контакте высокопроводимые части фазы аналогично заземлены и

г) при этом схема соединена с электронным измерительным устройством, чтобы измерять электрическую емкость или проницаемость среды в отдельных пунктах пересечения (4), которые образуются электродами излучения (3а) и электродами-приемниками (3b), при этом электронное измерительное устройство загружает последовательно соответствующие электроды излучения (3а) переменным напряжением, в то время как другие электроды излучения (3а) включаются на массу и электронное измерительное устройство одновременно параллельно на всех электродах-приемниках (3b) осуществляет функцию моментального ответа сигнала тока.

2. Схема по п. 1, отличающаяся тем, что плоскость излучения (3а) и плоскость-приемник (3b) ориентированы относительно друг друга под прямым углом.

3. Схема по п. 1, отличающаяся тем, что изолированные электроды плоскости излучения и/или плоскости-приемника покрывают для изоляции лаком или искусственным материалом или изолируют с помощью изоляционного шланга или изоляционной трубочки.

4. Схема по п. 1, отличающаяся тем, что измерительное устройство имеет генератор частоты.

5. Схема по п. 1, отличающаяся тем, что измерительное устройство имеет мультиплексор, который реализует последовательное включение сигнала возбуждения.

6. Схема по п. 1, отличающаяся тем, что измерительное устройство имеет блок управления (9), который синхронизирует по времени импульс возбуждения и аналого-цифровое преобразование.

7. Схема по п. 1, отличающаяся тем, что измерительное устройство имеет преобразователь электрического напряжения, который подсоединен к электродам-приемникам, чтобы измерять моментальный ответ сигнала тока и преобразовывать его в замеряемый сигнал напряжения.

8. Схема по п. 7, отличающаяся тем, что сигнал напряжения может оцифровываться с помощью аналого-цифрового преобразователя.

9. Способ определения распределения по фазам в многофазовой среде со схемой согласно одному из вышеуказанных пунктов, отличающийся тем, что электрическая емкость или проницаемость среды измеряются последовательно в точках пересечения (4) и при этом возбуждаются соответствующие электроды излучения (3а) переменным напряжением, в то время как все другие электроды излучения (3а) включаются на массу и одновременно на всех электродах-приемниках (3b) измеряется параллельно функция моментального ответа сигнала тока.

10. Способ по п. 9, отличающийся тем, что применяемое переменное напряжение имеет форму прямоугольного или трапецеидального переменного напряжения.



 

Похожие патенты:
Использование: для контроля шероховатости поверхности участков шахтных стволов в соляных породах. Сущность изобретения заключается в том, что в нескольких местах контролируемой поверхности с использованием измерительных инструментов определяют среднюю глубину впадин, затем в этих же местах определяют значение электрической емкости воздушного зазора, образованного между поверхностью шахтного ствола, сложенного соляными породами, и поверхностью датчика прибора для измерения электрической емкости при размещении его на контролируемой поверхности, после этого по полученным данным определяют зависимость величины электрической емкости воздушного зазора в нескольких местах контролируемой поверхности от глубины впадин на этих же участках, далее определяют электрическую емкость на всей боковой поверхности породной стенки в районе пикотажного уплотнения, после чего рассчитывают ее шероховатость.

Использование: для измерения характеристик сверхтвердой поликристаллической структуры. Сущность заключается в том, что устройство включает в себя устройство измерения емкости, имеющее положительный и отрицательный выводы, выщелоченный компонент, содержащий поликристаллическую структуру, первый провод и второй провод, выщелоченный компонент включает в себя первую поверхность и противоположную вторую поверхность, первый провод электрически соединяет положительный вывод с одной из поверхностей выщелоченного компонента, а второй провод электрически соединяет отрицательный вывод с другой поверхностью выщелоченного компонента.

Изобретение относится к датчику для определения содержания газа в двухфазной текучей среде, протекающей в проточной линии. Указанный датчик содержит патрон (10), выполненный с возможностью расположения в проточной линии, в потоке (F) текучей среды.

Изобретение относится к технике измерения влажности газов. Емкостной сенсор влажности содержит чувствительный элемент конденсаторного типа, состоящий из диэлектрического субстрата, нижнего электрода из коррозионно-стойкого металла или сплава, верхнего наноструктурированного электрода из коррозионно-стойкого металла или сплава, проницаемого для паров влаги, и влагочувствительного слоя, имеющего диэлектрическую постоянную, меняющуюся в зависимости от количества паров воды в окружающей среде.

Изобретение относится к синтезу островковых металлических катализаторов и углеродных нанообъектов и может быть использовано в промышленности для производства нанообъектов и наноструктурированных пленок.

Группа изобретений относится к медицине и может быть использована для определения электрической емкости биосенсорной камеры. Для этого инициируют электрохимическую реакцию пробы после ее внесения в биосенсорную камеру, имеющей два электрода, расположенных в камере и соединенных с микроконтроллером.

Использование: для определения объемного содержания воды в нефти. Сущность изобретения заключается в том, что способ основан на определении изменений параметров электромагнитного поля в потоке исследуемой жидкой среды при изменении ее компонентного состава, поток жидкости в зоне измерений разбивают на множество изолированных потоков, каждый из которых взаимодействует с резонатором электромагнитного поля через выделенный участок поверхности контакта, в результате чего в резонаторе формируется электромагнитное поле, обобщающее влияния всех изолированных потоков жидкости, параметры которого принимают за среднее взвешенное для совокупности потоков в изолированных каналах и сопоставляют с соответствующими показателями продукта-аналога, обладающего известными свойствами, которые могут быть эмпирически идентифицированы как доля воды в смеси с углеводородной жидкостью.

Изобретение относится к нефтяной промышленности и может быть использовано при проведении исследований для определения состава продукции отдельных пластов и в целом скважины.

Изобретение касается способа измерения емкости датчика с емкостью (С). Датчик имеет рабочий электрод, который покрыт изолирующим слоем и лигандом, образующим аффинную поверхность.

Изобретение может использоваться для экспресс-контроля соответствия качества исследуемого бензина параметрам эталонного образца. Устройство для оперативного контроля октанового числа бензинов содержит автономный блок питания, основной емкостной датчик, конструктивно совмещенный с камерой пробоотборника контролируемого бензина, блок обработки данных, выход которого подключен к входу цифрового индикатора, аналого-цифровой преобразователь, выход которого соединен с входом блока обработки данных, при этом в устройство введен дополнительный емкостной датчик, конструктивно совмещенный с камерой пробоотборника эталонного бензина, соединенный с одним из входов измерителя разности двух емкостей, второй вход которого соединен с основным емкостным датчиком, а его выход подключен к входу аналого-цифрового преобразователя.

Изобретение относится к способам анализа преимущественно жидких углеводородных топлив, содержащих продукты этерификации растительных или животных жиров, или масел, и может быть использовано на автозаправочных станциях и нефтебазах. Способ согласно изобретению заключается в отборе заданного количества пробы, определение содержания метиловых эфиров жирных кислот, при этом измеряют удельную электрическую проводимость пробы при температуре 20±2°C, для чего датчик прибора выдерживают в пробе анализируемого топлива в течение не менее 60±1 с, и определяют содержание метиловых эфиров жирных кислот (FAME) по предложенной зависимости, при содержании метиловых эфиров жирных кислот (FAME) не более 7 об.% топливо соответствует требованиям ГОСТ Р 52368-2005. Изобретение обеспечивает сокращение времени определения содержания метиловых эфиров жирных кислот в дизельных нефтяных топливах, отбраковку некондиционных топлив в режиме ONLINE при использовании простого оборудования, не требующего специальной подготовки пробы образца и калибровки продукта. 3 табл.

Изобретение относится к нефтегазодобывающей области, в частности к системе поддержания пластового давления, и может быть использовано для контроля качества мелкодисперсной смеси воды и газа при закачке смеси в пласт через систему поддержания пластового давления. Способ определения режима течения водогазовой смеси включает измерение электродвижущей силы в N точках смеси посредством N датчиков. Измерение проводят с частотой не менее 500 Гц, и по значению тока и замеренной электродвижущей силе определяют значения электропроводности водогазовой смеси в месте установки датчиков, которую затем передают в цифровом виде для построения графиков зависимости электропроводности от времени измерения для каждого датчика. Полученные графики сравнивают с экспериментальными графиками, построенными при известных режимах течения для различных потоков, а по результатам сравнения определяют режим течения водогазовой смеси. Устройство для определения режима течения водогазовой смеси содержит измерительную головку 1, внутри которой по всему периметру поперечного сечения расположены N датчиков, подключенные к блоку обработки результатов измерений 5. Технический результат - повышение точности идентификации режима течения потока водогазовой смеси. 2 н.п. ф-лы, 6 ил.

Использование: для контроля толщины осадка в осадкообразующих жидкостях. Сущность изобретения заключается в том, что способ контроля толщины осадка основан на изменении емкости датчика при увеличении толщины осадка и заключается в размещении в сосуде с жидкостью, образующей осадок, предварительно отпарированного датчика контроля толщины осадка, содержащего электроды, выполненные в виде двух плоских гребенок, имеющих зубья и основание в виде плоских прямоугольников, соединенных между собой и нанесенных на плоское диэлектрическое основание, при этом зубья одной гребенки входят в зазоры между зубьями второй гребенки с образованием равномерно чередующихся зубьев и зазоров между ними, причем ширина зазора между зубьями равна ширине зуба, согласно изобретению с двух диаметрально расположенных углов датчика устанавливают дополнительные электроды таким образом, что на каждом упомянутом углу размещается по меньшей мере два плоских Г-образных электрода, причем внутренний Г-образный электрод образуют зубом и основанием соответствующей плоской гребенки, при этом потенциал дополнительных электродов обеспечивают по величине и знаку равным потенциалу вблизи расположенного электрода, образующего гребенку. Технический результат: обеспечение возможности уменьшения влияния емкости других тел на изменение емкости рабочего тела конденсатора, что, в свою очередь, обеспечивает возможность нивелировать краевой эффект и, тем самым, повысить точность измерений. 2 з.п. ф-лы, 4 ил.

Изобретение относится к способам и устройствам определения физических свойств веществ путем электрических измерений. Способ экспрессного контроля теплотехнических качеств материалов строительных конструкций включает в себя операции по измерению емкости, преобразованию ее в пачки импульсов, передаче информации в измерительно-вычислительный блок, вычислению значений искомых параметров по индивидуальным формулам для каждого параметра и регистрации этих значений на индикаторном элементе. При этом вычисление значений искомых параметров выполняют по единой формуле, имеющей вид Yi=ai+bi⋅ΔX+ci⋅(ΔX)2, где Yi - искомый параметр; ai, bi, ci - эмпирические константы, полученные экспериментально и внесенные в постоянную память устройства; ΔХ - разность между числами импульсов в пачках, переданных в измерительно-вычислительный блок до и после установки датчика на поверхность контролируемой конструкции, соответственно, причем число определяемых параметров больше двух (i>2). Техническим результатом является расширение функциональных возможностей, заключающееся в увеличении числа измеряемых параметров, и упрощение вычислений. 6 ил.

Изобретение относится к устройствам для определения влажности зерна. Каждый зерновой бункер содержит блок сбора данных, соединенный с множеством емкостных кабелей для измерения влажности, причем каждый содержит множество сенсорных узлов, расположенных вдоль него с шагом. Каждый сенсорный узел содержит пару проходящих продольно емкостных пластин емкостного датчика измерения влажности, расположенных параллельно и на расстоянии друг от друга с образованием проходящего продольно между емкостными пластинами зазора. В продольном зазоре между емкостными пластинами расположена монтажная плата, содержащая микропроцессор, память и датчик температуры. Наружный корпус обеспечивает герметичный кожух, расположенный вокруг монтажной платы, емкостных пластин и продольного отрезка кабеля для измерения влажности, который проходит через отверстия в каждом продольном торце корпуса и уплотняет их. 2 н. и 18 з.п. ф-лы, 14 ил.

Изобретение относится к устройствам для определения влажности зерна. Каждый зерновой бункер содержит блок сбора данных, соединенный с множеством емкостных кабелей для измерения влажности, причем каждый содержит множество сенсорных узлов, расположенных вдоль него с шагом. Каждый сенсорный узел содержит пару проходящих продольно емкостных пластин емкостного датчика измерения влажности, расположенных параллельно и на расстоянии друг от друга с образованием проходящего продольно между емкостными пластинами зазора. В продольном зазоре между емкостными пластинами расположена монтажная плата, содержащая микропроцессор, память и датчик температуры. Наружный корпус обеспечивает герметичный кожух, расположенный вокруг монтажной платы, емкостных пластин и продольного отрезка кабеля для измерения влажности, который проходит через отверстия в каждом продольном торце корпуса и уплотняет их. 2 н. и 18 з.п. ф-лы, 14 ил.

Изобретение относится к области автомобилестроения, в частности к системам двигателя с датчиком влажности. Представлены способы и системы эксплуатации двигателя с емкостным датчиком влажности. В одном из вариантов осуществляют контроль за изменениями датчика давления и влажности с одновременным направлением газов в воздухозаборник двигателя ниже по потоку от датчика влажности и выше по потоку от компрессора, в случае, если контролируемые изменения датчика давления и влажности меньше соответствующих пороговых значений, осуществляют интрузивное регулирование давления в воздухозаборнике и выполняют индикацию ухудшения работы датчика влажности, когда показания влажности изменяются на величину, которая меньше первого порогового значения, а давление на датчике изменяется на величину, которая больше второго порогового значения. Техническим результатом является повышение точности показаний датчика влажности. 3 н. и 16 з.п. ф-лы, 8 ил.

Изобретение относится к области автомобилестроения, в частности к системам двигателя с датчиком влажности. Представлены способы и системы эксплуатации двигателя с емкостным датчиком влажности. В одном из вариантов осуществляют контроль за изменениями датчика давления и влажности с одновременным направлением газов в воздухозаборник двигателя ниже по потоку от датчика влажности и выше по потоку от компрессора, в случае, если контролируемые изменения датчика давления и влажности меньше соответствующих пороговых значений, осуществляют интрузивное регулирование давления в воздухозаборнике и выполняют индикацию ухудшения работы датчика влажности, когда показания влажности изменяются на величину, которая меньше первого порогового значения, а давление на датчике изменяется на величину, которая больше второго порогового значения. Техническим результатом является повышение точности показаний датчика влажности. 3 н. и 16 з.п. ф-лы, 8 ил.

Группа изобретений относится к области медицинского тестирования, в частности к определению концентрации аналита в образце. Способ определения концентрации аналита в образце включает: введение образца с аналитом в электрохимическую ячейку; определение первой концентрации аналита; определение результата измерения параметра, коррелирующего с физическим свойством электрохимической ячейки; вычисление поправочного коэффициента и определение концентрации аналита с учетом поправочного коэффициента. Электрохимическая ячейка имеет первый и второй электроды, при этом на втором электроде отсутствует покрытие из слоя реагента. При этом определение емкости электрохимической ячейки содержит: приложение первого тестового потенциала Е1 между первым и вторым электродами, приложение второго тестового потенциала Е2 между первым и вторым электродами и обработку части тестовых токов посредством суммирования токов. Также раскрывается вариант способа определения концентрации аналита в образце и варианты электрохимической системы. Группа изобретений обеспечивает сохранение точности определения концентрации аналита во время хранения электрохимической системы. 4 н. и 15 з.п. ф-лы, 9 ил., 4 табл., 5 пр.
Наверх