Способ локации источников акустической эмиссии в массиве горных пород

Изобретение относится к геофизическим методам контроля разрушения горных пород и может быть использовано на рудных и нерудных месторождениях для исследования и локации образовавшихся несплошностей. Предложен способ локации источников акустической эмиссии в массиве горных пород, согласно которому используют обратимые приемные датчики, с одинаковыми характеристиками. Поочередно излучают акустический сигнал каждым датчиком антенны и принимают акустический сигнал, всеми остальными датчиками антенны. Определяют матрицу скоростей, а затем для определения местоположения источника акустической эмиссии в системе расчетных уравнений используют полученные значения скоростей из матрицы скоростей. Технический результат - повышение достоверности и точности получения результатов локации.

 

Изобретение относится к геофизическим методам контроля разрушения горных пород и может быть использовано на рудных и нерудных месторождениях для исследования и локации образовавшихся несплошностей.

Известен способ [1], по которому контролируемый участок горного массива оконтуривается приемными датчиками и по разности времен прихода упругой волны, от образовавшейся несплошности, определяется местоположение источника.

К недостаткам способа следует отнести низкую достоверность ввиду не различия двух одновременно произошедших несплошностей внутри контролируемой зоны, как следствие выдачи ложного результата.

Более близким по существу является способ [2], в котором приемные датчики устанавливают в углах геометрической фигуры тетраэдр и расстояние между ними выбирают по формуле.

К недостаткам следует отнести низкую достоверность результатов, т.к. невозможно выбрать однородный участок массива горных пород и не учет поля скоростей внутри антенны приводит к ошибочным результатам.

Целью изобретения является повышение достоверности и точности получения результатов локации.

Поставленная цель достигается тем, что приемные датчики используют обратимые, с одинаковыми характеристиками, дополнительно поочередно излучают акустический сигнал каждым датчиком антенны, принимают акустический сигнал, излученный каждым датчиком, всеми остальными датчиками антенны, определяют матрицу скоростей, затем определяют направление на источник акустической эмиссии в массиве горных пород, а для определения местоположения источника акустической эмиссии в системе расчетных уравнений используют полученные значения скоростей из матрицы скоростей.

Сущность предложенного способа заключается в следующем. На выбранном участке массива горных пород пробуривают скважины и размещают в них обратимые, т.е. приемо-излучающие датчики с одинаковыми характеристиками. Определяют координаты установленных датчиков. Излучают одним из датчиков акустический сигнал и принимают всеми остальными датчиками. Затем излучают другим датчиком акустический сигнал и так же принимают всеми остальными, и т.д. до тех пор, пока каждый датчик, используемый антенной, не прошел этап излучения. В настоящее время в подобных антеннах используют датчики на основе пъезокерамики или емкостные, которые легко перевести в режим излучения. На основании времени прохождения акустического сигнала между датчиками, используемыми антенной в различных направлениях, и известными их координатами определяют матрицу скоростей , где i - номер излучающего датчика, j - номер принимающего датчика. Далее определяют направление прихода сигнала акустической эмиссии (направление на источник). И, исходя из известных значений и направления на источник акустической эмиссии, в расчетные формулы для локации источника акустической эмиссии подставляют выбранные значения скоростей (в зависимости от направления) из матрицы скоростей. В результате получаем более достоверные и точные значения координат источника акустической эмиссии в массиве горных пород.

Численное моделирование проводилось с конфигурацией антенны, приведенной в [2]. Результаты численного моделирования показали, что в отдельных направлениях точность может быть улучшена более чем на 13%, а значит, достоверность полученной информации выше.

Литература

1. Maichen Ge, Hardy Н Reginald. The mechanism of Array geometry in the control of AE/MS sours location accuracy. - Key Questions in Rock Mechanics. - Balkema, Rotterdam, 1988, pp.587-605.

2. Патент РФ №2009528, G01v 1/24, G01v 1/00, 1994.

Способ локации источников акустической эмиссии в массиве горных пород, заключающийся в бурении скважин, размещении в них приемных датчиков, измерении временной разности прихода волн, в выборе расстояний между приемными датчиками по формуле, отличающийся тем, что приемные датчики используют обратимые, с одинаковыми характеристиками, дополнительно поочередно излучают акустический сигнал каждым датчиком антенны, принимают акустический сигнал, излученный каждым датчиком, всеми остальными датчиками антенны, определяют матрицу скоростей, затем определяют направление на источник акустической эмиссии в массиве горных пород, а для определения местоположения источника акустической эмиссии в системе расчетных уравнений используют полученные значения скоростей из матрицы скоростей.



 

Похожие патенты:

Способ выполнения инверсии одновременных кодированных источников геофизических данных для оценки параметров модели (41) физических свойств, в особенности приспособленный для обследований без геометрии системы регистрации стационарных приемников, таких как, например, морские сейсмические обследования с перемещающимися источником и приемниками.

Изобретение относится к области геофизики и может быть использовано для определения параметров упругой анизотропии для геологического подземного пласта. Предложены способ и устройство для расчета анизотропного параметра петрофизической модели для геологического подземного пласта.

Изобретение относится к области геофизики и может быть использовано при проведении сейсморазведочных мероприятий. Согласно заявленному предложению данные поступательного движения в первом направлении измеряются датчиками движения частиц, содержащимися в удлиненном корпусе устройства датчика, расположенного на земной поверхности.

Изобретение относится к области геофизики и может быть использовано для отслеживания трещин в процессе гидроразрыва пласта. Предложены система, способ и носитель данных, используемые для анализа микросейсмических данных, собранных при гидравлическом разрыве пласта в подземной зоне.

Изобретение относится к нефтегазовой геологии и может быть использовано для выявления и локализации перспективных на нефть и газ зон и объектов. Заявленный способ включает проведение сейсмических работ по сети пересекающих бассейн региональных профилей, а также формирование композитных профилей из отработанных ранее площадных систем 2D, бурения, ГИС и опробования скважин и их комплексной структурной интерпретации с построением структурных карт по основным отражающим горизонтам и карт мощностей между ними.

Изобретение относится к области геофизики и может быть использовано для определения доверительного значения для плоскости развития трещины. В некоторых аспектах выбирают подмножество микросейсмических событий, связанных с операцией гидроразрыва подземной зоны.

Изобретение относится к области геофизики и может быть использовано для отслеживания трещин в процессе гидроразрыва пласта. Предложенные система, способ и программные средства могут быть использованы для анализа микросейсмических данных от операции по разрыву пласта.

Изобретение относится к области геофизики и может быть использовано при обработке сейсмических данных. Предложен способ определения параметров анизотропии, который включает предоставление информации о медленности продольной и поперечной волны в однородном, анизотропном пласте в наклонной скважине с углом наклона больше чем 40 градусов и меньше чем 90 градусов, как определено трансверсальной изотропией с вертикальной осью симметрии (VTI), предоставление зависимости между нормальной и тангенциальной податливостью, и, исходя из этих данных и зависимости, выдачу модели для подсчета значения параметров анизотропии (например, α0, ε, δ), которые характеризуют однородный, анизотропный пласт (например, вдоль скважины под углом 90 градусов).

Изобретение относится к области геофизики и может быть использовано для отслеживания трещин в процессе гидроразрыва пласта. Предложенные система, способ и программное обеспечение могут использоваться для анализа микросейсмических данных, обусловленных гидроразрывом.

Изобретение относится к области геофизики и может быть использовано для отслеживания трещин в процессе гидроразрыва пласта. Предложенные система, способ и программное обеспечение могут использоваться для анализа микросейсмических данных из подземной зоны.

Изобретение относится к области геофизических исследований. В предлагаемом способе формируют набор образцов исследуемой породы, определяют общую пористость и плотность каждого из образцов в атмосферных условиях, исключают из дальнейшего исследования образцы с отличающимся минералогическим составом, для оставшихся образцов определяют скорость распространения продольной волны и общую пористость в образцах в условиях, моделирующих пластовые. После этого определяют скорость распространения продольной волны в минеральном скелете. Далее рассчитывают величину трещинной пористости для каждого из образцов по формуле: где Кп общ - экспериментально определенная общая пористость образца; Vp изм - измеренная скорость распространения упругой продольной волны в образце; Vp ск - скорость распространения продольной волны в минеральном скелете исследуемой породы, после чего определяют поровую пористость, как разницу между общей пористостью и трещинной пористостью. Технический результат - повышение точности и достоверности определения трещинной пористости пород. 4 ил., 1 табл., 1 пр.

Изобретение относится к области геофизики и может быть использовано при обработке сейсморазведочных данных. Заявлен способ для многопараметрической инверсии с использованием упругой инверсии. Этот способ разлагает данные на сдвиговые/угловые группы и выполняет инверсию на них в последовательном порядке. Этот способ может значительно ускорить сходимость итеративного процесса инверсии, и, следовательно, является наиболее выгодным при использовании для полноволновой инверсии (FWI). Настоящий изобретательный подход опирается на взаимосвязи между энергией отражения и углом отражения, или, что то же самое, зависимость от сдвига в упругой FWI. Изобретение использует признание того, что амплитуды отражения малого угла (ближний сдвиг) в значительной степени определяются одним акустическим сопротивлением, вне зависимости от большей части Vp/Vs. Отражения большого угла (средний и дальний сдвиг) зависят от Ip, Vp/Vs (2) и других земных параметров, таких как плотность (3) и анизотропия. Следовательно, настоящий изобретательский способ разлагает данные на угловые или сдвиговые группы в выполнении многопараметрической FWI, чтобы уменьшить перекрестные помехи между различными параметрами модели, которые определяются в инверсии. Технический результат – повышение точности и достоверности получаемых данных. 9 з.п. ф-лы, 6 ил.

Изобретение относится к области геофизики и может быть использовано при обработке сейсмических данных. Предложен способ обработки данных, представляющих физическую систему, содержащий следующие шаги: обеспечивают (Р2) входные данные, представляющие различия в физической системе между первым и вторым состояниями физической системы, и инвертируют (Р5) входные данные или данные, определенные на их основе, в соответствии с параметризованной моделью (PI) физической системы для получения разностей параметров модели в первом и втором состояниях, где параметры модели представляют свойства физической системы. Причем шаг инвертирования выполняют (Р3-Р6) для множества различных возмущений (Р4) параметризованной модели и/или данных в целях получения множества наборов разностей параметров модели. Статистический анализ (Р7) множества наборов разностей выполняют для получения статистических характеристик разностей параметров модели. Технический результат – повышение точности получаемых данных. 4 н. и 14 з.п. ф-лы, 10 ил.

Изобретение относится к области геофизики и может быть использовано при обработке сейсмических данных. Представлено описание способа определения пути движения подземного флюида через геологический объем. Начальный объект находится в геологическом объеме. Начальный объект определяет начальную границу флюида. Точки данных распределены в геологическом объеме. Точки ввода данных связаны со значениями одной или более геологических атрибутов. Способ включает следующие этапы: задание выражения, устанавливающего изменение положения границы флюида в точках данных на протяжении итерации на основании значений одного или более атрибутов и применение этого выражения в точках данных для последовательных итераций с целью изменения границы флюида на протяжении последовательных итераций. Далее путь движения подземного флюида через геологический объем может быть определен по изменению границы флюида. Технический результат – повышение точности получаемых данных. 4 н. и 8 з.п. ф-лы, 8 ил.

Изобретение относится к области сейсмической разведки, в частности к способам обработки микросейсмических данных. Согласно заявленному способу определения местоположения очага микросейсмического события в процессе обработки исходного микросейсмического сигнала осуществляют его разложение на слои детализации (масштабы) d(n) с различными энергетическими и частотными характеристиками. На каждом из указанных масштабов d(n) строят функцию прямолинейности и находят при условии ее максимизации время прихода продольной составляющей микросейсмического сигнала. К каждой из исходных продольной и поперечной составляющих микросейсмического сигнала применяют дискретное вейвлет-преобразование с последующим разложением их на слои детализации (масштабы) d(n) с различными энергетическими и частотными характеристиками. На каждом из указанных масштабов d(n) строят отношения поперечных амплитуд к продольным и находят время прибытия поперечной составляющей микросейсмического сигнала. Определяют скорость прохождения составляющих микросейсмического сигнала, на основании которых вычисляют расстояние до очага микросейсмического события. Технический результат - снижение неопределенности при вычислении местоположения очага микросейсмического события при гидравлическом разрыве пласта. 3 з.п. ф-лы, 5 ил.

Изобретение относится к области сейсморазведки и может быть использовано для поиска углеводородов и уточнения имеющихся запасов углеводородов на акваториях, в ходе морской сейсморазведки, в ходе шельфовой сейсморазведки, в том числе в Северных морях. Заявлен способ регистрации сейсмических сигналов с целью поиска и разведки углеводородов в структурах подводных геологических массивов, согласно которому осуществляют регистрацию сейсмических волн, в том числе откликов в воде от PS- и SS-волн, отраженных от неоднородностей подводного геологического массива и генерируемых источником сейсмических волн, посредством приемников, расположенных в водном слое, и проводят анализ временных записей сигналов, по результатам которого судят об исследуемом подводном геологическом массиве. При этом приемники располагают вблизи поверхности воды и удаляют от источника на минимальное заданное расстояние, обеспечивающее возможность регистрации откликов в воде от PS- и SS-волн, которое определяют путем полноволнового численного моделирования на основе известных данных о рельефе дна, и/или о толщине водного слоя, и/или об исследуемом подводном геологическом массиве. Технический результат – уменьшение трудоемкости, технической и технологической сложности проведения работ при одновременном повышении информативности сейсмических исследований. 2 з.п. ф-лы, 4 ил., 1 табл.
Изобретение относится к области геофизики и может быть использовано при проведении сейсморазведочных работ. Предложен способ вибрационной сейсморазведки, основанный на возбуждении и регистрации сейсмических колебаний при управлении опорного сигнала виброисточником колебаний. Согласно заявленному решению опорный сигнал разбивают на интервалы, которые соизмеримы между собой по временной продолжительности. Продолжительность отдельного интервала на два порядка меньше продолжительности опорного сигнала. После этого интервалы опорного сигнала стыкуют между собой в виде новой последовательности, причем место каждого из выделенных ранее интервалов в этой последовательности определяют по датчику случайных чисел. Сформированный таким образом новый опорный сигнал используют в качестве управляющего сигнала при излучении колебаний виброисточником, а также для формирования взаимнокорреляционных функций зарегистрированных сейсмических записей с этим опорным сигналом или для деконволюции записей при помощи оператора, рассчитанного по данному опорному сигналу. Квазислучайная последовательность интервалов исходного опорного сигнала для разных источников получается разной в силу различных стартовых значений датчика случайных чисел. Тем самым обеспечивается возможность одновременной работы различных виброисточников, для каждого из которых вновь сформированный опорный сигнал характеризуется отличающейся от других вновь сформированных сигналов последовательностью интервалов, на которые разбит исходный опорный сигнал. Тем самым из сейсмических записей, полученных путем одновременной регистрации сигналов, излучаемых различными источниками, можно путем взаимной корреляции или деконволюции с опорным сигналом, привязанным к конкретному виброисточнику, извлечь именно ту часть записи, которая регистрируется от данного виброисточника. Исходный опорный сигнал, из которого формируют новый опорный сигнал с квазислучайной последовательностью интервалов, может быть либо рассчитан, либо зарегистрирован внутри среды или в приповерхностной зоне. Технический результат - повышение качества и эффективности вибрационной сейсморазведки. 1 з.п. ф-лы.

Группа изобретений относится к техническим средствам охраны, способам обнаружения объектов, в том числе нарушителей, на охраняемой территории по создаваемым ими сейсмическим колебаниям и может быть использована для охраны участков местности и подступов к зданиям. Предложен способ обнаружения объекта, передвигающегося по охраняемой территории, включающий регистрацию и обработку формируемого объектом сейсмического сигнала, выделение в скользящем временном окне импульсов сейсмического сигнала заданной длительности, вычисление энергии сейсмического сигнала и сравнение полученных значений количества импульсов и энергии сейсмического сигнала с пороговыми значениями. Причем при превышении пороговых значений дополнительно вычисляют АКФ сейсмического сигнала, определяют первое локальное максимальное и первое локальное минимальное значения АКФ, вычисляют выраженное в процентах отношение k разности упомянутых максимального и минимального значений к упомянутому максимальному значению. По заданному количеству отношений k определяют среднее арифметическое значение kср и по результатам сравнения полученного значения kср с пороговым принимают решение о факте передвижения объекта по охраняемой территории. При этом в процессе обработки коэффициент усиления последующего сейсмического сигнала определяют в соответствии со средним значением энергии предшествующего сейсмического сигнала в скользящем временном окне. Предложено также устройство для осуществления вышеупомянутого способа обнаружения объекта, передвигающегося по охраняемой территории, состоящее из последовательно соединенных преобразователя сейсмических сигналов, предварительного усилителя, регулируемого усилителя, входного аналогового фильтра, блока цифровой обработки сейсмических сигналов, включающего последовательно соединенные аналого-цифровой преобразователь, цифровой полосовой фильтр, блок формирования скользящего временного окна, блок выделения импульсов сейсмического сигнала, блок подсчета количества импульсов заданной длительности и энергии сейсмического сигнала в скользящем временном окне, и блока принятия решения. Причем в устройстве блок цифровой обработки сейсмических сигналов дополнительно содержит последовательно соединенные блок запуска вычислителя автокорреляционных функций, вычислитель автокорреляционных функций и анализатор формы автокорреляционных функций, при этом вход упомянутого блока запуска соединен с выходом блока подсчета количества импульсов заданной длительности и энергии сейсмических сигналов, упомянутый блок запуска соединен с регулируемым усилителем посредством управляющего канала, а выход анализатора формы автокорреляционных функций соединен с входом блока принятия решения. Технический результат - повышение вероятности обнаружения объектов, передвигающихся по охраняемой территории, при изменении климатических условий и, как следствие, изменении поглощающих свойств грунта. 2 н. и 5 з.п. ф-лы, 7 ил.

Изобретение относится к области геофизики и может быть использовано при поиске углеводородов в водном пространстве. Описан способ обнаружения углеводородов. Способ включает в себя получение сейсмических данных, связанных с водной массой в области разведки. Затем фильтр применяют к по меньшей мере части сейсмических данных для усиления сигналов аномалий дифракции относительно горизонтальных или почти горизонтальных сигналов, связанных с водной массой, чтобы образовать фильтрованные сейсмические данные. После фильтрации места просачивания идентифицируют по фильтрованным сейсмическим данным. Технический результат – повышение точности и достоверности получаемых данных. 2 н. и 19 з.п. ф-лы, 7 ил.

Изобретение относится к области сейсмических исследований и может быть использовано при поиске залежей углеводородов. Способ поиска и разведки залежей углеводородов по первому варианту заключается в том, что трехкомпонентные сейсмические приемники размещают на расстоянии от 100 метров до 10000 метров друг относительно друга, регистрируют и записывают информационные сигналы с по меньшей мере двух трехкомпонентных сейсмических приемников низкочастотного диапазона с синхронным снятием информационных сигналов с трех каналов по трем компонентам (x, y, z) в диапазоне частот от 0 Гц до 50 Гц. По измеряемым компонентам (x, y, z) в течение промежутка времени, достаточного для записи статистически достоверного шумового сигнала в низкочастотном диапазоне, рассчитывают векторные характеристики измеренных полей колебаний: дивергенцию и ротор и векторное произведение горизонтальных компонент полученных информационных сигналов. Оценивают наличие или отсутствие залежей углеводородов по отношению спектральной мощности параметров f1, f2 в диапазоне от 0 Гц до 7 Гц к спектральной мощности параметров f1, f2 в диапазоне от 0 Гц до 7 Гц.. По второму варианту в способе проводят дополнительное генерирование сейсмических колебаний сейсмовибратором, периодически генерирующим колебания в течение 30-40 сек с паузой в 20-30 секунд, а суждение о наличии залежей углеводородов выносят, если корреляционная размерность исходного векторного поля скоростей (F) в режиме регистрации сейсмического шума Земли больше, чем корреляционная размерность исходного векторного поля скоростей (F) в режиме регистрации информационных сигналов с использованием периодических колебаний сейсмовибратора. В третьем варианте реализации заявленного способа суждение о наличии залежей углеводородов выносят, если корреляционная размерность ротора исходного поля (Е) в режиме регистрации сейсмического шума Земли больше, чем корреляционная размерность ротора исходного поля (Е) в режиме регистрации информационных сигналов с использованием периодических колебаний сейсмовибратора. Технический результат – повышение достоверности обнаружения залежей углеводородов. 3 н. и 2 з.п. ф-лы.
Наверх