Способ определения тиолов

Изобретение относится к области аналитической химии и может быть использовано в медицине, сельском хозяйстве, мониторинге окружающей среды. Способ определения тиолов согласно изобретению проводят инверсионной вольтамперометрией в 3М растворе NaOH в присутствии ионов серебра с концентрацией в растворе 4⋅10-5…8⋅10-5 М, вводят пробу, содержащую от 3⋅10-8 до n⋅10-5 М тиолов, перемешивают раствор в течение 10-30 с, подают потенциал электролиза +0,05 В в течение 60 с на серебряный электрод. Тиолы концентрируются на поверхности серебряного электрода в виде комплексного малорастворимого соединения, затем регистрируют вольтамперограмму при линейной развертке потенциала 5 мВ/с. Пик растворения тиолятов серебра наблюдается при потенциале -0,98 В и линейно зависит от концентрации тиолов в водных растворах. Способ согласно изобретению позволяет снизить нижнюю границу определяемых содержаний и использовать экологически чистый серебряный электрод. 4 ил.

 

Изобретение относится к области аналитической химии, в частности к определению тиолов вольтамперометрическим методом, и может быть использовано в медицине, сельском хозяйстве, мониторинге окружающей среды.

Известен способ электрохимического анализа тиолов путем электролиза исследуемой пробы [«Способ определения тиолов» / Патент РФ БИ // 31 от 10.11.2000 // Кулис Юозас Юозо, Друнгилене Альма Александро, Балтакис Гедиминас Юозо] - аналог.

Электролиз ведется в 0,1М калий-фосфатном буферном растворе, pH 5,5-8,0, с использованием графитовых электродов, модифицированных производными тетрациано-п-хинодиметана, тетратиофульвалена и ферроцена, при потенциале 0,2-0,1 В отн. н.к.э. Измеряется анодный ток, по увеличению которого определяется концентрация тиола. Способ реализуется с использованием вращающегося графитового электрода, электродом сравнения служит насыщенный каломельный электрод, вспомогательным - Pt пластинка, определяется остаточный ток. В раствор вводится 50 мкл раствора тиола. В течение 30 с устанавливается новый стационарный уровень анодного тока, по изменению которого определяется концентрация тиола. Потенциал E=0,15 В отн. н.к.э., скорость вращения электрода равна 325 об/мин. Калибровочные кривые обладают линейной характеристикой до 0,6-0,7 мМ. Графитовые электроды изготовлены из стержней (диаметром 5,9 мм) спектрально чистого графита. К одному концу стержня длиной 3-6 мм при помощи серебряного эпоксидного клея приклеивается медная проволока, другой конец шлифуется наждачной бумагой (250 мкм) и на нем адсорбируется модификатор. Электроды запрессовываются в тефлоновый корпус.

Недостатки: электроды требуют специального изготовления и калибровки, при этом определение малочувствительно.

Из известных технических решений наиболее близким по назначению и технической сущности к заявляемому объекту является определение тиолов в виде комплексного соединения тиола с ртутью методом катодной вольтамперометрии [Лейтес Е.А., Медведева И.А. Изучение влияния ионов ртути (I, II) на определение гексантиола методом инверсионной вольтамперометрии.// Журн. аналит. химии. 1999. №6. С. 633-637]. На фоне 3,0М NaOH образуется осадок тиолята ртути на ртутно-пленочном электроде. На катодной поляризационной кривой регистрируют ток пика при потенциале -0,52 В относительно насыщенного хлоридсеребряного электрода сравнения. Высота пика пропорциональна концентрации тиола в интервале n⋅10-9 - n⋅10-6 М. Электроконцентрирование проводят в течение 1-2 мин при потенциале -0,3 В. Катодную поляризационную кривую регистрируют от потенциала -0,3 В при скорости развертки потенциала 60-80 мВ/с.

Недостаток способа: использование токсичного ртутно-пленочного электрода.

Сущность предлагаемого изобретения

Предлагаемый способ определения тиолов заключается в том что, определение тиолов проводят инверсионной вольтамперометрией в 3М растворе NaOH в присутствии ионов серебра с концентрацией в растворе 4⋅10-5…8⋅10-5 М, вводят пробу, содержащую от 3⋅10-8 до n⋅10-5 М тиолов, перемешивают раствор в течение 10-30 с, подают потенциал электролиза +0,05 В в течение 60 с на серебряный электрод.

Тиолы концентрируются на поверхности серебряного электрода в виде комплексного малорастворимого соединения, затем регистрируют вольтамперограмму при линейной развертке потенциала 5 мВ/с. Пик растворения тиолятов серебра наблюдается при потенциале -0,98 В и линейно зависит от концентрации тиолов в водных растворах.

Аналитический сигнал регистрируют и оценивают методом добавок. Предлагаемый метод позволяет исключить использование токсичного электрода.

Осуществление изобретения

Способ определения тиолов инверсионной вольтамперометрией в водных растворах заключается в следующем.

В двухэлектродную электрохимическую ячейку с серебряным электродом и хлоридсеребряным электродом сравнения (в насыщенном KCl, соединенным с ячейкой электролитическим ключом, заполненным KNO3), емкостью 10 мл, помещают 5 мл раствора 3М NaOH, вольтамперограмма которого изображена на Рис. 1, кривая 1. В ячейку дополнительно вносят раствор серебра с концентрацией в растворе 4⋅10-5…8⋅10-5 М. При отсутствии ионов серебра ток пика растворения тиолятов серебра с концентрацией n⋅10-8 М не регистрируется (Рис. 1, кривая 2). Далее в течение 3 мин удаляют из раствора кислород, пропуская через раствор газообразный азот. Для проверки чистоты фона проводят электрохимическое концентрирование на серебряном электроде при потенциале +0,05 В, затем отключают ток азота и регистрируют вольтамперограмму при линейной развертке потенциала. На вольтамперограмме появляется пик тока при потенциале -0,98 В (Рис. 1, кривая 4).

Затем в фоновый раствор вводят пробу, содержащую тиолы или модельный раствор, при этом концентрация тиолов в ячейке составляет от n⋅10-8 до n⋅10-5 М, и перемешивают в течение 10-30 с. На серебряный электрод подают потенциал электролиза +0,05 В, так как при этом потенциале регистрируется максимальное значение тока пика при разных концентрациях NaOH: 1 - 0,2М; 2 - 1М; 3 - 3М, при скорости развертки потенциала 5 мВ/с (Рис. 2). При потенциале меньше и больше +0,05 В величина тока пика снижается. При потенциалах тока от +0,1 до +0,5 В и от -0,5 до -0,1 В сигнал уменьшается и ухудшается форма кривых растворения тиолятов. При потенциалах начала развертки до -0,5 В и выше +0,5 В сигнал растворения тиолятов практически не выражен. Для проведения электроконцентрирования достаточно 60 секунд (Рис. 3). Ток пика регистрируют при потенциале -0,98 В и скорости развертки потенциала 5 мВ/с на серебряном электроде (Рис. 1, кривые 5, 6), ток линейно зависит от концентрации тиолов в водных растворах (Рис. 4). Содержание тиолов оценивают методом стандартных добавок. Нижняя граница определяемых концентраций тиолов в присутствии ионов серебра 3⋅10-8 М (Sr=0,05).

Способ определения тиолов позволяет снизить нижнюю границу определяемых содержаний и использовать экологически чистый электрод.

Способ определения тиолов, включающий в себя определение тиолов инверсионной вольтамперометрией в фоновом растворе 3М NaOH, отличающийся тем, что электроконцентрирование проводят на серебряном электроде при потенциале электролиза +0,05 В в присутствии ионов серебра в течение 60 с и регистрируют ток пика растворения тиолятов серебра при скорости развертки потенциала 5 мВ/с.



 

Похожие патенты:

Изобретение относится к аналитической химии и касается способа определения молочной кислоты на платиновом электроде. Сущность способа заключается в том, что определяют молочную кислоту на платиновом электроде в фоновом электролите - боратный буфер (рН 9.18), при потенциале предельного тока восстановления Е=-0,7 В с помощью хлоридсеребряного электрода сравнения.

Изобретение относится к аналитической химии. Способ заключается в том, что в течение 150 с проводят электрохимическое концентрирование глицирризиновой кислоты на поверхности ртутно-пленочного электрода при потенциале электролиза (-1,8) В на фоне 0,01 М калия хлорида с последующей регистрацией вольтамперных кривых при линейной скорости развертки потенциала 50 В/с, а концентрацию глицирризиновой кислоты определяют по высоте пика в диапазоне потенциалов (-0,2) до (-0,3) В относительно хлорид-серебряного электрода.

Изобретение относится к аналитической химии и может быть использовано для анализа пищевых продуктов, кормов и кормовых добавок, сельскохозяйственной продукции растительного происхождения, а также в медицине.

Изобретение направлено на определение палладия в руде методом инверсионной вольтамперометрии и может быть использовано в гидрометаллургии, в различных геологических разработках при поиске и разведке в случае анализа руд, рудных концентратах и породах концентраций ионов палладия.

Изобретение относится к аналитической химии. Способ определения метионина в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модифицированном коллоидными частицами золота, включает модифицирование графитовых электродов коллоидными частицами золота из золя золота в течение 300 с при потенциале накопления -1,0 В с последующей регистрацией обратных пиков электроокисления метионина на катодной кривой при скорости развертки потенциала 100 мВ/с на фоне 0,1 M раствора NaOH в диапазоне потенциалов от -1,0 до 1,0 В, и определение концентрации метионина осуществляют по величине обратных максимумов вольтамперных кривых в диапазоне потенциалов от минус 0,20 до плюс 0,10 В относительно насыщенного хлоридсеребряного электрода методом добавок аттестованных смесей.

Изобретение относится к области газового анализа и может быть использовано для решения технологических задач и задач экологического контроля. Концентрацию аммиака в анализируемом газе определяют по зависимости изменения величины одной из электрических характеристик электрохимической ячейки от количества аммиака, окисленного на поверхности внутренних электродов электрохимической ячейки, выполненных из электродного материала.

Изобретение относится к области аналитической химии. Согласно изобретению предложен способ определения серебра катодной вольтамперометрией из фонового раствора, содержащего 4,5 мл 1 М KNO3 и 0,5 мл 0,1 М этилендиаминтетраацетата натрия (ЭДТА), из образующегося комплексного соединения на стеклоуглеродном электроде.

Изобретение относится к области аналитической химии и может быть использовано в фармакокинетических исследованиях, для контроля продуктов сельскохозяйственного производства растительного происхождения.

Изобретение относится к аналитической химии и может быть использовано в исследовательской и производственной практике. Согласно изобретению предлагается определять флуоресцеин натрия вольтамперометрически на стационарном электроде из стеклоуглерода по волне восстановления указанного соединения в кислой среде на фоне 0,1 н.

Изобретение направлено на определение золота (III) в водных растворах методом дифференциально-импульсной вольтамперометрии и может быть использовано в различных отраслях народного хозяйства.

Изобретение относится к области аналитической химии, в частности к вольтамперометрическому способу определения лекарственного препарата триазавирина. Способ может быть использован для количественного определения указанного соединения в порошке и его лекарственных формах. Изобретение может быть использовано в фармацевтической промышленности для контроля технологических процессов и качества фармпрепаратов, сточных вод и воздушной зоны химико-фармацевтических предприятий, в лабораториях фармацевтического контроля для определения действующих веществ лекарственных средств. Сущность изобретения основана на способности триазавирина восстанавливаться на различных типах графитовых электродов и заключается в переводе триазавирина из пробы в водный раствор и прямом (без предварительного накопления на электроде) вольтамперометрическом определении в ней триазавирина на фоне 0,1 моль/л азотной кислоты с регистрацией катодных пиков в квадратно-волновом режиме съемки вольтамперограмм в интервале от 0,2 до (-0,6) В при скорости развертки потенциала 160 мВ/с. Концентрацию триазавирина определяют по высоте пика в диапазоне потенциалов от 0,10 до (-0,40) В относительно хлоридсеребряного электрода методом добавки стандартного раствора триазавирина. Изобретение обеспечивает возможность создания чувствительного и экспрессного способа количественного определения триазавирина методом вольтамперометрии в субстанции и лекарственной форме для обеспечения контроля качества лекарственного средства. 2 н.п. ф-лы, 1 ил., 3 табл., 2 пр.

Изобретение относится к области измерения значений гидрохимикофизических параметров водной среды и может быть использовано отдельно или в составе многоканального преобразователя гидрохимикофизических параметров водной среды, для измерения содержания растворенного кислорода в водной среде, в частности пресной и морской воды при проведении экологических исследований. Согласно изобретению в полярографическом датчике кислорода, содержащем наполненный электролитом корпус с отверстием в верхней части, мембрану, выполненную по меньшей мере из двух слоев газопроницаемого материала, герметично закрывающую указанное отверстие, два электрода - катод, прилегающий к мембране, и анод, размещенные в объеме электролита, нижний опорный слой мембраны выполнен из материала, обеспечивающего возможность беспрепятственного прохождения молекул растворенного в воде кислорода к катоду с прочностными характеристиками, обеспечивающими возможность сопротивления разрыву при динамических и статических нагрузках, возникающих в процессе эксплуатации, а верхний селективный слой выполнен в виде нанесенного на опорный слой полимерного покрытия. Техническим результатом изобретения является снижение постоянной времени при обеспечении необходимого ресурса работы датчика. 1 з.п. ф-лы, 1 ил.

Изобретение относится к аналитической. Способ определения метионина в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модифицированном коллоидными частицами золота, заключается в том, что проводят модифицирование графитовых электродов коллоидными частицами золота из золя золота (мольное соотношение HAuCl4:Na3C6H5O7:NaBH4 = 1:15:5) в течение 300 с при потенциале накопления -1,0 B, с последующей регистрацией обратных пиков электроокисления метионина на катодной кривой при скорости развертки потенциала 100 мВ/с на фоне 0,1 М раствора NaNO3 в диапазоне потенциалов от -1,0 B до 1,0 B. Концентрацию метионина определяют по величине обратных максимумов вольтамперных кривых в диапазоне потенциалов от -0,20 B до 0,40 B относительно насыщенного хлоридсеребряного электрода методом добавок аттестованных смесей. Изобретение обеспечивает повышение чувствительности определения метионина до 5⋅10-14 моль/л. 3 ил., 1 табл., 2 пр.

Изобретение относится к области аналитической химии, электрохимии и биохимии Задачей настоящего изобретения является разработка способа электрохимического анализа аминокислотных замен и модификаций пептида Aβ без и в присутствие ионов Zn(II), который основан на измерении сигнала окисления единственного остатка Тир-10 Аβ. Способ анализа аминокислотных замен и модификаций Aβ (без или в комплексе с ионами Zn(II) ) согласно изобретению заключается в том, что на печатный графитовый электрод наносят аликвоту (60-100 мкл) 50 мкМ раствора Aβ (контроль) или его изоформы в буферном растворе без или с 100 мкМ Zn(II) (после инкубации в течение 10 минут) и осуществляют электрохимическое определение Aβ на электроде путем регистрации квадратно-волновой вольтамперограммы окисления пептида; измеряют высоту и потенциал максимума полученного пика окисления в области 0,6-0,7 В (отн. Ag/AgCl) при нейтральном рН и по изменению интенсивности сигнала относительно контроля констатируют аминокислотную замену или модификацию. 3 ил., 1 табл.,

Изобретение может быть использовано в различных отраслях народного хозяйства для определения содержания родия в растворах. Способ определения родия(III) в водных растворах методом инверсионной вольтамперометрии по пикам селективного электроокисления свинца(II) из интерметаллических соединений Rh3Pb2 и Rh5Pb7 заключается в том, что родий осаждают на поверхность графитового электрода совместно со свинцом, образуя сплав в присутствии ионов платины(IV, II), палладия(II) и золота(III) в соотношениях Rh:Pt=1:1, Rh:Pd=1:10, Rh:Au=1:10, накопление ионов родия на графитовом электроде в перемешивающемся растворе в присутствии ионов свинца проводят в течение 180-240 секунд при потенциале электролиза минус 1,5 В из фонового электролита 1 М HCl с последующей регистрацией анодных пиков селективного электроокисления свинца из сплава с родием при скорости развертки потенциала 0,05-0,06 В/с, а концентрацию ионов родия определяют по площади под пиками селективного электроокисления свинца в диапазоне потенциалов от -0,5 до -0,2 В отн. нас. х.с.э., используя метод добавок аттестованных смесей. Техническим результатом изобретения является определение ионов родия в водных растворах методом инверсионной вольтамперометрии в присутствии ионов платины, палладия, золота. 2 табл, 2 ил., 1 пр.

Изобретение относится к аналитической химии. Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления висмута из интерметаллического соединения RhxBiy заключается в том, что родий (III) в растворе переводят в хлоридный комплекс, в растворе 1 M НСl проводят электровосстановление родия (III) совместно с висмутом (III) в режиме «in situ» на поверхность композитного графитового электрода, модифицированного висмутом, приготовленного по методике «литье под давлением» в перемешиваемом растворе при потенциале электролиза минус 0,8 В в течение 120 секунд с последующей регистрацией анодных пиков селективного электроокисления висмута из интерметаллического соединения RhxBiy в дифференциально-импульсном режиме при скорости развертки потенциала 80 мВ/с. Концентрацию ионов родия (III) определяют методом добавок аттестованных смесей по высоте анодных пиков на дифференциально-импульсной вольтамперной кривой диапазоне потенциалов от минус 0,06 до 0 В относительно насыщенного хлоридсеребряного электрода. Изобретение обеспечивает снижение предела и нижней границы определяемых содержаний родия. 1 табл., 1 ил.

Изобретение направлено на возможность амперометрически измерять концентрацию закиси азота в газовой смеси с помощью простого в изготовлении и эксплуатации измерительного устройства, созданного на основе кислородопроводящего твердого электролита состава 0,9 ZrO2 + 0,1Y2O3. Способ заключается в том, что электрохимическую ячейку с полостью, образованной двумя дисками из кислородопроводящего твердого электролита состава 0,9 ZrO2+0,1Y2O3, на противоположных поверхностях одного из которых расположены электроды, помещают в поток анализируемой газовой смеси, на электроды подают напряжение постоянного тока в пределах от 1 до 2 В с подключением положительного полюса на электрод, находящийся на внешней стороне диска, а отрицательного полюса – на внутренней, посредством чего осуществляют откачку свободного кислорода и кислорода, полученного после разложения закиси азота из полости ячейки, в поток анализируемой газовой смеси при рабочей температуре ячейки, и при достижении стационарного состояния, когда количество кислорода, откачанного из полости ячейки, станет равным количеству кислорода, поступающего в нее, измеряют протекающий через ячейку предельный ток, по величине изменения предельного тока от количества кислорода, откачанного из полости электрохимической ячейки, определяют концентрацию закиси азота в анализируемой газовой смеси. 6 ил.

Изобретение относится к области медицины и представляет собой вольтамперометрический способ определения содержания общего холестерина в биологических объектах, включающий подготовку индикаторного электрода и вольтамперометрическое определение содержания холестерина, отличающийся тем, что проводят анодную вольтамперометрию на индикаторном углеродсодержащем электроде, предварительно модифицированном 2,6-диацетил-N-2,4,6,8-тетраазабицикло[3.3.0]октан-3,7-дион-дифосфоновой кислотой, в диапазоне потенциалов от +0.32 В до +1.52 В относительно насыщенных хлорид-серебряных вспомогательного электрода и электрода сравнения при ступенчатой форме развертки потенциала со скоростью 0.05 В/с. Осуществление изобретения обеспечивает упрощение подготовки рабочего электрода и возможность получения сигнала непосредственно от холестерина. 1 пр., 1 табл., 2 ил.
Изобретение относится к электроаналитической химии, направлено на определение анилина - одного из приоритетных токсичных загрязнителей, и может быть использовано для анализа питьевой, поверхностной воды и других водных объектов. Способ вольтамперометрического определения анилина в воде и водных объектах с помощью трехэлектродной системы включает предварительную модифицирующую электрохимическую обработку стеклоуглеродного индикаторного электрода системы, электрохимическое осаждение анилина на модифицированную поверхность индикаторного электрода из анализируемой воды, последующее электроокисление анилина при изменении потенциала индикаторного электрода, регистрацию на вольтамперной кривой аналитического сигнала, идентификацию пика анилина на вольтамперной кривой и определение концентрации анилина по величине пика анилина. Предварительную модифицирующую электрохимическую обработку индикаторного электрода проводят в водном растворе 0,1 М сульфата натрия с добавлением бутанола в соотношении объемных частей 19:1 соответственно. Изобретение обеспечивает экспрессный способ, позволяющий определять анилин в воде и водных объектах на уровне и ниже ПДК с возможностью регистрации и однозначного измерения аналитического сигнала анилина.

Изобретение относится к способам автоматического измерения скорости коррозии металлических и иных электропроводящих материалов электрохимическим методом. Способ определения скорости коррозии металлических материалов, помещенных в электролит, содержит стадии автоматического определения зависимости тока коррозии от потенциала электрода, и автоматической линейной аппроксимации полученной зависимости Тафеля в логарифмических координатах при наличии экспериментальных погрешностей, при этом участки для линейной аппроксимации выбирают с помощью варьирования длины и положения отрезков на экспериментальных зависимостях тока от напряжения до достижения максимального произведения достоверностей аппроксимации анодного и катодного участков прямыми при условии, что точка пересечения этих прямых по потенциалу отклоняется не более чем на заданную экспериментатором величину от потенциала минимума тока на вольтамперной кривой. Технический результат - автоматизация процесса определения фарадеевского тока как тока коррозии. 1 з.п. ф-лы, 4 ил.
Наверх