Способ определения удельного износа шлифовального круга



Способ определения удельного износа шлифовального круга
Способ определения удельного износа шлифовального круга
Способ определения удельного износа шлифовального круга
Способ определения удельного износа шлифовального круга
Способ определения удельного износа шлифовального круга
Способ определения удельного износа шлифовального круга
Способ определения удельного износа шлифовального круга
Способ определения удельного износа шлифовального круга
Способ определения удельного износа шлифовального круга
Способ определения удельного износа шлифовального круга
B24B1/00 - Станки, устройства или способы для шлифования или полирования (шлифование зубчатых колес B23F, винтовой резьбы B23G 1/36, путем электроэрозионной обработки B23H; путем пескоструйной обработки B24C, инструменты для шлифования, полирования и заточки B24D; полирующие составы C09G 1/00; абразивные материалы C09K 3/14; электролитическое травление или полирование C25F 3/00, устройства для шлифования уложенных рельсовых путей E01B 31/17); правка шлифующих поверхностей или придание им требуемого вида; подача шлифовальных, полировальных или притирочных материалов

Владельцы патента RU 2613254:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Рыбинский государственный авиационный технический университет имени П.А. Соловьева" (RU)

Изобретение относится к обработке материалов шлифованием и может быть использовано для оценки режущих свойств абразивного материала шлифовальных кругов. Осуществляют закрепление кольца, имеющего базовую наружную поверхность, на планшайбе шлифовального круга соосно с его рабочей поверхностью Обрабатываемый образец устанавливают на поверхности стола станка, используемой в качестве дополнительной базовой поверхности, и шлифуют. Определяют удельный износ шлифовального круга как частное от деления объема израсходованного абразива на объем сошлифованного материала. Для этого до и после шлифования производят измерения расстояния от базовой наружной поверхности кольца до дополнительной базовой поверхности и расстояния от обрабатываемой поверхности образца до дополнительной базовой поверхности. По разности соответствующих значений упомянутых расстояний определяют значения радиуса шлифовального круга до и после шлифования. В результате снижается трудоемкость и повышается точность определения удельного износа шлифовального круга за счет исключения непосредственного контакта средств измерения со шлифовальным кругом. 5 ил.

 

Изобретение относится к обработке материалов шлифованием и может быть использовано для оценки режущих свойств абразивного материала шлифовальных кругов и расчета их норм расхода.

Известен способ определения удельного износа шлифовального круга, согласно которому производят шлифование образца, измеряют объем сошлифованного материала образца и израсходованного абразива и рассчитывают удельный износ как частное от деления объема израсходованного абразива на объем сошлифованного материала образца («Абразивная и алмазная обработка материалов». Справочник под ред. А.Н. Резникова. М.: «Машиностроение», 1977, с. 152, 153). Для определения объема изношенного абразива измеряют диаметр шлифовального круга до и после шлифования не менее чем в четырех противоположных точках по окружности круга и в трех точках вдоль образующей. Эти измерения трудоемкие и не обеспечивает высокой точности и идентичности условий измерения, так как производятся от зернистой поверхности круга, зерна которого имеют разную высоту.

Известен способ определения удельного износа шлифовального круга, выполняемый аналогично. При этом для измерения объема израсходованного абразива используют базу - кольцо, которое закрепляют на планшайбе круга соосно с его цилиндрической поверхностью («Абразивная и алмазная обработка материалов». Справочник под ред. А.Н. Резникова. М.: «Машиностроение», 1977, с. 152, 153). Измеряют расстояние от наружной цилиндрической поверхности кольца до цилиндрической поверхности шлифовального круга до и после шлифования не менее чем в четырех противоположных точках по окружности круга и в трех точках вдоль образующей. Данный способ позволяет исключить измерение диаметра круга, но также трудоемок и недостаточно точен, так как измерение выполняют касанием средств измерения с рабочей поверхностью круга, состоящей из зерен разной высоты.

Технический результат, на достижение которого направлено предлагаемое изобретение - снижение трудоемкости и повышение точности определения удельного износа шлифовального круга за счет исключения непосредственного контакта средств измерения со шлифовальным кругом.

Технический результат достигается тем, что в способе определения удельного износа шлифовального круга, включающем закрепление кольца, имеющего базовую наружную поверхность, на планшайбе шлифовального круга соосно с его рабочей поверхностью, подвод шлифовального круга до контакта с обрабатываемой поверхностью образца, шлифование образца, определение объема сошлифованного материала образца и объема израсходованного абразива шлифовального круга с учетом его радиуса и определение удельного износа шлифовального круга как частного от деления объема израсходованного абразива на объем сошлифованного материала, при этом обрабатываемый образец устанавливают на поверхности стола станка, используемой в качестве дополнительной базовой поверхности, при этом до и после шлифования для определения упомянутых объемов сошлифованного материала и израсходованного абразива производят измерения расстояния от базовой наружной поверхности кольца до дополнительной базовой поверхности и расстояния от обрабатываемой поверхности образца до дополнительной базовой поверхности, причем по разности соответствующих значений упомянутых расстояний определяют значения радиуса шлифовального круга до и после шлифования.

На фиг. 1 показана реализация предлагаемого способа на плоскошлифовальном станке в момент касания шлифовальным кругом заготовки;

на фиг. 2 показан вид А на фиг. 1 после снятия необходимой величины припуска при многоходовом шлифовании;

на фиг. 3 показан вид А на фиг. 1 после снятия необходимой величины припуска при одноходовом глубинном шлифовании;

на фиг. 4 - осуществление способа с измерением упругих деформаций, возникающих при обработке;

на фиг. 5 - аксонометрическая проекция осуществления способа с измерением упругих деформаций, возникающих при обработке, для наглядности расположения измерительных датчиков.

Способ реализуют следующим образом.

На столе 1 шлифовального станка 2 устанавливается образец 3, имеющий до обработки известные размеры: длину L, ширину В и высоту h. Обрабатываемая поверхность 4 образца 3 предназначена для обработки шлифовальным кругом. 5, установленном в планшайбе 6 на шпинделе 7 станка 2. На планшайбе 6 соосно с наружной цилиндрической поверхностью круга 5 закрепляют кольцо 8, имеющее базовую наружную поверхность. Стол 1 шлифовального станка 2 имеет обработанную с высокой точностью поверхность 9, которая используется в качестве дополнительной базовой поверхности при измерениях. После проведения испытания шлифовального круга на поверхности образца 3 формируется обработанная поверхность 10.

Для повышения точности определения величины удельной производительности на станок 2 снабжается бесконтактными датчиками 11 и 12, установленными в кронштейнах 13. Датчик 11 измеряет деформации шпинделя, а датчик 12 - деформации несущей системы станка 2 от опор шпинделя 7 до стола 1. Для этого на стол станка установлена точно обработанная планка 14.

Производят правку шлифовального круга 5 и подводят его до контакта с поверхностью 4 образца 3 (фиг. 1). Отводят стол 1 с образцом 3 от шлифовального круга 5 в продольном направлении, выключают вращение круга 5 и измеряют высоту h расположения обрабатываемой поверхности 4 образца 3 от базовой поверхности, например, поверхности стола 1 шлифовального станка 2, а также высоту Н от верхней точки кольца 8 до дополнительной базовой поверхности 9.

Далее включают продольную подачу стола и придают шлифовальному кругу 5 подачу на глубину в зависимости от принятой программы испытаний.

При многоходовом шлифовании (фиг. 2) стол 1 станка 2 совершает возвратно-поступательное движение, а подача шлифовального круга на глубину осуществляется на каждый одинарный или двойной ход стола. В конце испытаний выключаются вращение круга и продольная подача стола. Затем производится измерение высоты h1 расположения обработанной поверхности 10 образца 3 от базовой поверхности стола 9 и также высоты H1 от наружной поверхности кольца 8 до дополнительной базовой поверхности 9.

Предложенный способ позволяет измерить радиус шлифовального круга 5 косвенным путем без непосредственного контактирования измерительного средства с его абразивной рабочей поверхностью.

До начала шлифования радиус круга 5 определяется следующим образом

где Н - расстояние от базовой поверхности кольца до дополнительной базовой поверхности до шлифования при контактировании круга 5 с поверхностью образца 3;

d - диаметр кольца 8;

h - высота образца 3 до шлифования.

Радиус изношенного круга 5 определяется аналогичным образом

где Н1 - расстояние от базовой поверхности кольца 8 до дополнительной базы 9 после шлифования;

h1 - высота образца 3 после шлифования.

Для случая многоходового шлифования формула для определения удельного износа шлифовального круга без учета влияния упругих деформаций станка будет иметь вид:

где q - удельный износ шлифовального круга.

При шлифовании по схеме одноходового глубинного шлифования (фиг. 2) припуск с образца 3 снимается за один рабочий ход стола 1, поэтому на точность определения износа оказывает динамика износа круга в процессе шлифования. Следовательно, требуется производить несколько измерений высоты по длине образца 3. При этом высота образца 3 определяется как среднее арифметическое нескольких измерений. Таких измерений должно быть как минимум два - в начале и в конце пути шлифования, по краям образца 3. При этом удельный износ шлифовального круга 5 определяется по формуле

где h1.1 - высота образца в начале шлифуемой поверхности;

h1.2 - высота образца в конце шлифуемой поверхности.

Приведенный выше способ дает приемлемые результаты для станков, имеющих высокую жесткость упругой технологической системы (более 100 Н/мкм). Для наиболее широко распространенных типов станков при измерениях необходимо учитывать упругий отжим шлифовального круга 5 от заготовки 3.

Для учета упругих деформаций станка 2 во время обработки измеряют деформации Δ1 и Δ2 шпинделя 7 и несущей системы станка 2.

При этом радиус круга будет рассчитываться следующим образом

Затем производят расчет удельной производительности по формуле

где Δ1 и Δ2 - величины упругих деформаций шпинделя и несущей системы станка 2.

Предлагаемое техническое решение позволяет исключить непосредственное контактирование средства измерения с абразивной поверхностью шлифовального круга, обладающей разновысотностью зерен, вследствие чего повышаются точность и стабильность измерения, а также сократить трудоемкость определения удельного износа шлифовального круга за счет уменьшения количества измерений.

Способ определения удельного износа шлифовального круга, включающий закрепление кольца, имеющего базовую наружную поверхность, на планшайбе шлифовального круга соосно с его рабочей поверхностью, подвод шлифовального круга до контакта с обрабатываемой поверхностью образца, шлифование образца, определение объема сошлифованного материала образца и объема израсходованного абразива шлифовального круга с учетом его радиуса и определение удельного износа шлифовального круга как частного от деления объема израсходованного абразива на объем сошлифованного материала, отличающийся тем, что обрабатываемый образец устанавливают на поверхности стола станка, используемой в качестве дополнительной базовой поверхности, при этом до и после шлифования для определения упомянутых объемов сошлифованного материала и израсходованного абразива производят измерения расстояния от базовой наружной поверхности кольца до дополнительной базовой поверхности и расстояния от обрабатываемой поверхности образца до дополнительной базовой поверхности, причем по разности соответствующих значений упомянутых расстояний определяют значения радиуса шлифовального круга до и после шлифования.



 

Похожие патенты:

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования или контроля работоспособности (прочности, износостойкости) керамических пластин режущих инструментов при их изготовлении, использовании или сертификации.

Изобретение относится к обработке материалов резанием. Способ включает закрепление детали на координатном столе под объективом оптического устройства, обработку материала шлифовальным инструментом, проектирование увеличенного изображения зоны резания на экран с чертежом.

Изобретение относится к области машиностроения и касается прогнозирования и контроля износостойкости твердосплавных группы применяемости Р режущих инструментов по величине относительной диэлектрической проницаемости полиоксидной массы, полученной при окислении твердосплавных режущих инструментов - образцов в муфельной электрической печи с открытым доступом атмосферного воздуха.

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации.

Изобретение относится к области измерительной техники и может быть использовано для измерения температуры при правке абразивных кругов инструментами из сверхтвердых материалов с помощью искусственной термопары, установленной на торцевой поверхности кристалла.

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации.

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации.

Группа изобретений относится к измерительной технике, в частности к средствам измерения прочности. Устройство содержит образец горной породы, включающий в себя первую поверхность, акустический датчик, индентор и нагрузку.

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации.

Изобретение относится к машиностроению и может быть использовано при испытаниях с целью оценки эффективности смазочно-охлаждающей жидкости (СОЖ) для шлифования. Образец закрепляют в приспособлении, с помощью рычага прикладывают заданные усилия к образцу и шлифуют его абразивным инструментом в среде СОЖ.

Изобретение относится к машиностроению и может быть использовано при плоском шлифовании деталей. Шпиндель с абразивным кругом вращают с обеспечением крутильных колебаний вокруг его оси.
Изобретение относится к комбинированным методам обработки, сочетающим механическое и электрохимическое воздействие на обрабатываемую заготовку, и может быть использовано при алмазно-электрохимическом шлифовании деталей из труднообрабатываемых сталей и сплавов.

Изобретение относится к области технологии обработки оптических деталей и может быть использовано для финишной магнитореологической обработки прецизионных поверхностей оптических деталей.
Изобретение относится к полирующей композиции, применяющейся для полировки объекта, который необходимо отполировать, состоящего из твердого и хрупкого материала, обладающего твердостью по Викерсу, равной 1500 Hv или более.

Изобретение относится к области абразивной обработки и может быть использовано при обработке металлических заготовок. Осуществляют контакт постоянно вращающегося связанного абразивного круга диаметром как минимум 150 мм с металлической заготовкой, средняя температура которой не превышает 500°С.
Изобретение относится к области абразивной обработки трущихся поверхностей сапфировых деталей, предназначенных для плунжерных пар, являющихся составными частями, в частности, насосных и/или дозирующих устройств, и может быть использовано в фармацевтической, пищевой, химической, парфюмерной, косметической, машиностроительной и других областях промышленности.

Изобретение относится к приборостроению и может быть использовано при производстве оптических компонентов для обработки и заострения краев, кромок, граней, фасок, а также для изготовления элементов точной механики, метрологических поверочных пластин, щупов и калибров.

Изобретение относится к машиностроению и может быть использовано на операциях круглого наружного шлифования заготовок из различных материалов. Перед шлифованием заготовку устанавливают на оправку-излучатель для наложения ультразвуковых колебаний (УЗК) между излучателем УЗК и отражающей гайкой.

Изобретение относится к обработке оптических элементов полированием с использованием магнитореологической чистовой обработки (MRF). Способ включает закрепление оптического элемента в оптическом держателе, имеющем множество проверочных точек, накладываемых на оптический элемент, и получение первой метрологической карты для оптического элемента и множества проверочных точек.

Изобретение относится к области машиностроения и может быть использовано при шлифовании деталей. Проводят предварительное шлифование обрабатываемой поверхности и в зависимости от полученного результата производят выбор рациональных режимов шлифования.

Изобретение относится к импульсному электронно-пучковому полированию поверхности металлических изделий, полученных селективным спеканием порошка. На поверхность изделия с исходной шероховатостью воздействуют импульсным пучком в вакууме при давлении (2-5)⋅10-2 Па, энергии электронов 15-25 кэВ, длительности импульсов 150-200 мкс и плотности энергии в импульсе 40-60 Дж/см2. Обеспечивается значительное снижение пористости и шероховатости поверхностного слоя объемных металлических изделий. 2 ил.
Наверх