Способ развертки спектров масс линейной ионной ловушкой с дипольным возбуждением

Изобретение относится к области масс-спектрометрического анализа вещества и может быть использовано для улучшения конструктивных и коммерческих параметров ионных ловушек с дипольным возбуждением ионов. Технический результат - упрощение системы развертки масс и высокочастотного питания квадрупольных линейных ионных ловушек с резонансным выводом ионов. В процессе развертки спектров масс во времени изменяется амплитуда Vв и частота Ωв возбуждающего напряжения, а амплитуда V и частота ω высокочастотных напряжений u1 и u2 остаются постоянными, причем законы изменения во времени амплитуды Vв(t) и частоты Ωв(t) возбуждающего напряжения выбираются так, чтобы абсолютная разрешающая способность Δm линейной ловушки с дипольным возбуждением в диапазоне масс mмин-mмакс оставалась постоянной. 2 ил.

 

Изобретение относится к области масс-спектрометрического анализа вещества и может быть использовано для улучшения конструктивных и коммерческих параметров линейных ионных ловушек с дипольным возбуждением с резонансным выводом ионов. Техническая задача предлагаемого изобретения состоит в усовершенствовании системы развертки масс и высоковольтного питания квадрупольных линейных ловушек с резонансным выводом ионов.

Известным способом развертка масс линейной ионной ловушки с дипольным возбуждением (Фиг. 1а), заключающимся в воздействии на ионы квадрупольным высокочастотным полем, создаваемым двумя противофазными напряжениями u1=-u2=Vcos(ωt), приложенными к двум парам противоположно расположенных электродов квадрупольного анализатора и возбуждающим полем, создаваемым под действием напряжения uв=Vвcos(Ωвt), приложенного между парой противоположных электродов квадрупольного анализатора (Фиг. 1б), является изменение во времени амплитуды V высокочастотных питающих напряжений u1 и u2 при постоянстве их частоты ω и постоянстве амплитуды Vв и частоты Ωв возбуждающего напряжения uв [1-4].

Разрешение линейных ловушек с дипольным возбуждением и разверткой масс изменением амплитуды V(t) ВЧ напряжения достигает десятка тысяч, они являются эффективным средством микроанализа вещества. Их возможности могут быть расширены путем усовершенствования систем развертки и ВЧ питания квадрупольного анализатора.

В существующих линейных ионных ловушках с резонансным выводом ионы образуются или вводятся в импульсном режиме вдоль оси Z масс-анализатора (Фиг. 1а). В отсутствии возбуждающего поля ионы по осям X и Y удерживаются в ловушке квадрупольным ВЧ полем без постоянной составляющей (параметр Матье а=0), создаваемым противофазными напряжениями u1=-u2. По оси Z ионы удерживаются постоянными потенциалами на концевых секциях гиперболических электродов. При а=0 рабочие точки ионов располагаются на оси q диаграммы стабильности Матье. Параметр Матье q определяется выражением:

где e и m - заряд и масса ионов, r0 - минимальное расстояние между гиперболическими электродами и осью Z квадрупольного анализатора. При условии q<0.908 ионы имеют ограниченные амплитуды колебаний по осям X и Y и удерживаются в анализаторе. При этом секулярные низкочастотные составляющие колебаний ионов описываются выражениями:

где х0, y0 и , - начальные координаты и скорости ионов, - частота секулярных колебаний.

Резонансный вывод ионов из линейной ловушки осуществляется под воздействием близкого к однородному вдоль оси X возбуждающего электрического поля:

которое создается приложенным между парой, расположенных на оси X гиперболических электродов напряжением uхв=Vвcos(Ωвt). Под действием возбуждающего поля амплитуды колебаний по оси X ионов, секулярная частота которых совпадает с частотой возбуждения Ωcв, возрастают. Когда амплитуды Xm колебаний превысят размер r0, ионы через щель в электроде выводятся на детектор [1, 2].

В известных прототипах частота возбуждающего поля Ωв постоянная, а выполнение условия Ωcв для ионов различных масс в процессе развертки достигается изменением амплитуды ВЧ питающих напряжений [1-4]. При этом параметр Матье qв, соответствующий режиму возбуждения ионов различных масс, остается постоянным.

Предлагаемый способ развертки масс линейной ловушки с дипольным возбуждением предполагает постоянство параметров V и ω ВЧ питающих напряжений u1 и u2, а развертку масс осуществлять изменением во времени амплитуды Vв и частоты Ωв возбуждающего напряжения. В этом случае параметры q и Ωc, зависящие от амплитуды и частоты ВЧ напряжения и массы ионов m, при развертке для ионов одной массы будут оставаться постоянными. Граничные значения параметра определяются Матье q граничными значениями массового диапазона:

Состояние резонансного возбуждения ионов различных масс достигается в моменты времени t(m), определяемые из условия равенства частоты возбуждающего поля частоте секулярных колебаний ионов с массой m:

Решением уравнения (5) является функция m(t), которая определяет закон развертки масс. Аналитически и компьютерным моделированием установлено, что при условии постоянства абсолютной разрешающей способности Δm-const закон развертки масс описывается функцией:

Для реализации зависимости (6) частоту возбуждающего напряжения во времени необходимо изменять по закону:

где Tр - время развертки.

При изменении в процессе развертки по закону (7) частоты и постоянной амплитуды Vв=const возбуждающего напряжения резонансные амплитуды ym ионов различных масс будут неодинаковые, что вызовет искажения закона развертки (6), не постоянство Δm и снижение точности определения масс. Для поддержания в диапазоне масс mмиг-mмакс постоянства резонансных амплитуд колебаний ионов ym=const предлагается при развертке на ряду с изменением частоты Ωв изменять амплитуду Vв возбуждающего напряжения по закону:

где Vв0 - начальное значение амплитуды возбуждающего напряжения, соответствующее нижней границе mмин массового диапазона.

Таким образом предлагаемый способ развертки масс линейной ловушки с резонансным возбуждением ионов состоит в изменении в процессе развертки в соответствии с (7) и (8) частоты и амплитуды возбуждающего напряжения, при котором обеспечивается постоянство абсолютной разрешающей способности Δm во всем массовом диапазоне mмин-mмакс. Скорость развертки νp=(Mмакс-Mмин)/Tp, где M=m/(1.66⋅10-27) - масса ионов в атомных единицах [а.е.м.], в этом случае определяется выражением:

где , , R=mмакс/Δm - относительная разрешающая способность на верхней границе массового диапазона. Отношение скорости развертки νp изменением частоты и амплитуды возбуждающего напряжения к скорости развертки νpa амплитуды ВЧ напряжения оценивается по формуле:

Скорости развертки νp и νра оказываются соизмеримыми. Для параметров ΔM=1, D=2÷5 отношение скоростей лежит в пределах 0.86-1.2.

Фигура 1: а) электродная система линейной ионной ловушки, б) схема питания линейной ионной ловушки с дипольным возбуждением.

Предлагаемый способ развертки масс линейных ловушек с дипольным возбуждением по сравнению с существующим дает ряд преимуществ:

- обеспечивает постоянство амплитуды ВЧ напряжения при развертке масс, что существенно упрощает систему ВЧ питания линейной ловушки, способствует повышению стабильности ее параметров и, соответственно, увеличению разрешающей способности и точности определения масс;

- развертка масс осуществляется изменением параметров низковольтного возбуждающего напряжения (единицы - десятки вольт), что позволяет формировать его цифровыми методами;

- создает возможность оперативного управления разверткой масс и использования адаптивных законов развертки линейной ловушки с дипольным возбуждением;

- расширяет массовый диапазон линейной ловушки с дипольным возбуждением.

Развертка масс изменением параметров возбуждающего напряжения позволяет улучшить аналитические, конструктивные и коммерческие параметры масс-спектрометров с линейными ловушками с дипольным возбуждением.

Литература

1. D.J. Douglas, N.V. Konenkov. Mass selectivity of dipolar resonant excitation in linear quadrupole ion trap // Rapid Communications in Mass Spectrometry, 2014. V. 28. P. 430-438.

2. Wei Xu, William Chappell and Zheng Ouyang Modeling of ion transient response todipolar AC excitation in a quadrupole ion trap // International Journal of Mass spectrometry, 2011, 308(1), pp. 49-55.

3. M.U. Sudakov, N.V. Konenkov, D.J. Douglas, T.A. Glebova Excitation Frequencies of Ions Confined in a Quadrupole Field with Quad-rupolar Excitatin // J. Am. Soc. Mass Spectrom, 11, 11-18 (2000).

4. Collings B.A., Stott W.R., Londry F.A. Resonant excitation in low - pressure linear ion trap // J. Am. Soc. Mass Spectrom. 2003. - Vol. 14. - P. 622-534.

Способ развертки спектров масс линейной ионной ловушкой с дипольным возбуждением, заключающийся в воздействии на ионы квадрупольным высокочастотным полем, создаваемым двумя противофазными напряжениями u1=-u2=Vcos(ωt), приложенными к двум парам противоположно расположенных электродов квадрупольного анализатора, и возбуждающим полем, создаваемым под действием напряжения uв=Vвcos(Ωвt), приложенного между парой противоположных электродов квадрупольного анализатора, отличающийся тем, что в процессе развертки спектров масс во времени изменяется амплитуда Vв и частота Ωв возбуждающего напряжения, а амплитуда V и частота ω высокочастотных напряжений u1 и u2 остаются постоянными, причем законы изменения во времени амплитуды Vв(t) и частоты Ωв(t) возбуждающего напряжения выбираются так, чтобы абсолютная разрешающая способность Δm линейной ловушки с дипольным возбуждением в диапазоне масс mмин-mмакс оставалась постоянной.



 

Похожие патенты:

Изобретение относится к области пространственно-временной фокусировки и масс-анализа заряженных частиц по времени пролета в двумерных линейных высокочастотных электрических полях и может быть использовано для улучшения аналитических характеристик приборов микроанализа вещества, использующих ионно-оптические системы с планарными дискретными электродами.

Изобретение относится к области масс-анализа вещества высокого разрешения и может быть использовано для улучшения аналитических и коммерческих характеристик масс-спектрометрических приборов с преобразованием Фурье.

Изобретение относится к области масс-спектрометрии и может быть использовано для расширения аналитических возможностей масс-анализаторов времяпролетного типа. Технический результат - повышение чувствительности и расширение динамического диапазона времяпролетных масс-спектрометров путем увеличения средних значений токов анализируемых ионов.

Изобретение относится к области анализа заряженных частиц. Масс-спектрометр содержит камеру, инжектор, способный инжектировать в камеру заряженные частицы, и генератор поля.

Изобретение относится к области масс-анализа заряженных частиц в линейных электрических ВЧ полях и может быть использовано для улучшения конструкторско-технологических и коммерческих характеристик радиочастотных времяпролетных масс-спектрометров.

Изобретение относится к области спектрометрии, а точнее к статистическим масс-спектрометрам, и может быть использовано при создании портативных приборов для изучения химического и изотопного состава газообразных жидких и твердых веществ.

Изобретение относится к диагностике поверхности ионными пучками низких энергий (1 - 10 кэВ), в частности к энергомасс-спектрометрии вторичных ионов - интенсивно разрабатываемому в настоящее время методу элементного, фазового и химического анализа поверхности твердых тел.

Изобретение относится к области масс-спектрометрического анализа вещества и может быть использовано для улучшения аналитических и коммерческих характеристик линейных ионных ловушек с резонансным возбуждением ионов. Технический результат - улучшение качества поля и режима работы квадрупольных масс-спектрометров с резонансным выводом ионов. Способ масс-анализа заключается в воздействии на колебания ионов в квадрупольном ВЧ-поле однородным возбуждающим полем, направленным вдоль одной из асимптот квадрупольного поля. Способ реализуется в масс-анализаторе с планарными дискретными электродами, где создается суперпозиция квадрупольного ВЧ и однородного возбуждающего по одной оси поля. Использование планарных дискретных электродов позволяет повысить качество однородного поля и снизить амплитуды высших гармоник колебаний ионов вдоль оси возбуждения. Способ и устройство улучшают форму массовых пиков и в 2-3 раза повышают разрешающую способность линейных ионных ловушек с резонансным возбуждением. 2 н.п. ф-лы, 1 ил.
Наверх