Способ введения диэлектрического микроконтейнера в клетку млекопитающего с использованием фемто-пикосекундных импульсов лазерного излучения



Владельцы патента RU 2614269:

Федеральное государственное бюджетное учреждение науки Институт химической физики им. Н.Н. Семёнова Российской академии наук (ИХФ РАН) (RU)

Изобретение относится к области биотехнологии и может быть использовано для введения сферического диэлектрического микроконтейнера, несущего определенный генетический материал, такой как ДНК или РНК, в клетки млекопитающих. Создают оптическую ловушку для микроконтейнера с использованием сфокусированного лазерного излучения с длиной волны 830 нм. Осуществляют приведение микроконтейнера в соприкосновение с клеточной мембраной путем облучении его цугами импульсов лазерного излучения с длиной волны 780 нм с последующим разрезанием клеточной мембраны сфокусированными лазерными импульсами и контролируемым вводом с использованием оптической ловушки микроконтейнера в клетку. Изобретение позволяет доставить микроконтейнер, несущий генетический материал, в заданную координату клетки млекопитающего с высокой точностью. 3 з.п. ф-лы.

 

Изобретение относится к области биотехнологии, а именно к способам введения сферических диэлектрических микроконтейнеров, несущих определенный генетический материал, такой как ДНК или РНК, в клетки млекопитающих (в том числе в эмбрионы).

Известен (RU, патент 2079554, опубл. 20.05.1997) способ введения биологического материала в живую клетку потоком газа под давлением, включающий предварительное культивирование клеток и внедрение биологического материала, связанного с частицами носителя, в клетки. Связывание биологического материала осуществляют посредством фиксирования его в объеме несущей среды от 0,5 микролитра до 1000 микролитров, несущие частицы имеют диаметр в пределах от 0,1 микрона до 100 микрон, в предпочтительном варианте от 0,5 микрона до 5 микрон. В общем случае, несущие частицы имеют плотность в области от 1 г/см3 до 25 г/см3, в предпочтительном варианте от 10 г/см3 до 25 г/см3.

Известный способ не может обеспечить доставку одного микроконтейнера с генетическим материалом в конкретную клетку с заданной координатой. Возможна только случайная доставка.

Известен также (RU, патент 2510826, опубл. 10.04.2014) способ введения siRNA в клетки фотохимической интернализацией. Известный способ включает контактирование указанной клетки, в том числе и млекопитающих, с молекулой siRNA, носителем и фотосенсибилизирующим веществом и облучение клетки излучением с длиной волны, эффективной для активации фотосенсибилизирующего вещества. Носитель содержит катионный полиамин, выбранный из липополиамина в нелипосомальном составе, разветвленного полиэтиленимина, полимера бетациклодекстринамина, молекулы дендримера РАМАМ и катионного пептида, выбранного из полиаргинина или сополимеры L-или D-аргинина. Способ используют для ингибирования экспрессии гена-мишени, получения клетки или популяции клеток, содержащей молекулы siRNA, а также для лечения или профилактики заболевания, в случае которого может быть полезным подавление одного или нескольких генов, в том числе для лечения злокачественной опухоли.

Известный способ не может обеспечить доставку одного микроконтейнера с генетическим материалом в конкретную клетку с заданной координатой. Возможна только случайная доставка.

Наиболее близким аналогом разработанного способа можно признать Terakawa М et al. Dielretric microshere mediated transfection using a femtosecond laser. Optics Letters, 2011, v. 36, N 15, p. 2877-2879. Согласно известному способу на свободно плавающие микроконтейнеры воздействуют фемто-пикосекундными импульсами лазерного излучения, при этом микроконтейнеры перемещаются в произвольном направлении, случайным образом соприкасаясь с клетками млекопитающих, т.е. клетки случайным образом «засевают» микроконтейнерами.

Известный способ не может обеспечить доставку одного микроконтейнера с генетическим материалом в конкретную клетку с заданной координатой. Возможна только случайная доставка.

Техническая задача, решаемая посредством разработанного способа, состоит в расширении ассортимента методов трансфекции.

Технический результат, достигаемый при реализации разработанного способа, состоит в достижении возможности доставки единичного микроконтейнера в конкретную клетку с заданной координатой.

Для достижения указанного технического результата предложено использовать разработанный способ введения диэлектрических микроконтейнеров в клетки млекопитающих с использованием фемто-пикосекундных импульсов лазерного излучения.

Согласно разработанному способу диэлектрическую микросферу приводили в соприкосновение с клеточной мембраной и облучали цугами фемтосекундных импульсов титан-сапфирового лазера с длиной волны 780 нм, длительностью 30 фс, частотой повторения 1 кГц и энергией порядка 100 нДж, фемтосекундные импульсы фокусировались диэлектрической микросферой в области ближнего поля вблизи диэлектрической микросферы и производили локальное разрезание клеточной мембраны, затем методом оптического захвата с использованием сфокусированного лазерного излучения с длиной волны 830 нм диэлектрическую микросферу сквозь полученный разрез вводили внутрь клетки.

При реализации способа используют диэлектрический микроконтейнер, который может содержать генетический материал или любое физиологически активное вещество.

Обычно, но не обязательно, используют диэлектрический микроконтейнер сферической формы диаметром около 1 мкм.

Для создания оптической ловушки лазерное излучение предпочтительно фокусируют с использованием микроскопа.

В дальнейшем разработанный способ будет раскрыт с использованием примера реализации.

В рассматриваемом примере использованы диэлектрические микроконтейнеры - микросферы полистирола (Spherotech, Cat. No. АР-10-10). В качестве генетически активного вещества использовали плазмид pEFGFP. Вектор был получен на основе коммерчески доступного вектора pcEGFPCl (Invitro gen, США), несущего ген устойчивости к селективному антибиотику неомицину. Последовательность промотора фактора элонгации PEF1A была получена из вектора pBudCE4.1 с использованием рестрикции по сайтам NheI/XhoI и клонирована по липким концам в промежуточный вектор pSPT18. Конечный вектор рестрицирован BgIII/HindIII, при этом был вырезан фрагмент промотора Р CMV. Далее pSPT18 была рестрицирована по BamHI/HindIII, а фрагмент Р EF1A клонирован в вектор pcEGFPCl по сайтам BgIII/HindIII. Введение генетической информации в микросферу осуществили путем адсорбции генетически активного вещества на поверхности диэлектрических микросфер. Раствор плазмида и диэлектрических микросфер был перемешан в шейкере. Затем раствор был помещен на 4 часа в CO2 инкубатор для адсорбции плазмида на поверхности диэлектрических микросфер. Затем раствор был центрифугирован для разделения покрытых плазмидом диэлектрических микросфер и несвязанного плазмида, оставшегося в растворе.

Эмбрионы для экспериментов получали от суперовулированных самок мышей линии C57BL/6, спаренных с самцами линии СВА. Суперовуляцию проводили по стандартной схеме с использованием гонадотропина сыворотки жеребых кобыл (PMSG, Intervet) и человеческого хорионического гонадотропина (hCG, Intervet). Животных умерщвляли путем дислокации шейных позвонков. Эмбрионы мыши получали путем промывания яйцевода мыши средой PBS, затем собирали эмбрионы с использованием капилляра и переносили их в среду М2. Биологические образцы после воздействия культивировали в CO2 инкубаторе с концентрацией углекислого газа 5% при температуре 37°С в четырехлуночных пластиковых чашках "Nunclon" (Nunc).

Для проведения экспериментов эмбрионы выделяли из яйцеводов суперовулированных самок на стадии 2-х бластомеров, которые культивировали in vitro до стадии 8 клеток (морула).

В данной работе в мультиплексном лазерном манипуляторе использовали инвертированный оптический микроскоп (Olympus 1X71). В поле микроскопа через объектив с высокой числовой апертурой заводили лазерное излучение от двух лазеров. Использовали объективы ЛОМО МФЛЮАР100×/1.3 или Olympus LCAchN40x/0.55Ph2.

Диэлектрическую микросферу удерживали и перемещали с использованием оптической ловушки, сформированной непрерывным излучением лазерного диода с длиной волны 830 нм, сфокусированным объективом микроскопа (40х, числовая апертура 0,75). Диэлектрическую микросферу приводили в соприкосновение с клеточной мембраной и облучали цугами фемтосекундных импульсов титан-сапфирового лазера с длиной волны 780 нм, длительностью 30 фс, частотой повторения 1 кГц и энергией порядка 100 нДж. Фемтосекундные импульсы фокусировались диэлектрической микросферой в области ближнего поля вблизи диэлектрической микросферы и производили локальное разрезание клеточной мембраны. Затем методом оптического захвата диэлектрическую микросферу, обладающую генетической информацией, сквозь полученный разрез вводили внутрь. Перемещение предметного столика осуществляли либо "вручную", либо с использованием позиционных пьезодвигателей, причем, в последнем случае, обеспечивалась точность перемещений, равная десяти нанометрам. Визуальный контроль осуществляли с использованием видеокамеры (Sony ExwaveHAD). Далее эмбрионы культивировали в четырехлуночных планшетах в среде Ml6 до стадии бластоцисты.

Таким образом, из приведенных примеров видно, что предлагаемый способ позволяет воздействием лазерного облучения проводить успешное введение микроконтейнера с генетической информацией внутрь мышиного эмбриона. Культивирование invitro полученных экспериментальных эмбрионов до стадии бластоцисты (вплоть до вылупляющихся и вылупившихся бластоцист) подтверждает их жизнеспособность.

Кроме того, дополнительным преимуществом разработанного способа следует признать высокую скорость проведения операции - операция занимает не более 2 мин без оптимизации отдельных стадий по времени, причем время операции может быть существенно сокращено за счет оптимизации.

Приведенный пример доказывает достижение указанного технического результата.

1. Способ введения диэлектрического микроконтейнера в клетку млекопитающих с использованием фемто-пикосекундных импульсов лазерного излучения, отличающийся тем, что в качестве микроконтейнера используют диэлектрическую микросферу, которую приводят в соприкосновение с клеточной мембраной и облучают цугами фемтосекундных импульсов титан-сапфирового лазера с длиной волны 780 нм, длительностью 30 фс, частотой повторения 1 кГц и энергией порядка 100 нДж, фемтосекундные импульсы фокусируют диэлектрической микросферой в области ближнего поля вблизи диэлектрической микросферы и производят локальное разрезание клеточной мембраны, затем методом оптического захвата с использованием сфокусированного лазерного излучения с длиной волны 830 нм диэлектрическую микросферу сквозь полученный разрез вводят внутрь клетки.

2. Способ по п. 1, отличающийся тем, что используют диэлектрический микроконтейнер, содержащий генетический материал.

3. Способ по п. 1, отличающийся тем, что используют диэлектрический микроконтейнер, содержащий физиологически активное вещество.

4. Способ по п. 1, отличающийся тем, что используют диэлектрический микроконтейнер сферической формы диаметром около 1 мкм.



 

Похожие патенты:

Группа изобретений относится к области биохимии. Предложена двухслойная, плоская, прозрачная подложка гидрогеля для длительного культивирования клеток и способ ее получения.
Изобретение относится к области биотехнологии, сфера суспензионного культивирования перевиваемых культур клеток ВНК-21. ВНК-21/13-02 - адаптированная линия к суспензионному способу выращивания с использованием питательной среды для суспензионного выращивания на основе гидролизатов: мышечного и лактальбумина.

Группа изобретений относится к области биохимии. Предложена система культивирования клеток, система для оценки эффекторных агентов кишечника, содержащая систему культивирования клеток, также предложены способы культивирования клеток, получения кишечного органоида и оценки лечения эффекторных агентов кишечника.

Изобретение относится к области биотехнологии, конкретно к противоопухолевым вакцинам на основе эпитопных пептидов MPHOSPH1, и может быть использовано в медицине. Получают пептид состоящий из аминокислотной последовательности SEQ ID NO: 120.

Изобретение относится к области биотехнологии и иммунологии. Предложена мышь для продукции цепи иммуноглобулина.

Изобретение относится к области биотехнологии, конкретно к способам лечения амиотрофического бокового склероза, что может быть использовано в медицине. Пациенту вводят клетки, полученные из ткани пуповины, способные к самообновлению и размножению, обладающие потенциалом к дифференцированию в клетку нейронного фенотипа.

Изобретение относится к области биотехнологии, конкретно к клеточным технологиям, и может быть использовано в медицине для получения лекарственного средства для лечения рака.

Изобретение относится к клеточной технологии. Описан способ получения адгезионных клеток в соответствии с которым: a.

Изобретение относится к области клеточной биотехнологии и биофармакологии, конкретно к получению препарата на основе стволовых клеток, выделенных из ткани селезенки свиней, для профилактики и лечения инфекционных и незаразных болезней домашних и сельскохозяйственных животных.
Изобретение относится к биохимии. Описан способ получения фракций стволовых клеток, имеющих происхождение из липидной ткани, включающий стадии: (a) сбора или получения образца липидной ткани, содержащей стволовые клетки; (b) промывания образца со стадии (а) подходящим водным буфером; (c) инкубирования образца со стадии (b) с ферментом, способным перерабатывать липидную ткань и извлекать из нее стволовые клетки; (d) инактивирования фермента, использованного на стадии (с), и извлечения водной фазы из продукта со стадии (с); (e) очистки водной фазы, полученной на стадии (d); (f) титрования водной фазы, полученной на стадии (е), и, если необходимо, ее разбавления, чтобы получить конечную фракцию стволовых клеток с желаемой концентрацией и объемом, в котором материал, содержащий стволовые клетки, обрабатывают в шприце на всем протяжении по меньшей мере стадий: (а), (b) и (с), указанный шприц, выполняет функции собирающего устройства, фазового разделителя и технологического реактора.

Изобретение относится к области биохимии, в частности к способу введения представляющей интерес нуклеиновой кислоты в растительную клетку, имеющую клеточную стенку, который включает взаимодействие растительной клетки, имеющей клеточную стенку, с активированным QD-пептидным конъюгатом.

Предложенная группа изобретений относится к области медицины. Предложены персонализированный ген-активированный имплантат для замещения костных дефектов у млекопитающего и способ его получения, предусматривающий проведение компьютерной томографии области костной пластики, моделирование костного дефекта, трехмерную печать формы биосовместимого носителя и совмещение биосовместимого носителя с нуклеиновыми кислотами.

Изобретение относится к генной инженерии. Описан способ доставки нуклеиновой кислоты в митохондрию и генетической модификации клетки, включающий воздействие на клетку композицией, содержащей по меньшей мере одну нуклеиновую кислоту и по меньшей мере один органоидно-направленный наноноситель, где наноноситель доставляет по меньшей мере одну нуклеиновую кислоту сквозь клеточную мембрану в митохондрию.

Изобретение относится к области биохимии, в частности к трансгенному растению, которое демонстрирует увеличенную биомассу по сравнению с аналогом дикого типа или нетрансформированным растением, содержащему трансген глутамин-фенилпируват-трансаминазы и трансген глутаминсинтетазы, где каждый GPT трансген и GS трансген операбельно связан с растительным промотором, а также к семени для его получения.

Предложены соединения и композиции на их основе, применимые в медицине, формул (I) и (II) где Y представляет собой -(СН2)3-; R1 представляет собой -(C1-6)алкил; или -(CH2)m-фенил, необязательно замещенный до четырех раз заместителем, выбранным из: -NO2, -CN, или галогена; R2 представляет собой водород; -(СН2)k-фенил; -(С1-6)алкил; -(CH2)k-C(O)-NH2; или -(CH2)k-N-C(Ph)3, причем фенильные кольца необязательно замещены -O-(С1-4)алкилом; R3 представляет собой -NH-фенил, причем фенил дополнительно замещен заместителем, независимо выбранным из -(СН2)-ОН или -(СН2)-O-С(O)-O-(4-нитрофенила); k равен 1, 2, 3, 4, 5 или 6; m равен 1, 2, 3 или 4; и n равен 0 или 1, Ra представляет собой -(CH2)k-NH2; R1, при этом нуклеиновая кислота представляет собой одноцепочечный РНК олигонуклеотид.

Изобретение относится к биотехнологии, а именно к комплексу, для применения в способе адъювантной терапии у нуждающегося в таком лечении пациента, а также к вакцине, которая включает данный комплекс.

Изобретение относится к области биохимии, в частности к способу стабильного интегрирования представляющей интерес линейной молекулы нуклеиновой кислоты в клетку растения, имеющую клеточную стенку, с использованием положительно заряженной полупроводниковой наночастицы.

Изобретение относится к области биохимии, в частности к способу введения молекулы функционализированной линейной нуклеотидной кассеты, представляющей интерес, в клетку растения, имеющую клеточную стенку, способу введения молекулы функционализированной линейной нуклеотидной кассеты, представляющей интерес, в растительный материал, а также к способу интрогрессии признака в растение.
Изобретение относится к фотохимиотерапии и фотодинамической терапии, а именно к применению фармацевтически приемлемой соли амфифильного фотосенсибилизирующего средства в способе фотохимической интернализации, где указанная соль обладает водорастворимостью по меньшей мере 30 мг/мл и выбрана из диэтаноламиновой соли TPCS2a, этаноламиновой соли TPCS2a, триэтаноламиновой соли TPCS2a, диэтаноламиновой соли TPPS2a, этаноламиновой соли TPPS2a и триэтаноламиновой соли TPPS2a.

Группа изобретений относится к биохимии. Предложена липидная частица для доставки нуклеиновой кислоты (варианты), способ введения нуклеиновой кислоты в клетку, способ изготовления липидных частиц, включающих нуклеиновую кислоту.

Изобретение относится к биотехнологии. Способ получения бифидогенного фактора предусматривает выделение дезоксирибонуклеиновой кислоты из биомассы бифидобактерий путем троекратной обработки ультразвуком при частоте 40 кГц в течение 30 мин с последующей хроматографией объединенных супернатантов на сефарозе Sepharose CL-4В.
Наверх