Способ телеориентации движущихся объектов

Способ телеориентации движущихся объектов включает формирование ортогонального растра построчным, прямым и встречным реверсивным сканированием лазерного пучка с дублированием прямого сканирования, между которыми выдерживают в каждой строке заданные временные задержки при гашении излучения. Причем между сканированиями выдерживают в каждой строке заданные временные задержки, позволяющие идентифицировать номер строки при определении положения объекта в информационном поле. Технический результат изобретения направлен на увеличение скорости передачи информации в системах телеориентации за счет уменьшения количества растров, необходимых при формировании информационного поля. 2 ил.

 

Изобретение относится к лазерной технике и предназначено для формирования информационного поля лазерных систем телеориентации, навигации, оптической связи и может использоваться при управлении, посадке и стыковке летательных аппаратов, корректировке траектории полета самонаводящихся снарядов и ракет, проводке судов через узости или створы мостов, дистанционном управлении робототехническими устройствами в опасных для человека зонах.

Из уровня техники известен способ формирования информационного поля лазерной системы телеориентации (Патент US N4,111,385, опубликован 16.04.1976, МПК: F42B 13/30, F41G 7/12. F41G 7/14. F41G 9/00), основанный на использовании модулирующих растров.

К недостаткам данного способа можно отнести недостаточно высокое быстродействие и низкий энергетический потенциал, что ограничивает дальность управления.

Более совершенным является способ телеориентации (Патент GB N2133652, опубликован 25.07.1984, МПК: F41G 7/00, G01S 1/70), в котором лазерный пучок совершает возвратно-поступательное сканирование, вначале по одной координате с дискретным переходом по ортогональной координате после завершения каждого возвратно-поступательного движения лазерного пучка, а затем, после заполнения прямоугольного растра, направление сканирования меняют на ортогональное. Выделение координат управляемого объекта в информационном поле лазерной системы телеориентации основано на зависимости от этих координат длительности временного интервала между двумя соседними принимаемыми лазерными сигналами, возникающими при возвратно-поступательном сканировании лазерного пучка.

Данный способ требует дополнительных затрат времени при формировании кадра информационного поля из двух взаимно перпендикулярных растров, поскольку между тактами возвратно-поступательного сканирования лазерного пучка по строкам введены временные задержки признака координат, превышающие рабочее время.

Следует отметить также низкую помехозащищенность этого способа от случайных помеховых импульсов, которые могут попасть в большие интервалы между выделяемыми импульсами координат, что приводит к сбоям в определении координат управляемого объекта и его возможному срыву с необходимой траектории.

Наиболее близким к заявляемому техническому решению является способ формирования информационного поля лазерной системы телеориентации (Патент RU №2080615, опубликовано 27.05.1997, МПК: G01S 1/70), который выбран в качестве прототипа. Способ основан на поочередном формировании двух прямоугольных лазерных растров размерами L×L, образованных путем сканирования лазерного пучка в каждом растре по N строкам и развернутых вокруг общего центра относительно друг друга на 90°. Особенностью способа является формирование строк в растре циклами по M строк в цикле, с дискретными переходами лазерного пучка между соседними строками цикла на величину L/M. Каждую строку формируют за счет не менее трех тактов сканирования, со временем сканирования такта Tc и заданными задержками между тактами, причем только два соседних такта в каждой строке имеют встречное направление сканирования и равные времена задержек для первого и второго растров. По данному способу объект управления получает информацию о своем пространственном положении в виде двух ортогональных координат относительно центра двух последовательно формируемых лазерным пучком растров, образующих кадр. При прямом сканировании, реверсировании сканирования и дублировании последнего лазерный пучок проходит трижды по одной строке, а затем его сдвигают на шаг цикла (L/M) и повторяют операции по этой строке. Этим достигается формирование управляющих сигналов (представляющих собой группы из трех импульсов) по двум соседним строкам растра. Далее формируют следующий цикл, смещая сканирование лазерного пучка на ширину строки относительно первой строки предыдущего цикла, до заполнения растра. Объект управления, находящийся где-либо в пределах информационного поля, при прохождении по нему лазерного луча регистрирует, в результате, по крайней мере, по три импульса в каждом растре. При этом интервал между первым и вторым импульсами зависит от удаления фотоприемного устройства объекта от начала строки, а интервал между вторым и третьим импульсами независим от положения объекта, что служит признаком передаваемой координаты.

Принадлежность «троек» к соответствующему растру по координатам X и Y зафиксирована различными значениями временного интервала между вторым тактом сканирования (реверс лазерного пучка) и третьим тактом - дублированием реверса.

Но данный способ имеет существенный недостаток, снижающий его функциональность, - это относительно невысокая скорость обновления информации о координатах. При этом наличие дублирования реверса при формировании строки усложняет структуру дешифратора приемного устройства.

Технический результат изобретения направлен на увеличение скорости передачи информации в системах телеориентации за счет уменьшения количества растров, необходимых при формировании информационного поля.

Технический результат достигается тем, что способ телеориентации движущихся объектов, осуществляемый с помощью информационного поля, включает формирование прямоугольных растров построчным сканированием лазерного пучка, между которыми выдерживают в каждой строке заданные временные задержки при гашении излучения. Причем строки пошагово сблокированы в циклы, которые поочередно смещают на ширину строки, а шаг смещения выбирают равным протяженности растра, отнесенной к числу строк в цикле. При этом способ телеориентации движущихся объектов отличается от прототипа тем, что информационное поле формируют одним прямоугольным растром, при этом формирование циклов построчного сканирования лазерного пучка осуществляют прямым и встречным реверсивным сканированием лазерного пучка с дублированием прямого сканирования, между которыми выдерживают в каждой строке заданные временные задержки, позволяющие идентифицировать номер строки при определении положения объекта в информационном поле.

Сущность изобретения поясняется рисунками Фиг. 1, Фиг. 2.

На Фиг. 1 представлен пример траектории движения лазерного пучка при формировании растра.

На Фиг. 2 представлены временные эпюры положения лазерного пучка при формировании растра и временные задержки, по которым можно определить номер строки, на котором находится приемное устройство объекта управления (ОУ).

Предлагаемый способ телеориентации движущихся объектов осуществляется следующим образом.

Передающее устройство формирует информационное поле прямоугольными растрами посредством циклов построчного прямого и встречного реверсивного сканирования лазерного пучка с дублированием прямого сканирования, между которыми выдерживают в каждой строке заданные временные задержки при гашении излучения, позволяющие идентифицировать номер строки, причем строки пошагово сблокированы в циклы, которые поочередно смещают на ширину строки, а шаг смещения выбирают равным протяженности растра, отнесенной к числу строк в цикле.

При облучении фотоприемного устройства (ФПУ) управляемого объекта лазерным пучком во время строчного сканирования, содержащего, например, три такта, фотоприемное устройство формирует три импульса.

При формировании кадра обычно используют равные времена сканирования по строке.

Как показано на рисунке Фиг. 2 T1=T3=T5=Tс,

где Tс - время сканирования по строке.

T2=Tстрi - временная задержка, которая определяет тип передаваемой координаты и номер строки, т.е. является уникальной для каждой строки.

Временной интервал между первым и вторым импульсами Tстрi несет в себе информацию о типе передаваемой координаты и о номере строки, на котором находится приемное устройство объекта управления (т.е. координату X), а временной интервал между вторым и третьим импульсами определяет величину координаты Y ФПУ в информационном поле (ИП).

Если фотоприемное устройство формирует две тройки импульсов, то это говорит о том, что объект управления находится на границе двух строк (например, между строками 0 и 2). В этом случае вычисляются средние арифметические значения координат X и Y, полученных от каждой из строк.

Таким образом, предлагаемый способ телеориентации движущихся объектов позволяет передавать за один кадр сразу две координаты X и Y, что уменьшает вдвое количество прямоугольных растров, необходимых для формирования информационного поля и позволяет увеличить скорость передачи информации.

Способ телеориентации движущихся объектов, осуществляемый с помощью информационного поля, включающий формирование прямоугольных растров построчным сканированием лазерного пучка, между которыми выдерживают в каждой строке заданные временные задержки при гашении излучения, причем строки пошагово сблокированы в циклы, которые поочередно смещают на ширину строки, а шаг смещения выбирают равным протяженности растра, отнесенной к числу строк в цикле, отличающийся тем, что информационное поле формируют одним прямоугольным растром, при этом формирование циклов построчного сканирования лазерного пучка осуществляют прямым и встречным реверсивным сканированием лазерного пучка с дублированием прямого сканирования, между которыми выдерживают в каждой строке заданные временные задержки, позволяющие идентифицировать номер строки при определении положения объекта в информационном поле.



 

Похожие патенты:

Изобретение относится к области оптико-электронного приборостроения. Заявленное устройство включает последовательно соединенные лазер и оптико-электронную систему сканирования, включающую два скрещенных анизотропных акустооптических дефлектора и выходную оптическую систему, а также блок управления дефлекторами, выходы которого подключены к входам управления дефлекторов, а на управляющие входы которого поступают внешние сигналы пуска и схода управляемого изделия, блок выбора режима, на вход которого поступает внешний сигнал разрешения измерения дальности, генератор синхроимпульсов, блок управления модулятором, оптический модулятор добротности резонатора, вход управления которого соединен с выходом блока управления модулятором, выходная оптическая система дальномерного канала и поляризационный призменный блок, установленный между первым и вторым акустооптическими дефлекторами, второй выход которого соединен с входом оптической системы дальномерного канала.

Изобретение относится к космической технике и может быть использовано при выполнении в космосе операций сближения, облета, зависания, причаливания со стыковкой космических аппаратов (КА), в авиации для обеспечения посадки летательных аппаратов в условиях ограниченной видимости, а также для позиционирования исполнительных механизмов при выполнении монтажно-сборочных работ и других операций с помощью робототехнических средств.

Изобретение относится к приборостроению и предназначено для формирования информационного поля лазерных систем телеориентации и навигации, оптической связи и может быть использовано при управлении, посадке и стыковке летательных аппаратов, проводке судов через узости или створы мостов, дистанционном управлении робототехническими устройствами в опасных для человека зонах и т.д.

Изобретение относится к области оптических средств измерения параметров относительного сближения космических аппаратов. .

Изобретение относится к области оптических средств измерения параметров относительного сближения космических аппаратов. .

Изобретение относится к приборостроению и предназначено для формирования информационного поля лазерных систем телеориентации (ИП ЛСТ) и навигации, оптической связи, и может использоваться при управлении, посадке и стыковке летательных аппаратов, проводке судов через узости или в створы мостов, дистанционном управлении робототехническими устройствами в опасных для человека зонах.

Изобретение относится к лазерным системам телеориентации (ЛСТ) и может быть использовано для управления движущимися объектами с телеориентацией в луче лазера. .

Изобретение относится к лазерной технике и предназначено для формирования информационного поля систем телеуправления подвижными объектами. .

Изобретение относится к приборостроению и предназначено для формирования информационного поля лазерных систем телеориентации. .

Изобретение относится к приборостроению и предназначено для формирования информационного поля лазерных систем телеориентации и навигации, оптической связи и может быть использовано при управлении, посадке и стыковке летательных аппаратов, проводке судов через узости или створы мостов, дистанционном управлении робототехническими устройствами в опасных для человека зонах и т.д.

Изобретение относится к военной технике, преимущественно к тактическим и оперативно-тактическим комплексам управляемого ракетного оружия (УРО) с баллистическими (аэробаллистическими) и высотными крылатыми ракетами.

Группа изобретений относится к области систем наведения снарядов. Способ стрельбы снарядом, управляемым по лучу лазера, включает измерение дальности до цели и ввод измеренного значения Dц в наземную систему управления, сравнение измеренной дальности до цели Dц с хранящимся в памяти наземной системы управления значением дальности Dmin, допускающим введение превышения оси луча относительно линии визирования цели, установку превышения при выполнении условия Dц>Dmin, запуск управляемого снаряда, полет снаряда в луче с превышением над линией визирования цели до момента времени, установленного в наземной системе управления в соответствии с измеренной дальностью до цели, и совмещение оси луча с линией визирования цели.

Изобретение относится к области военной техники и касается способа засветки оптико-электронных приборов малогабаритных беспилотных летательных аппаратов (МБЛА).

Изобретение относится к оптическим прицелам систем наведения управляемых объектов и может быть использовано в системах управления огнем противовоздушной обороны.

Изобретение относится к военной технике и может найти применение при изготовлении наземных передвижных ракетных комплексов с крылатыми ракетами средней дальности.

Изобретение относится к технике оптического приборостроения и касается устройства имитации инфракрасного излучения наземных объектов. Устройство содержит микрозеркальный матричный сканирующий узел, инфракрасный излучатель, набор линз и зеркал, объективы, приводы объективов, переключатель объективов и систему наведения.

Изобретение относится к системам наведения ракет и может быть использовано в комплексах ПТУР и ЗУР. Способ стрельбы ракетой, управляемой по лучу лазера, включает измерение дальности до цели и ввод измеренного значения в наземную систему управления, установку начального превышения Y0 оси луча относительно линии визирования цели, запуск управляемой ракеты, подъем оси луча до максимального превышения Ymax относительно линии визирования цели, полет ракеты на максимальном превышении до момента времени, установленного в наземной системе управления в соответствии с измеренной дальностью до цели, и совмещение оси луча с линией визирования цели.

Использование: в способах корректировки траектории полета управляемого снаряда. Сущность: предложено направлять или вращать пучок (12) лазерных лучей относительно центра (13) текущего заданного курса снаряда (1), чтобы снаряд (1) сам определял массив данных и затем выполнял автоматическое корректирование.

Изобретение относится к области оптико-электронного приборостроения. Заявленное устройство включает последовательно соединенные лазер и оптико-электронную систему сканирования, включающую два скрещенных анизотропных акустооптических дефлектора и выходную оптическую систему, а также блок управления дефлекторами, выходы которого подключены к входам управления дефлекторов, а на управляющие входы которого поступают внешние сигналы пуска и схода управляемого изделия, блок выбора режима, на вход которого поступает внешний сигнал разрешения измерения дальности, генератор синхроимпульсов, блок управления модулятором, оптический модулятор добротности резонатора, вход управления которого соединен с выходом блока управления модулятором, выходная оптическая система дальномерного канала и поляризационный призменный блок, установленный между первым и вторым акустооптическими дефлекторами, второй выход которого соединен с входом оптической системы дальномерного канала.

Способ относится к управляемому вооружению. В способе осуществляется топографическая привязка целеуказателя и пусковой установки к местности, цель обнаруживается целеуказателем, координаты цели определяются и передаются в пульт огневой позиции.

Изобретение относится к области оптико-электронного приборостроения и касается оптического прицела системы наведения управляемого снаряда. Прицел содержит соосно установленные визир и прожектор. Прожектор включает в себя два инжекционных лазера, излучающие области которых расположены перпендикулярно осям измеряемых координат, систему вывода излучения лазеров на единую оптическую ось, оптический сканер, панкратический объектив, непрозрачную шторку, растровый диск, два оптронных датчика и формирователь импульсов. Оптический сканер выполнен в виде вращающейся призмы. Непрозрачная шторка установлена на оправу вращающейся призмы и выполнена с прозрачной щелью. Первый оптронный датчик снимает сигнал с непрозрачной шторки, а второй снимает сигнал с растрового диска. Выходы оптронных датчиков подключены ко входам формирователя импульсов, выходы которого соединены с лазерами. Технический результат заключается в повышении точности наведения управляемого снаряда. 2 н.п. ф-лы, 4 ил.
Наверх