Сплав на основе гамма-алюминида титана

Изобретение относится к области металлургии, а именно к жаропрочным сплавам на основе интерметаллидов титана и алюминия, и может быть использовано для изготовления методами литья или обработки давлением изделий, предназначенных для применения в конструкции авиационных газотурбинных двигателей и наземных энергетических установок. Сплав на основе гамма-алюминида титана содержит, мас. %: алюминий 29,0-33,0, ниобий 5,0-9,0, вольфрам 1,0-2,0, молибден 2,0-4,0, ванадий 1,0-3,0, бор 0,003-0,1, титан - остальное. Массовое соотношение молибдена и вольфрама в сплаве составляет 2:1. Сплав может дополнительно содержать железо в количестве от 0,003 до 0,3 мас. % и/или кислород в количестве от 0,003 до 0,15 мас. %. Техническим результатом изобретения является повышение абсолютных и удельных значений пределов прочности и текучести при температурах 20 и 750°С, а также повышение рабочей температуры сплава до 800°С за счет обеспечения термической стабильности структуры и высокого предела длительной прочности. 2 з.п. ф-лы, 2 табл., 7 пр.

 

Изобретение относится к области металлургии, а именно к легким жаропрочным сплавам на основе интерметаллидов титана и алюминия, и может быть использовано для изготовления методами литья или обработки давлением изделий, предназначенных для применения в конструкции авиационных газотурбинных двигателей и наземных энергетических установок.

Из /US 4879092 А, 07.11.1989/ известен сплав на основе гамма-алюминида титана, применяемый в турбине низкого давления ГТД и компрессоре двигателя гоночного болида и содержащий, мас. %:

алюминий 30,5-35,5
хром 1,3-4,1
ниобий 2,4-11,7
титан остальное

По системе легирования и количественному соотношению компонентов данный сплав относится к гамма-сплавам второго поколения. Недостатками известного сплава являются: сравнительно низкий предел длительной (за 100 часов) прочности при рабочих температурах (без дополнительной термической обработки) и низкая стойкость к окислению при температурах выше 600 градусов Цельсия, что требует применения защитных покрытий. Прочность сплава при нормальной температуре (20 градусов Цельсия) также ниже прочности существующих аналогов (<450 МПа).

Из /RU 2191841 С2, 27.10.2002/ известен сплав на основе гамма-алюминида титана, имеющий следующий химический состав, мас. %:

алюминий 34,0-35,5
хром 1,0-2,0
ниобий 2,5-3,5
молибден 0,3-1,2
цирконий 0,5-1,5
кремний 0,2-0,3
углерод 0,08-0,12
олово 0,05-0,10
титан остальное

Данный сплав имеет низкие значения пределов кратковременной прочности и текучести при температуре 20 градусов Цельсия (предел текучести не превышает 465 МПа).

Из /CN 101476061 А, 08.07.2009/ известен сплав на основе гамма-алюминида титана, имеющий следующий химический состав, мас. %:

алюминий 29,6-33,2
ниобий 6,9-11,6
хром 0,25-2,65
никель 0,15-1,15
кремний 0,0-0,6
титан остальное

К недостаткам сплава можно отнести крайне низкую пластичность при температуре 20 градусов Цельсия - относительное удлинение не превышает 1%, а также неудовлетворительную технологичность при обработке давлением.

Из /US 8888461 В2, 18.11.2014/ известен сплав на основе гамма-алюминида титана, имеющий следующий химический состав, мас. %:

алюминий 25,2-30,0
ниобий 6,7-17,3
молибден 0,45-6,7
и/или марганец 0,25-4,0
бор 0,025-0,25
и/или углерод 0,03-0,3
и/или кремний 0,07-0,7
титан остальное

Данный сплав имеет трехфазную (γ+α2+β/В2)-структуру с регламентированным количеством упорядоченной β/В2-фазы - 5 об. % при комнатной температуре и 10 об. % при температуре эвтектоидного превращения, обеспечивающей удовлетворительную технологичность. Недостатком сплава является очень высокая плотность, сопоставимая с плотностью интерметаллидных сплавов на основе орторомбической фазы Ti2AlNb - при содержании компонентов на верхних пределах легирования плотность сплава достигает 5,5 г/см3 и более, что на 40% превышает плотность нелегированного интерметаллида TiAl.

Из /US 5350466 А, 27.09.1994/ известен сплав на основе гамма-алюминида титана, имеющий следующий химический состав, мас. %:

алюминий 29,5-33,5
ниобий 2,3-6,9
марганец 0,7-2,1
молибден 0,6-1,8
вольфрам 1,2-3,5
кремний 0,1-0,2
титан остальное

Недостатками сплава являются относительно низкие значения пределов прочности и текучести при нормальной и повышенных температурах, а также относительно низкие рабочие температуры - по совокупности характеристик жаропрочности предельная температура длительной эксплуатации сплава не превышает 700 градусов Цельсия.

Усовершенствованным вариантом вышеописанного сплава является сплав на основе гамма-алюминида титана, раскрытый в /US 6174387 В1, 16.01.2001/ и являющийся наиболее близким аналогом предлагаемого сплава по технической сущности и достигаемому эффекту. Сплав-прототип содержит алюминий, ниобий, марганец, вольфрам, молибден, кремний и титан при следующем соотношении компонентов, мас. %:

алюминий 27,6-32,3
ниобий 1,1-9,0
марганец 0,0-4,1
вольфрам 4,4-6,9
молибден 0,3-2,4
кремний 0,3-0,5
титан остальное

Сплав-прототип существенно (в 1,5-2,5 раза) превосходит сплав, раскрытий в US 5350466, по таким характеристикам, как прочность при рабочей температуре (750 градусов Цельсия) и сопротивление ползучести, однако имеет следующие недостатки:

- невысокие значения пределов прочности и текучести при температуре 20 градусов Цельсия (не более 560 и 510 МПа, соответственно);

- невысокие значения пределов прочности и текучести при температуре 750 градусов Цельсия (не более 600 и 430 МПа, соответственно);

- недостаточно высокие для применения в современных ГТД рабочие температуры (не более 750 градусов Цельсия);

- низкие удельные характеристики механических свойств вследствие высокой плотности сплава: содержание вольфрама, имеющего плотность 19,25 г/см3, на верхнем пределе достигает 6,9 мас. %, а плотность сплава при этом на 23% превышает плотность нелегированного интерметаллида TiAl.

Технической задачей изобретения является создание жаропрочного интерметаллидного сплава на основе гамма-алюминида титана (γ-TiAl), обладающего повышенными характеристиками кратковременной и длительной прочности при различных температурах как в литом состоянии (после горячего изостатического прессования), так и после горячей деформации (после обработки давлением в изотермических условиях со степенью деформации не более 20%).

Техническим результатом изобретения является повышение абсолютных и удельных значений пределов прочности и текучести при температурах 20 и 750 градусов Цельсия, а также повышение рабочей температуры сплава до 800 градусов Цельсия за счет обеспечения термической стабильности структуры и высокого предела длительной прочности.

Для достижения технического результата предложен сплав на основе гамма-алюминида титана, содержащий алюминий, ниобий, вольфрам, молибден и титан, при этом он дополнительно содержит ванадий и бор при следующем соотношении компонентов, мас. %:

алюминий 29,0-33,0
ниобий 5,0-9,0
вольфрам 1,0-2,0
молибден 2,0-4,0
ванадий 1,0-3,0
бор 0,003-0,1
титан остальное

Предпочтительное массовое соотношение молибдена и вольфрама составляет 2:1.

Предлагаемый сплав может дополнительно содержать железо в количестве от 0,003 до 0,3 мас. % и/или кислород в количестве от 0,003 до 0,15 мас. %.

Указанное предпочтительное массовое соотношение молибдена и вольфрама в предлагаемом сплаве, выражающееся в изменении количественного соотношения между молибденом и вольфрамом в сторону увеличения содержания молибдена и уменьшения содержания вольфрама по сравнению со сплавом-прототипом, обеспечивает повышение сопротивления высокотемпературной ползучести и жаростойкости (сопротивления высокотемпературному окислению), а также снижает линейную скорость роста частиц α-фазы при β→α-превращении в процессе газостатирования и/или термической обработки. Эффект от введения молибдена и вольфрама является следствием особенностей физико-химического поведения их атомов в твердом растворе, которые проявляются в низкой диффузионной подвижности, что в свою очередь способствует замедлению диффузии других растворенных элементов и, как следствие, препятствует росту частиц. Снижение содержания вольфрама по сравнению со сплавом-прототипом также способствует повышению уровня удельных прочностных характеристик предлагаемого сплава за счет уменьшения его плотности.

Наилучшее сопротивление высокотемпературной ползучести и жаростойкости, а также наиболее низкая линейная скорость роста частиц α-фазы обеспечиваются при массовом соотношении молибдена и вольфрама Mo:W=2:1.

Введение ниобия в количестве от 5,0 до 9,0 мас. % способствует повышению характеристик жаропрочности (предела длительной прочности, предела ползучести, рабочих температур, термической стабильности структуры) и жаростойкости. Кроме того, ниобий, являясь эффективным бета-стабилизатором, расширяет область существования β-фазы и снижает температуру трансуса α-фазы, что положительно сказывается на технологичности сплава при температурах обработки давлением.

Использование в качестве бета-стабилизирующего элемента ванадия вместо марганца приводит к ряду преимуществ. Ванадий стабилизирует большее количество β-фазы, чем марганец, тем самым обеспечивая удовлетворительный уровень пластических характеристик при сохранении более низкой плотности предлагаемого сплава (плотность ванадия на 17% меньше плотности марганца). Ограничение содержание ванадия в интервале от 1,0 до 3,0 мас. % позволяет обеспечить достижение относительного удлинения при температуре 20 градусов Цельсия не менее 1,2%, что не уступает соответствующим значениям известных сплавов, например, раскрытых в US 6174387 и US 5350466.

Бор является более эффективным модификатором расплава, чем кремний, применяемый в сплаве-прототипе (при их практически равной плотности). Введение микродобавки бора в количестве от 0,003 до 0,1 мас. % способствует формированию тонкопластинчатой литой структуры «γ(ΤiΑl)+α2(Ti3Al)» за счет повышения гетерогенной скорости зарождения частиц α2-фазы на частицах боридных фаз, выделяющихся в процессе кристаллизации. Частицы боридов также способствуют повышению термической стабильности структуры, что в свою очередь обеспечивает сохранение высоких значений длительной прочности предлагаемого сплава при 100-часовой выдержке при рабочей температуре (800 градусов Цельсия). Образующиеся частицы боридов не создают опасности охрупчивания, как частицы сложных силицидов в сплаве-прототипе или как частицы сложных карбидов и силикокарбидов в других известных сплавах данного класса. В наибольшей степени описанный эффект модифицирования проявляется при ведении микродобавки бора в количестве от 0,04 до 0,06 мас. %.

Исследования с помощью оптической и растровой электронной микроскопии позволил установить, что структура предлагаемого сплава в литом состоянии представлена двумя основными фазами: γ(ΤiΑl) - до 92 об. %, и α2(Ti3Al) - до 8 об. %; в следовом количестве возможно содержание боридных фаз (в частности, борида титана); в сплавах с содержанием бета-стабилизаторов (Mo, V) от среднего диапазона легирования до верхнего предела возможно также наличие β-фазы, частично или полностью упорядоченной по структурному типу В2, в количестве до 5 об. % (с пропорциональным уменьшением объемных долей остальных фаз). Морфология микроструктуры - пластинчатая с поперечным размером колоний до 80 мкм; толщина отдельных пластин при этом составляет 2-5 мкм, что наряду с хорошо различимыми границами бывшего β(α)-зерна свидетельствует о большом числе независимых центров зарождения и роста частиц в связи с введением в композицию сплава модифицирующих микродобавок бора.

Примеры осуществления

Методом двукратного вакуумно-дугового переплава в печи с расходуемым электродом были получены слитки цилиндрической формы диаметром 160 мм из сплава на основе гамма-алюминида титана с различным соотношением компонентов в установленных пределах легирования. Расходуемые электроды диаметром 100 мм были получены методом проходного прессования порций шихтовой смеси через конусообразную прошивную матрицу. Масса каждого слитка после второго переплава составляла от 10 до 15 кг.

Составы предлагаемого сплава (примеры 1-5), сплава-прототипа, раскрытого в US 6174387 (пример 6), и сплава, раскрытого в US 5350466 (пример 7), приведены в таблице 1.

Вследствие значительного отличия температур плавления молибдена (2890 К) и вольфрама (3680 К) от температуры плавления алюминия (933 К), который является самым легкоплавким элементом в композиции предлагаемого сплава, молибден и вольфрам вводятся в расходуемый электрод в виде лигатурной композиции Ti-Al-W-Mo-Fe (типа МФТА).

У полученных слитков путем механической обработки удаляли корону и донную часть, затем обтачивали на токарном станке по образующей поверхности на глубину до 5 мм. После механической обработки слитки подвергали горячему изостатическому прессованию (ГИП), совмещенному с термической обработкой, под давлением 150 МПа при температурах 1200-1450 градусов Цельсия в течение 2-4 часов.

После ГИП слитки подвергали горячей изотермической обработке давлением (ковке) с суммарной степенью деформации не более 20% для гарантированного удаления микропористости.

Из слитков и деформированных заготовок (биллетов) вырезали образцы-свидетели кубической формы для исследования термической стабильности структуры при изотермической выдержке, а также гладкие цилиндрические образцы для проведения испытаний с целью определения следующих характеристик механических свойств:

- предела кратковременной прочности при статических испытаниях на растяжение при температуре 20 градусов Цельсия по ГОСТ 1497;

- предела текучести при статических испытаниях на растяжение при температуре 20 градусов Цельсия по ГОСТ 1497;

- предела кратковременной прочности при статических испытаниях на растяжение при температуре 750 градусов Цельсия по ГОСТ 9651;

- предела текучести при статических испытаниях на растяжение при температуре 750 градусов Цельсия по ГОСТ 9651;

- предела длительной (за 100 часов) прочности при статических испытаниях на растяжение при повышенной температуре (800 градусов Цельсия) по ГОСТ 10145.

Значения характеристик механических свойств предлагаемого сплава и известных сплавов приведены в таблице 2.

Как видно из таблицы 2, значения пределов прочности и текучести предлагаемого сплава по сравнению со сплавом-прототипом повысились:

- при температуре испытаний 20 градусов Цельсия - на 3-15%;

- при температуре испытаний 750 градусов Цельсия - на 2-8%.

Дополнительно проведенные испытания на 100-часовую прочность при повышенной температуре, показали, что полученные значения предела длительной прочности предлагаемого сплава (см. табл. 2) обеспечивают возможность его применения при рабочих температурах до 800 градусов Цельсия включительно, что также было подтверждено исследованиями термической стабильности структуры образцов-свидетелей после изотермической выдержки при температуре 800 градусов Цельсия в течение 5, 10, 20, 50, 75 и 100 часов.

Использование предлагаемого сплава на основе гамма-алюминида титана в изделиях, длительно работающих при повышенных температурах (детали газотурбинных двигателей и газотурбинных установок), позволит повысить их надежность за счет более высоких значений прочности, а также продолжительность безопасной эксплуатации (ресурс) и рабочие температуры с 750 до 800 градусов Цельсия за счет высоких значений длительной прочности. Кроме того, использование предлагаемого сплава даст дополнительный экономический эффект за счет возможности введения в состав шихтовой смеси готовых лигатурных композиций тугоплавких компонентов (Mo, W), выпускаемых отечественной промышленностью.

1. Сплав на основе гамма-алюминида титана, содержащий алюминий, ниобий, вольфрам, молибден и титан, отличающийся тем, что он дополнительно содержит ванадий и бор при следующем соотношении компонентов, мас.%:

алюминий 29,0-33,0
ниобий 5,0-9,0
вольфрам 1,0-2,0
молибден 2,0-4,0
ванадий 1,0-3,0
бор 0,003-0,1
титан остальное

2. Сплав по п. 1, отличающийся тем, что массовое соотношение молибдена и вольфрама составляет 2:1.

3. Сплав по п. 1, отличающийся тем, что он дополнительно содержит железо в количестве от 0,003 до 0,3 мас.% и/или кислород в количестве от 0,003 до 0,15 мас.%.



 

Похожие патенты:

Изобретение относится к металлургии, а именно к сплавам на основе титана для изготовления труб, используемым для теплопередающих элементов водяных парогенерирующих аппаратов атомных энергетических установок, нефтеперерабатывающей и нефтехимических предприятий.

Изобретение относится к области металлургии, в частности к свариваемым литейным сплавам на основе титана и предназначенным для изготовления фасонных отливок литых и сварных гребных винтов, рабочих колес водометных движителей, насосов.

Изобретение относится к области металлургии, преимущественно к композиционным материалам на основе нитинола, и предназначено для изготовления деталей микромашин и механизмов, медицинских инструментов.

Изобретение относится к изготовлению расходуемого электрода для выплавки слитков титан-алюминиевых сплавов, содержащих 15-63 мас. % алюминия.
1. Способ относится к получению низкомодульного сплава на основе системы титан-ниобий селективным лазерным сплавлением и может найти применение в области аддитивных технологий в медицине в качестве материалов для имплантатов.
Изобретение относится к изготовлению композитных заготовок на основе титана. Способ включает приготовление шихты, содержащей отходы титановых сплавов, и компактирование шихты в заготовки путем прессования.

Изобретение относится к области металлургии, а именно к титановым сплавам, предназначенным для использования в качестве высокопрочного конструкционного термически упрочняемого материала для изготовления деталей силовых конструкций авиационной и космической техники, энергетических установок, ракет, длительно работающих при температурах до 350°C.

Изобретение относится к области металлургии, а именно к созданию конструкционных титановых сплавов, предназначенных для изготовления средненагруженных деталей, в том числе для набора планера воздушного судна, работающих длительно при температурах от -70 до +400°С.

Изобретение относится к мелкодисперсному получению порошка титана. Способ включает активирование исходного материала, гидрирование, измельчение полученного гидрида титана, термическое разложение гидрида титана в вакууме и измельчение образовавшегося титанового спека.

Изобретение относится к области металлургии, а именно к титановым сплавам, используемым для изготовления силовых конструкций, длительно работающих при температурах до 350 °С.

Изобретение относится к области металлургии, а именно к сплавам на основе тинана, и может быть использовано при изготовлении тяжелонагруженных деталей и узлов, работающих при температуре до 600°С. Сплав на основе титана содержит, мас. %: алюминий 6,0-8,0, молибден - 0,4-1,3, олово - 1,5-3,5, цирконий 1,0-5,0, железо - 0,05-0,4, ниобий - 0,4-1,4, кремний - 0,1-0,4, тантал - 0,2-1,0, вольфрам - 0,3-1,3, бериллий - 0,01-0,15, титан - остальное. Сплав характеризуется высокими значениями кратковременной прочности при температурах 20°С и 600°С. 2 н.п. ф-лы, 2 табл., 4 пр.

Изобретение относится к области цветной металлургии, а именно к созданию титановых сплавов, предназначенных для использования в качестве высокопрочного конструкционного термически упрочняемого материала. Сплав на основе титана содержит, мас.%: алюминий 1,5-4,5; ванадий 13,5-19,0; хром 2,0-5,0; олово 2,0-4,0; молибден 0,5-2,5; цирконий 0,5-2,5; ниобий 0,01-0,40; иттрий 0,005-0,150; титан и примеси - остальное. Сплав характеризуется высокими значениями пластичности, термической стабильности и предела ползучести в термически упрочненном состоянии при сохранении значений вязкости разрушения. 2 н. и 3 з.п. ф-лы, 2 табл., 4 пр.

Изобретение относится к области металлургии, а именно к альфа/бета титановым сплавам с высокой прочностью и пластичностью. Альфа/бета титановый сплав содержит, мас.%: от 3,9 до 4,5 алюминия, от 2,2 до 3,0 ванадия, от 1,2 до 1,8 железа, от 0,24 до 0,30 кислорода, до 0,08 углерода максимум, до 0,05 азота максимум, до 0,015 водорода максимум, в общей сложности до 0,30 других элементов: менее чем 0,005 каждого из бора и иттрия, не более чем 0,10 каждого из олова, циркония, молибдена, хрома, никеля, кремния, меди, ниобия, тантала, марганца и кобальта, и остальное - титан и случайные примеси. Сплав характеризуется высокими механическими свойствами при снижении веса. 4 н. и 18 з.п. ф-лы, 3 ил., 3 табл., 3 пр.

Изобретение относится к металлургии, а именно к изготовлению деталей из сплава TA6Zr4DE, и может быть использовано при изготовлении вращающихся деталей турбомашины. Способ изготовления детали турбомашины, выполненной из титанового сплава TA6Zr4DE, включает ковку заготовки в альфа-бета-области с образованием предварительно отформованной заготовки, горячую штамповку предварительно отформованной заготовки в бета-области титанового сплава с получением необработанной детали и термическую обработку. Горячую штамповку ведут с обеспечением во всех точках детали общей эквивалентной деформации, большей или равной 1,2, причем горячую штамповку завершают закалкой со скоростью охлаждения более 85°C/мин. Реализуется минимальная общая эквивалентная деформация, достигаются высокие значения прочности. Увеличивается срок службы детали. 3 н. и 9 з.п. ф-лы, 4 ил., 1 табл.
Изобретение относится к получению композитного титан-ниобиевого порошка для аддитивных технологий. Способ включает механическую активацию смеси порошков титана и ниобия с добавлением противоагломерирующего компонента. Механическую активацию смеси порошков титана и ниобия ведут в планетарной шаровой мельнице ударно-фрикционного типа в течение 10-20 мин, с ускорением мелющих тел 40 g, при соотношении объемов смеси порошков и мелющих тел, равном 1:20, а в качестве противоагломерирующего компонента используют этиловый спирт. Обеспечивается однородное распределение титана и ниобия по объему композита. 3 з.п. ф-лы, 1 пр.

Изобретение относится к области металлургии, в частности к способу изготовления крепежных изделий из титанового сплава с заданными механическими свойствами, и может быть использовано в аэрокосмической отрасли. Способ изготовления титанового сплава включает обеспечение наличия титанового сплава, полученного с использованием по меньшей мере 50% титанового скрапа, отжиг титанового сплава, причем титановый сплав содержит, мас.%: от 5,50 до 6,75 алюминия, от 3,50 до 4,50 ванадия, от 0,25 до 0,50 кислорода и от 0,40 до 0,80 железа. Обеспечивается получение титанового сплава, имеющего высокий уровень содержаний кислорода и железа, с высокими механическими характеристиками. 4 н. и 9 з.п. ф-лы, 11 ил.

Изобретение относится к способам нанесения покрытия из алюминида титана на металлическое изделие и к металлическому изделию с указанным покрытием. Способ нанесения покрытия из алюминида титана на металлическое изделие включает холодное напыление алюминида титана на изделие для формирования покрытия из алюминида титана, причем покрытие из алюминида титана включает тонкую гамма/альфа2 структуру, а алюминид титана, нанесенный на изделие холодным напылением, имеет состав, включающий 45 мас. % титана и 50 мас. % алюминия. В варианте осуществления заявленного изобретения холодное напыление алюминида титана осуществляют из порошкового твердого сырья порошка сплава. Обеспечивается высокая стойкость к высокотемпературному окислению поверхности, а также ремонт изделия, подвергающегося усталостному разрушению, имеющего повреждения от ударов и технологические повреждения. 3 н. и 16 з.п. ф-лы, 2 ил.

Изобретение относится к области металлургии, к сплавам на основе титана, которые могут быть использованы для изготовления деталей приборов. Сплав на основе титана содержит, мас.%: молибден 29,0-35,0; палладий 10,0-15,0; рутений 0,8-1,2; родий 2,6-3,0; титан - остальное. Сплав устойчив к окислению. 1 табл.

Изобретение относится к области металлургии, в частности легированным сплавам на основе TiAl с преобладающей фазой γ-TiAl, и может быть использовано при изготовлении компонентов авиационных газотурбинных двигателей. Сплав на основе TiAl содержит, ат.%: алюминий 44-47, ниобий 5-8, хром 1-3, цирконий 1-3, Ti – остальное. Суммарное содержание переходных металлов Nb, Cr и Zr составляет не более 12 ат.%. Сплав имеет упорядоченную дуплексную структуру (γ+α2)/γ/В2. Сплав характеризуется высокими механическими свойствами, в частности жаропрочностью и сопротивлением ползучести до температур 900-950°С при низкой плотности менее 4,2 г/см3. 1 ил., 1 табл.

Лигатура // 2625148
Изобретение относится к области металлургии, в частности к составам лигатур, используемых в производстве сплавов на основе титана. Лигатура содержит, мас. %: алюминий 25,0-35,0; ванадий 25,0-35,0; ниобий 5,0-15,0; титан остальное. 1 табл.
Наверх