Катализатор и способ осуществления реакции фишера-тропша с его использованием

Изобретение относится к катализаторам и к способу синтеза Фишера-Тропша. Катализатор на основе комплексных солей кобальта для синтеза Фишера-Тропша содержит частицы кобальта, при этом в качестве комплексной соли кобальта выбирают фталоцианиновый комплекс кобальта (C32H16N8Co), а в качестве диспергатора частиц кобальта выбирают ионные жидкости 1-бутил-3-метилимидазол тетрафторборат или 1-бутил-3-метилимидазолий бис(трифторборатсульфонил)имид. Способ осуществления реакции Фишера-Тропша проводят в автоклаве при температуре 280°С, давлении синтез-газа с мольным соотношением Н2/СО = 2, равном 60 атм при перемешивании реакционной массы, представляющей собой смесь катализатора и ионной жидкости. Реакцию проводят с добавлением к реакционной массе перфтордекалина при массовом соотношении - катализатор : ионная жидкость : перфтордекалин = 0,04:1:1. Технический результат – увеличение каталитической активности и повышение производительности процесса синтеза Фишера-Тропша. 2 н.п. ф-лы, 1 табл., 3 пр.

 

Изобретение относится к катализаторам и каталитическим системам для синтеза Фишера-Тропша. Описаны нанокатализаторы на основе комплексных солей кобальта для синтеза Фишера-Тропша, диспергированные в ионных жидкостях. Для улучшения газопереноса в каталитической системе используются добавки перфторуглеродов. Описан процесс синтеза Фишера-Тропша для конверсии окиси углерода и водорода в углеводороды, который проводят в статическом реакторе с применением описанной выше каталитической системы.

Процесс Фишера-Тропша (ФТ) нацелен на восстановление CO до углеводородов, согласно реакции:

и приводит к широкому спектру продуктов: алканы, олефины и ароматические соединения, метанол, гликоли и др.

В настоящее время в процессе синтеза ФТ традиционно применяются плавленые железо-калиевые, кобальтовые и рутениевые катализаторы. В публикациях, рассматривающих в качестве возможных катализаторов соединения Co, Fe, Rh и Ru, показано, что активность катализатора зависит от размера и структуры каталитических центров [Ojeda М., Rojas S., Boutonnet М. // Appl. Catal. A: Gen., 2004, v. 274, p. 33]. Катализаторы синтеза ФТ наряду с основным активным металлом содержат ряд дополнительных компонентов - носителей и промоторов. Роль компонентов может быть: 1) структурная, когда они обуславливают различную степень дисперсности частиц металла, а также вносят пространственные, в т.ч. внутридиффузионные ограничения; 2) сорбционная, когда компонент адсорбирует реагенты без их превращения, а далее, вследствие поверхностной миграции, реагенты перемещаются к металлическим активным центрам, а также 3) сокаталитическая, когда компонент проявляет самостоятельную активность.

Для синтеза используется несколько разновидностей каталитических реакторов и способов осуществления процесса. В последнее время все большее внимание уделяют способу осуществления процесса в реакторе с трехфазным суспензированным слоем, так называемому процессу в сларри-реакторе, особенно с тех пор, как преимущества такого способа стали очевидными при его промышленной реализации на заводе САСОЛ-2 [Jager В., R. Espinosa. // Advances in low temperature Fischer-Tropsch synthesis // Catalysis Today, 1995, v. 23, p. 17-28].

Из международной публикации WO 2006/136863 (28.12.2006) известен катализатор для синтеза углеводородов из CO и H2, представляющий собой порошок оксида алюминия, модифицированный литием. В качестве активного компонента используют кобальт в количестве 5-75 мас. %. Литий вводят пропиткой носителя раствором соответствующей соли с последующим прокаливанием при температуре 500-1500°C с целью формирования оксидов лития. Промотированный литием оксид алюминия отмывают водой, или кислотой, или раствором аммиака в течение длительного времени. Активный металл наносят пропиткой, высушивают при температуре 110-120°C и прокаливают в токе воздуха. К недостаткам такого катализатора необходимо отнести недостаточную теплопроводность катализатора, высокую сложность промышленного производства и ограниченность его использования сларри-реактором.

В ряде работ [Xin-Dong Mu, David G. Evans and Yuan Kou // A general method for preparation of PVP-stabilized noble metal nanoparticles in room temperature ionic liquids // Catal. Lett., 2004, v. 97(3-4), p. 151-154; Xin-Dong Mu, Jian-Qiang Meng, Zi-Chen Li and Yuan Kou // Rhodium Nanoparticles Stabilized by Ionic Copolymers in Ionic Liquids: Long Lifetime Nanocluster Catalysts for Benzene Hydrogenation II J. Am. Chem. Soc, 2005, v. 127, p. 9694-9695] появляются сведения о проведении реакции с участием CO и стабилизации высокодисперсных металлов, в т.ч. в растворах и ионных жидкостях [Лапидус А.Л., Елисеев О.Л // Каталитическое карбонилирование в среде ионных жидкостей // Химия твердого топлива, 2010, №3 с. 60].

В настоящее время известно также свойство различных перфторуглеродов - (перфтордекалин (ПФД), перфтордиметилциклогексан - условное наименование карбогал (КБГ) и др.) к высокой растворимости различных газов и в связи с этим их широко применяют в медицине и биологии в качестве газопереносящих сред. Так, например [А.П. Осипов, Ю.В. Горшков, А.Н. Любимов // Биомедицинский журнал, 2004, Т. 5, С. 62], растворимость O2 и CO2 в смеси цис- и транс-перфтордекалинов соответствует 40 и 180% по объему.

Наиболее близким к настоящему изобретению является патент РФ №2430780 (10.10.2011), где предложен способ приготовления нанокатализатора для синтеза ФТ на основе рутения, который включает этап диспергирования соли рутения (RuCl3⋅nH2O) в растворе полимерного стабилизатора - поли N-винил-2-пирролидона (ПВП) в метаноле, и этап растворения суспензии в ионной жидкости 1-бутил-3-метилимидазол тетрафторборат (сокращенно [BMIM][BF4) с последующим удалением метанола и восстановлением соли металла водородом при температуре 100-200°C. Также имеется пример использования в качестве катализатора комплекса кобальта CoCl2⋅6H2O, диспергированного в ПВП. Недостатком предлагаемой каталитической системы с использованием комплекса кобальта в ПВП является его низкая каталитическая активность. Так, в примере №9 при температуре 170°C и давлении 30 атм активность, выражаемая в частоте оборотов (мольCo/мольRu⋅ч), составляет всего 0,02.

Техническим результатом изобретения является разработка эффективных нанокатализаторов и каталитической системы, позволяющей существенно увеличить каталитическую активность металлического кобальта и повысить производительность процесса синтеза Фишера-Тропша.

Для достижения технического результата предложены нанокатализаторы на основе комплексных солей кобальта для синтеза Фишера-Тропша, содержащие наночастицы кобальта, диспергированные в ионных жидкостях, отличающиеся тем, что в качестве комплексных солей кобальта выбираются карбоксилатный Co2(CO)8 (пиволатный) и фталоцианиновый (C32H16N8Co) комплексы кобальта или их комбинации, а в качестве диспергатора наночастиц кобальта выбираются ионные жидкости, типа 1-бутил-3-метилимидазол тетрафторборат (сокращенно [BMIM][BF4]), производства Merck с чистотой >98%, и 1-бутил-3-метилимидазолий бис(трифторборатсульфонил)имид (сокращенно [BMIM]N(SO2BF3)2), производства Across Organic с чистотой >97,0%.

Способ осуществления реакции Фишера-Тропша с использованием нанокатализаторов проводят в автоклаве при температуре 280°C, давлении синтез-газа с мольным соотношением H2/CO=2, равном 60 атм при перемешивании реакционной массы, представляющей собой смесь нанокатализатора и ионной жидкости. Для улучшения газопереноса в трехфазной каталитической системе используются добавки перфторуглеродов, в виде перфтордекалина (ПФД) и перфтордиметилциклогексана (условное наименование в РФ карбогал, обозначаемый в дальнейшем как КБГ). Массовое соотношение нанокатализатор: ионная жидкость: перфторуглеводород составляет 0,04:1:1.

Изобретение иллюстрируется следующими примерами:

Примеры 1-3. В PARR-300 автоклав (объем 300 мл) загружали 0,4 г катализатора, 10 мл ионной жидкости (в сравнительных примерах) и дополнительно 10 мл перфторуглеводородов (в примерах по изобретению).

В качестве катализаторов использовали:

- Co2(CO)8,

- фталоцианиновый комплекс кобальта - C32H16N8Co.

Фталоцианиновый комплекс кобальта был получен сплавлением o-фталевой кислоты, взятой в количестве 53 г, с 12,4 г безводного хлорида кобальта (II) и 120 г мочевины в присутствии 9 г хлорида аммония и 1 г молибдата аммония в качестве катализатора. Сплавление проводили при температуре 200-210°C в течение шести часов. После охлаждения сплав был измельчен до состояния порошка.

Автоклав продували азотом, заполняли его синтез-газом (H2/CO=2/1) при давлении 60 атм, нагревали автоклав до 280°C в течение 40 минут при перемешивании реакционной массы (500 об/мин) и выдерживали в течение 1 часа. Затем автоклав охлаждали и в ходе стравливания давления анализировали газообразные продукты. Жидкие у/в продукты анализировали после экстракции реакционной смеси толуолом.

Анализ газообразных и жидких углеводородных продуктов реакции проводили на хроматографе модели "3700" с использованием ПИД и капиллярной колонки SE-54 (25 м) в программируемом режиме 60°C (8 мин) далее подъем температуры со скоростью 8°/мин до 180°C. Анализ на водород и оксид углерода проводили на том же хроматографе с использование набивной колонки с молекулярными ситами 5 Å (3 м) с использованием детектора катарометр. Конверсию оксида углерода оценивали методом абсолютной калибровки с использованием хроматографической петли фиксированного объема.

В таблице 1 приведены примеры осуществления предлагаемого способа, а также сравнительные примеры №4 и 5.

Сравнение результатов по предлагаемому в настоящем изобретении способу (примеры №1-2) осуществления процесса Фишера-Тропша, с одной стороны, и сравнительных примеров №4-5 без добавок перфторуглеводородов показывает, что использование в предлагаемом способе добавок перфторуглеводородов приводит к существенному (в 4-20 раз) росту каталитической активности. В примере №1 наблюдается максимальный выход жидких у/в - 0,7 г при конверсии CO, равной 59%. Производительность процесса в примере №1, измеряемая в частоте оборотов (TOF), составила 210 мольCO/мольCo⋅ч. При проведении реакции в более мягких условиях (пример в таблице 1 не представлен) при температуре 170°C и давлении 30 атм, т.е в условиях, аналогичных примеру №9 изобретения-прототипа, частота оборотов для использованной в настоящем изобретении каталитической системы C32H16N8Co -[BMIM][BF4] - ПФД (по примеру №1) составила 4, что существенно выше, чем показатели по изобретению-прототипу. Так, в изобретении-прототипе для катализатора CoCl2⋅6H2O, диспергированного в поли N-винил-2-пирролидоне, TOF составила всего 0,02 мольCO/мольCo⋅ч, при этом даже в лучшем примере для рутениевого катализатора (RuCl3⋅nH2O) и ионной жидкости [BMIM][BF4], используемой на стадии приготовления каталитической системы, TOF составляла 0,52 мольCO/мольRu⋅ч.

В жидких продуктах реакции по примеру №1 преобладают смесь н-парафинов до C12, как и в традиционном синтезе Фишера-Тропша.

В примере №3 по предлагаемому изобретению даже при использовании добавки ПФД наблюдается достаточно низкая конверсия CO (около 3%), при этом жидкие продукты наблюдаются лишь в следовых количествах. Однако в составе газа, стравливаемого из автоклава в ходе сброса давления до атмосферного, мы наблюдали образование у/в до C1-C8 с преобладающим содержанием C8, что свидетельствует о низком вкладе реакции метанизации в ходе процесса Ф-Т.

Следует отметить, что добавкой перфтордекалина мы пытались увеличить растворимость синтез-газа в каталитической системе и газоперенос (например, вывод образующегося в ходе реакции побочного продукта CO2) и тем самым повысить каталитическую активность кобальтового катализатора. Однако оказалось, что использованная в примере №3 ионная жидкость [BMIM]N(SO2BF3)2, в отличие от [BMIM][BF4], не смешивается с ПФД.

Т.о., техническим результатом предлагаемого изобретения является существенное увеличение активности кобальтовых катализаторов и, соответственно, повышение производительности синтеза Фишера-Тропша за счет сокращения времени проведения реакции (до 1 часа, вместо используемых в прототипе 8-14 часов).

Следует отметить, что в предлагаемом процессе катализатор можно легко отелить от углеводородных продуктов и использовать повторно. Все вышеупомянутые достоинства предполагают широкие перспективы применения добавок предлагаемых перфторуглеродов в каталитические системы для процесса Фишера-Тропша, а возможно и в других подобных трехфазных каталитических процессах.

1. Катализатор на основе комплексных солей кобальта для синтеза Фишера-Тропша, содержащий частицы кобальта, отличающийся тем, что в качестве комплексной соли кобальта выбирают фталоцианиновый комплекс кобальта (C32H16N8Co), а в качестве диспергатора частиц кобальта выбирают ионные жидкости 1-бутил-3-метилимидазол тетрафторборат или 1-бутил-3-метилимидазолий бис(трифторборатсульфонил)имид.

2. Способ осуществления реакции Фишера-Тропша с использованием катализатора по п. 1 проводят в автоклаве при температуре 280°С, давлении синтез-газа с мольным соотношением Н2/СО = 2, равном 60 атм при перемешивании реакционной массы, представляющей собой смесь катализатора и ионной жидкости, отличающийся тем, что реакцию проводят с добавлением к реакционной массе перфтордекалина при массовом соотношении - катализатор : ионная жидкость : перфтордекалин = 0,04:1:1.



 

Похожие патенты:

Изобретение относится к способу получения жидкого углеводородного продукта из синтез-газа, полученного из биомассы. В способе осуществляют стадии: 1) смешивание сырого синтез-газа, полученного в газификаторе биомассы, с насыщенным водородом газом, где объемное отношение насыщенного водородом газа к сырому синтез-газу находится между 0,7 и 2,1; 2) подачу газообразной смеси, полученной на стадии 1), на установку дегидратации для удаления влаги, углекислого газа и других вредных примесей, содержащихся в газе, получение синтез-газа, удовлетворяющего требованиям реакции синтеза Фишера-Тропша; 3) реагирование синтез-газа, полученного на стадии 2) в реакторе синтеза Фишера-Тропша, где синтез осуществляют в присутствии катализатора с целью производства жидкого углеводородного продукта при температуре от 150°C до 300°C и давлении от 2 до 4 МПа, осуществляют отведение воды, произведенной в синтезе, 4) возвращают от 70 об.% до 95 об.% отработанных газов, произведенных на стадии 3), на стадию 3) для смешивания с синтез-газом и подачу газовой смеси в реактор синтеза Фишера-Тропша.

Изобретение относится к способу получения предшественника катализатора. Способ включает приведение в контакт материала подложки катализатора с предшественником модифицирующего компонента в жидкой среде для пропитки, необязательно прокаливание содержащего модифицирующий компонент материала подложки катализатора при температуре выше 100°С с получением модифицированной подложки катализатора и введение соединения предшественника кобальта (Со) в качестве активного компонента катализатора на и/или в (i) материал подложки катализатора перед приведением в контакт материала подложки катализатора с предшественником модифицирующего компонента, (ii) содержащий модифицирующий компонент материал подложки катализатора и/или (iii) модифицированную подложку катализатора, посредством чего получают предшественник катализатора.
Изобретение относится к способу приготовления предшественника кобальтсодержащего катализатора синтеза углеводородов, который включает прокаливание загруженного катализатором носителя, представляющего собой носитель катализатора для нанесения на него соли кобальта, нанесение на носитель соли кобальта и последующее разложение соли кобальта и/или реакцию соли кобальта с кислородом; таким образом, что при прокаливании соль кобальта превращается в оксид кобальта, причем прокаливание включает нагревание носителя катализатора с нанесенной солью в интервале температур 90-220°С, с использованием одного или нескольких периодов быстрого нагревания в определенном интервале температур, причем нагревание носителя катализатора с нанесенной солью протекает со скоростью по меньшей мере 10°С/мин при скорости потока газа через носитель катализатора с нанесенной солью по меньшей мере 5 м3 н/кг соли кобальта/час; одного или нескольких периодов медленного нагревания в определенном интервале температур, причем нагревание носителя катализатора с нанесенной солью протекает со скоростью менее 6°С/мин для прокаливания соли кобальта и приготовления предшественника кобальтсодержащих катализаторов синтеза углеводородов.

Изобретение раскрывает способ получения предшественника кобальтсодержащего катализатора для синтеза углеводородов, где способ включает прокаливание нагруженной катализатором подложки, содержащей подложку катализатора с нанесенной солью кобальта, при этом прокаливание включает разложение соли кобальта и/или осуществление взаимодействия соли кобальта с кислородом, причем прокаливание превращает соль кобальта в оксид кобальта и прокаливание включает предоставление нагруженной катализатором подложки для тепловой обработки путем нагревания нагруженной катализатором подложки до температуры Т по меньшей мере 220°С при скорости нагревания ниже 10°С/минуту, и пропускание потока газа при объемной скорости по меньшей мере 19 м3 n/кг соли кобальта/час через нагруженную катализатором подложку в течение, по меньшей мере, части нагревания до температуры Т 220 ºС с получением таким образом предшественника кобальтсодержащего катализатора.

Изобретение относится к химической промышленности, в том числе нефтехимии и газохимии, и может быть использовано при приготовлении катализаторов для процесса получения углеводородов из СО и H2 по методу Фишера-Тропша.
Изобретение относится к способу приготовления предшественника катализатора, который включает приведение в контакт материала носителя катализатора с соединением вольфрама с получением вольфрамсодержащего материала носителя катализатора; прокаливание вольфрамсодержащего материала носителя катализатора при температуре выше 900°C с получением модифицированного носителя катализатора, в котором достаточное количество соединения вольфрама используют таким образом, что соединение вольфрама присутствует в массе и на поверхности материала носителя катализатора в количестве не больше чем 12 мас.% W в расчете на общую массу модифицированного носителя катализатора; и введение соединения предшественника активного компонента катализатора, выбранного из группы, состоящей из кобальта (Со), железа (Fe) и никеля (Ni) на поверхность и/или в массу модифицированного носителя катализатора с получением предшественника катализатора.

Изобретение предлагает систему и способ парогазовой конверсии. Способ парогазовой когенерации на основе газификации и метанирования биомассы включает: 1) газификацию биомассы путем смешивания кислорода и водяного пара, полученных из воздухоразделительной установки, с биомассой, транспортировку образующейся в результате смеси через сопло в газификатор, газификацию биомассы при температуре 1500-1800°С и давлении 1-3 МПа с получением неочищенного газифицированного газа и транспортировку перегретого пара, имеющего давление 5-6 МПа, полученного в результате целесообразной утилизации тепла, к паровой турбине; 2) конверсию и очистку: в соответствии с требованиями реакции метанирования корректировку отношения водород/углерод неочищенного газифицированного газа, образованного на стадии 1), до 3:1 с использованием реакции конверсии и извлечение при низкой температуре неочищенного газифицированного газа с использованием метанола для десульфуризации и декарбонизации, в результате чего получают очищенный сингаз; 3) проведение метанирования: введение очищенного сингаза стадии 2) в секцию метанирования, состоящую из секции первичного метанирования и секции вторичного метанирования, причем секция первичного метанирования содержит первый реактор первичного метанирования и второй реактор первичного метанирования, соединенные последовательно; предоставление возможности части технологического газа из второго реактора первичного метанирования вернуться к входу первого реактора первичного метанирования для смешивания со свежим подаваемым газом и далее возможности войти в первый реактор первичного метанирования, так что концентрация реагентов на входе первого реактора первичного метанирования уменьшается и температура слоя катализатора регулируется технологическим газом; введение сингаза после первичного метанирования в секцию вторичного метанирования, содержащую первый реактор вторичного метанирования и второй реактор вторичного метанирования, соединенные последовательно, где небольшое количество непрореагировавшего СО и большое количество CO2 превращается в CH4, и транспортировку перегретого пара промежуточного давления, образованного в секции метанирования, к паровой турбине; и 4) концентрирование метана: концентрирование метана синтетического природного газа, содержащего следовые количества азота и водяного пара, полученного на стадии 3), с помощью адсорбции при переменном давлении, так что молярная концентрация метана достигает 96% и теплотворная способность синтетического природного газа достигает 8256 ккал/Nм3.

Изобретение относится к способу синтеза углеводородов. Способ включает следующие стадии: (a) получение потока синтез-газа, обогащенного водородом, в генераторе синтез-газа, содержащем установку парового риформинга метана (SMR) и (или) установку автотермического риформинга (ATR), (b) каталитическое превращение указанного потока синтез-газа, обогащенного водородом, с получением указанных углеводородов, содержащих по меньшей мере нафту, (c) возврат по меньшей мере части указанной нафты в указанный генератор синтез-газа с получением улучшенного потока синтез-газа, обогащенного водородом, и (d) подача указанного улучшенного потока синтез-газа, обогащенного водородом, полученного на стадии (с), для превращения согласно стадии (b) для увеличения количества синтетического дизельного топлива в упомянутых углеводородах.

Изобретение относится к системе, включающей: систему получения заменителя природного газа (ЗПГ), включающую: газификатор для производства синтез-газа, радиационный охладитель синтез-газа (РОС) для охлаждения синтез-газа посредством передачи тепла от синтез-газа текучей среде в пути потока, где РОС имеет длину от приблизительно 21,3 м (70 футов) до приблизительно 30,5 м (100 футов), и устройство метанирования для производства ЗПГ из синтез-газа.

Изобретение относится к способу получения продукта из газообразного реагента в суспензии. Способ включает подачу газообразного реагента в качестве газообразного сырья или части газообразного сырья при приведенной скорости газа на входе по меньшей мере 0.5 м/с в сосуд, содержащий расширенный суспензионный слой твердых частиц катализатора, суспендированных в суспензионной жидкости, так что газообразный реагент может барботировать наверх через суспензионный слой, причем суспензионный слой содержит загрузку катализатора, составляющую по меньшей мере 20 об.% от откачанной суспензии, каталитическую реакцию газообразного реагента при давлении выше атмосферного по мере того, как пузырьки газообразного реагента барботируют наверх через суспензионный слой с образованием продукта, и отвод из сосуда продукта и непрореагировавшего газообразного реагента.

Изобретение относится к медицине, в частности к средству, обладающему противоопухолевой активностью, а также к способу получения средства и его применению. Способ получения средства включает взаимодействие арабиногалактанового сырья и диоксида селена или солей селенистой кислоты в растворителе с последующим осаждением в этиловый спирт, или ацетон, или другой смешивающийся с водой органический растворитель.
Изобретение относится к области теплопроводящих диэлектрических материалов и может найти применение при изготовлении теплоотводящих прокладок, лент, герметиков, заливочных компаундов для чипов компьютерной памяти, изделий силовой электронике, портативных устройств, блоков электропитания и силовых преобразователей, в которых необходимо обеспечить теплоотвод от теплонагруженных элементов и узлов.

Изобретение относится к технологиям получения износостойких, прочностных тонких алмазных пленок методом вакуумной лазерной абляции и может быть использовано в различных областях промышленности и науки для получения тонкопленочных упрочняющих покрытий и создания наноструктурных материалов.
Изобретение относится к машиностроению и может быть использовано при изготовлении деталей с повышенной жаростойкостью. В жаростойком металлокерамическом покрытии, состоящем из чередующихся слоев тугоплавких окислов металлов, разделенных компенсационными слоями пластичного металла, слои тугоплавких окислов дополнительно содержат не более 40% пластичного металла, а компенсационные слои дополнительно содержат не более 20% тугоплавких окислов.

Изобретение относится к способам получения стабильных электрохромных покрытий на основе берлинской лазури и проводящего полимерного компонента и может быть использовано при получении электрохромных слоев на поверхности оптически прозрачных электродов для применения в архитектурно-строительной и автомобильной промышленностях.

Изобретение относится к химии, оптоэлектронике и нанотехнологии и может быть использовано при изготовлении прозрачных электродов и приборов наноэлектроники. В кварцевый реактор помещают подложку - Х-срез пьезоэлектрического кристалла, например, La3Ga5,5Ta0,5O14, плоскости (110) которого параллельны поверхности кристалла.

Изобретение относится к области получения нанопористых материалов на основе кремний-алюминиевых аэрогелей и может быть использовано для создания чувствительных элементов измерительных устройств газовых сенсоров, используемых в энергетике, химической промышленности, а также анализа выдыхаемого воздуха - в медицине.

Изобретение относится к технологии получения керамических наноматериалов, а именно дискретных нанотрубок нитрида бора, применяющихся в качестве упрочняющей фазы для полимерных и металлических матриц.

Изобретение относится к способам получения нанопористых керамических материалов, в частности из нитрида бора, применяемых для очистки газов или жидкостей от вредных примесей, а также для сорбции и хранения водорода.

Изобретение относится к области получения покрытий, содержащих двумерные керамические структуры, а именно нанолисты гексагонального нитрида бора, имеющие толщину 1-10 нм и характерный линейный размер от 100 нм до 5 мкм, которые могут применяться в качестве носителя катализаторов, а также для придания поверхности гидрофобных свойств.

Изобретение относится композиции на основе оксида диалкилолова, такого как ДБОО, которая может быть использована в качестве катализатора переэтерификации при синтезе сложных (мет)акриловых эфиров.
Наверх