Устройство для измерения расхода жидких сред

Изобретение относится к измерению расхода текучих сред и предназначено для измерения расхода сильнополярных диэлектрических жидкостей. Устройство содержит входной и выходной каналы, цилиндрический корпус, ось которого перпендикулярна оси входного и выходного каналов, рабочий и измерительный электроды, укрепленные на торцевых изолирующих втулках корпуса, проточную часть, образованную внутренними боковыми стенками корпуса и торцевыми изолирующими втулками. Низковольтный источник питания соединен с рабочим электродом. Между измерительным электродом и землей включен измерительный прибор. Электроды имеют форму сегмента диска с углом разворота не более 180° и укреплены на торцевых изолирующих втулках строго симметрично относительно оси входного и выходного каналов с равным удалением от одного из каналов. Устройство обладает повышенной чувствительностью. 5 ил.

 

Изобретение относится к измерению расхода текучих сред и предназначено для измерения расхода сильнополярных диэлектрических жидкостей.

Известен поляризационный расходомер, содержащий диэлектрический корпус прямоугольной формы, электроды, установленные на двух противоположных стенках корпуса, источник питания и измерительный прибор, включенный между одним из электродов и общей шиной /1/. Принцип действия расходомера основан на измерении суммы токов проводимости и токов поляризации, которые появляются за счет поля связанных зарядов в движущейся сильнополярной диэлектрической жидкости. Токи поляризации создают электрическое поле поляризации, которое ослабляет внешнее поле, создаваемое источником питания. Разницу этих токов, зависящую от расхода измеряемой жидкости, и фиксирует измерительный прибор.

Доминирующей поляризационной компонентой в расходомере /1/ является продольная (вдоль оси диэлектрического корпуса прямоугольной формы), которая пропорциональна первой производной скорости измеряемой жидкости вдоль продольной оси.

Недостатком такого расходомера является низкая чувствительность, обусловленная теоретически полной взаимокомпенсацией продольной поляризационной компоненты в межэлектродном промежутке проточной части. И заявленная (защищенная) чувствительность измерения расхода в аналоге /1/ обусловлена чисто технологической несимметрией распределения продольной компоненты скорости вдоль продольной оси в межэлектродном промежутке проточной части, в связи с чем полной взаимокомпенсации продольной поляризационной компоненты не наблюдается.

Известен поляризационный расходомер, содержащий металлический цилиндрический корпус, входной канал, ось которого перпендикулярна оси металлического корпуса, рабочий и измерительный электрод в форме сегмента сферы, укрепленные на изолирующих втулках, расположенных на торцевых поверхностях корпуса, образующие с его внутренними боковыми стенками проточную часть, источник питания для подачи напряжения на рабочий электрод и измерительный прибор, включенный между измерительным электродом и землей /2/.

Доминирующей поляризационной компонентой в расходомере /2/ является поперечная (перпендикулярная оси металлического цилиндрического корпуса), которая пропорциональна первой производной ортогональной компоненте полного вектора скорости измеряемой жидкости вдоль продольной оси.

Недостатком такого расходомера является низкая чувствительность, обусловленная теоретически полной взаимокомпенсацией ортогональной поляризационной компоненты в межэлектродном промежутке проточной части. И заявленная (защищенная) чувствительность измерения расхода в аналоге /2/ обусловлена чисто технологической несимметрией распределения ортогональной компоненты скорости вдоль ортогональной оси в межэлектродном промежутке проточной части, в связи с чем полной взаимокомпенсации ортогональной поляризационной компоненты не наблюдается.

Прототипом заявленного изобретения является устройство для измерения расхода жидких сред, содержащее цилиндрический корпус, входной канал, ось которого перпендикулярна оси корпуса, рабочий и измерительный электроды укрепленных на изолирующих втулках образующих с внутренними боковыми стенками корпуса проточную часть, низковольтный источник питания для подачи напряжения на рабочий электрод и измерительный прибор, включенный между измерительным электродом и землей /3/.

Доминирующей поляризационной компонентой в расходомере /3/ является продольная (вдоль оси цилиндрического корпуса), которая пропорциональна первой производной скорости измеряемой жидкости вдоль продольной оси.

Недостатком такого расходомера является низкая чувствительность, обусловленная теоретически полной взаимокомпенсацией продольной поляризационной компоненты в межэлектродном промежутке проточной части. И заявленная (защищенная) чувствительность измерения расхода в прототипе /3/ обусловлена чисто технологической несимметрией распределения продольной компоненты скорости вдоль продольной оси в межэлектродном промежутке проточной части, в связи с чем полной взаимокомпенсации продольной поляризационной компоненты не наблюдается.

Технический результат, создаваемый изобретением - увеличение чувствительности датчика расхода.

Указанный результат достигается тем, что в устройстве для измерения расхода, содержащем входной и выходной каналы, цилиндрический корпус, ось которого перпендикулярна оси входного и выходного каналов, рабочий и измерительный электроды, укрепленные на торцевых изолирующих втулках корпуса, проточную часть, образованную внутренними боковыми стенками корпуса и торцевыми изолирующими втулками, низковольтный источник питания для подачи напряжения на рабочий электрод, измерительный прибор, включенный между измерительным электродом и землей, электроды имеют форму сегмента диска с углом разворота не более 180° и укреплены на торцевых изолирующих втулках строго симметрично относительно оси входного и выходного каналов с равным удалением от одного из каналов.

Положительным эффектом при осуществлении заявляемого технического решения будет увеличение чувствительности датчика расхода.

Предлагаемое устройство для измерения расхода приведено на фиг. 1 а, 1 б.

Устройство для измерения расхода содержит корпус 1, рабочий электрод 2, измерительный электрод 3, входной 4 и выходной 5 каналы, торцевые изолирующие втулки корпуса 6 и 7, проточную часть 8. Проточная часть 8 образована внутренними боковыми стенками корпуса 1 и торцевыми изолирующими втулками корпуса 6 и 7 с укрепленными на них электродами 3 и 4.

Схема для подключения устройства для измерения расхода приведена на фиг. 2.

На рабочий электрод 2 подается напряжение 20-60 B от источника 9. Измерительный прибор 10, которым является миллиамперметр, подключенный к измерительному электроду 3, заземляется.

Статическая характеристика устройства для измерения расхода приведена на фиг. 3.

Работа устройства для измерения расхода осуществляется следующим образом. Рабочий поток жидкости подается в устройство по входному каналу 4, ось которого перпендикулярна оси цилиндрического корпуса 1. Далее поток попадает в проточную часть 8 устройства. Проточная часть 8 образована поверхностями рабочего 2 и измерительного 3 электродов, которые укреплены на торцевых изолирующих втулках 6 и 7 и внутренними стенками корпуса 1. От источника управляющего напряжения 9 подают напряжение порядка 60 B на рабочий электрод 2. Под действием внешнего электрического поля диэлектрическая сильнополярная жидкость поляризуется, молекулы диэлектрика будут ориентироваться вдоль силовых линий поля, создавая при этом внутреннее электрическое поле, которое направлено противоположно внешнему полю и ослабляет его.

Анализ гидродинамики и электростатики прототипа /3/ показывает, что устройство основано на измерении тока, континуальная плотность которого может быть представлена в виде (Фиг. 4а, б, в):

,

где jz - проекция вектора плотности полного тока в межэлектродном промежутке проточной части на вертикальную ось z, А/м2;

ρe - объемная плотность заряда, которая создает ток проводимости между электродами, Кл/м3;

b - коэффициент подвижности зарядов в среде, м/Вс;

Ez - напряженность электрического поля вдоль оси z в континууме межэлектродного промежутка, В/м;

Vy - проекции вектора скорости измеряемой среды на ось y, м/с;

Pz - проекции вектора поляризации электрического поля в континууме межэлектродного промежутка на ось z, Кл/м2 (напомним, что Pz=χε0Ez, где - χ диэлектрическая восприимчивость диэлектрика, 1; ε0 - электрическая постоянная, ; Ez - напряженность электрического поля в континууме межэлектродного промежутка, В/м).

Проанализируем (1).

1) Компонента ρebEz является основой тока проводимости между электродами. Она тем больше, чем больше ρe (загрязненность жидкости) и Ez (напряжение между электродами , где d - расстояние между электродами, м), тем больше ток проводимости, который в «чистом» виде измеряется между электродами при отсутствии расхода измеряемой жидкости.

2) Компонента . Первый сомножитель компонента скорости Vy является в проточной части доминирующим, однако второй сомножитель по всей проточной части практически равен нулю, поскольку напряженность электростатического поля Ez по всей проточной части при плоскопараллельных электродах постоянна (Ez = const).

3) Компонента . На Фиг.4 б приведено континуальное распределение компоненты скорости Vy по каждой точке проточной части межэлектродного промежутка. Первая частная производная этой скорости по координате y (вдоль оси входного и выходного каналов) также приведена на Фиг.4 б. Из графика распределения сомножителя по всей проточной части межэлектродного промежутка следует, что наблюдается полная взаимокомпенсация продольной поляризационной компоненты в межэлектродном промежутке проточной части. Т.е. в прототипе /3/ наблюдаемая экспериментально поляризационная компонента полного тока обусловлена чисто технологической несимметрией распределения продольной компоненты скорости вдоль продольной оси у в межэлектродном промежутке проточной части. Именно поэтому, в частности, ток в измерительной цепи с возрастанием расхода уменьшается.

В предлагаемом техническом решении этот недостаток исключен принципиально (Фиг. 4, в): электроды имеют форму сегмента диска с углом разворота не более 180° и укреплены на торцевых изолирующих втулках строго симметрично относительно оси входного и выходного каналов с равным удалением от одного из каналов. Таким образом, при работе устройства используется одна из двух взаимокомпенсирующихся поляризационных компонент, которая фиксируется электродами - полудисками (в частности, сектора 2+3 на Фиг. 4 в). Именно этот факт и является причиной увеличения чувствительности измерения расхода в заявляемом техническом устройстве по сравнению с прототипом /3/.

На фиг. 3 приведены статические характеристики устройств для измерения расхода (кривая 1 для прототипа /3/, кривая 2 - для заявляемого технического решения).

Условия проведения экспериментов: измеряемая среда - питьевая водопроводная вода при температуре 20°C; напряжение на рабочем электроде 60 B; расстояние между электродами 5 мм; диаметр электродов 30 мм; материал электродов - алюминий.

Из приведенных статических характеристик видно, что при заданной геометрии устройства рабочим метрологическим диапазоном измерения расхода является диапазон 0-15 см3/с, где наблюдается линейность статических характеристик с максимальной чувствительностью (крутизной). Уменьшение чувствительности при увеличении расхода более 15 см3/с объясняется, скорее всего, возникновением переходного режима в проточной части: от ламинарного к турбулентному с возникновением вихрей, которые, как известно, снижают поляризационные эффекты в сильнополярных диэлектрических жидкостях (вода ε=81, глицерин ε=43, спирт ε=26).

График статической характеристики прототипа /3/ (кривая 1, фиг.4 б) проходит выше, чем у заявляемого технического решения (кривая 2, фиг.4 б), что объясняется снижением ровно в 2 раза площади каждого из электродов в заявляемом техническом решении.

На метрологически обоснованном диапазоне измерения расхода (0-15 см3/с) чувствительность (крутизна) статической характеристики прототипа /3/ (кривая 1, фиг. 4 б) составляет 6,66 мА/(см3/с), чувствительность (крутизна) статической характеристики заявленного технического решения (кривая 2, фиг. 4 б) составляет 8,33 мА/(см3/с).

Если же взять метрологически эффективный диапазон измерения расхода (0-5 см3/с), чувствительность (крутизна) статической характеристики прототипа /3/ (кривая 1, фиг. 4 б) составляет 10,0 мА/(см3/с), чувствительность (крутизна) статической характеристики заявленного технического решения (кривая 2, фиг. 4 б) составляет 20 мА/(см3/с).

Таким образом, технико-экономические преимущества предлагаемого технического решения перед прототипом /3/ очевидны.

Заявляемое техническое решение может быть реализовано и путем сложения секторов 4+5 (фиг. 5 а). Чувствительность измерения расхода останется такой же, как и в случае сложения секторов 2+3 (фиг. 5 б), что описано выше.

Источники информации

1. А.с. СССР 1553830 – аналог.

2. Патент РФ 2130590 – аналог.

3. Патент РФ 2148798 – прототип.

Устройство для измерения расхода, содержащее входной и выходной каналы, цилиндрический корпус, ось которого перпендикулярна оси входного и выходного каналов, рабочий и измерительный электроды, укрепленные на торцевых изолирующих втулках корпуса, проточную часть, образованную внутренними боковыми стенками корпуса и торцевыми изолирующими втулками, низковольтный источник питания для подачи напряжения на рабочий электрод, измерительный прибор, включенный между измерительным электродом и землей, отличающееся тем, что электроды имеют форму сегмента диска с углом разворота не более 180° и укреплены на торцевых изолирующих втулках строго симметрично относительно оси входного и выходного каналов с равным удалением от одного из каналов.



 

Похожие патенты:

Изобретение относится к ядерно-магнитному расходомеру для измерения расхода протекающей через измерительную трубу среды. Ядерно-магнитный расходомер для измерения расхода протекающей через измерительную трубу среды содержит намагничивающее устройство для намагничивания протекающей через измерительную трубу среды на участке намагничивания вдоль продольной оси измерительной трубы, которое для создания служащего для намагничивания среды магнитного поля снабжено постоянными магнитами и имеет по меньшей мере два расположенных друг за другом в направлении продольной оси измерительной трубы намагничивающих сегмента, причем и при различной по длине участка намагничивания напряженности магнитного поля в среде по всему участку намагничивания магнитное поле имеет одинаковое направление или же все магнитные поля имеют одинаковое направление, при этом каждый из намагничивающих сегментов имеет укомплектованный постоянными магнитами внутренний держатель и укомплектованный постоянными магнитами наружный держатель, при этом внутренний держатель расположен вокруг измерительной трубы, а наружный держатель - вокруг внутреннего держателя, при этом для варьирования напряженности магнитного поля в среде и тем самым также для варьирования намагничивания среды ориентация между внутренним держателем и наружным держателем является регулируемой за счет вращения внутреннего держателя и/или наружного держателя вокруг поворотной оси сегмента.

Предлагаемое изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами. Техническим результатом заявляемого технического решения является упрощение процедуры измерения концентрации и повышение точности измерения.

Способ измерения расхода электропроводных жидкостей относится к области приборостроения, а именно к технике измерения расхода электропроводных жидкостей с помощью электромагнитных расходомеров.

Изобретение относится к технике измерения расхода электропроводных жидкостей с помощью электромагнитных расходомеров. Способ измерения расхода электропроводных жидкостей реализуется с помощью первичного преобразователя расхода, на трубопроводе которого расположена магнитная система с обмотками возбуждения и установлены два диаметрально-противоположно расположенных электрода.

Настоящее изобретение относится к обработке жидкой среды и главным образом к измерениям технологического потока и управлению им. В частности, изобретение относится к способам измерения для электромагнитных расходомеров.

Изобретение относится к области измерительной техники и может быть использовано для измерения расхода воды, бензина, дизельного топлива, керосина. Устройство для измерения расхода жидкой среды содержит трубопровод из диэлектрического материала, постоянные магниты, расположенные по разные стороны от трубопровода, и колебательный контур, состоящий из катушки индуктивности и конденсатора, обкладки которого расположены по обе стороны от трубопровода.

Изобретение относится к области измерительной техники и может быть использовано для измерения расхода веществ, перемещаемых по трубопроводам, и применимо в пищевой, химической, нефтяной и других отраслях промышленности, в энергетике и др.

Способ контроля расхода и дозирования сыпучего материала включает пропуск материала из транспортера через входной патрубок на потокочувствительную турбинку типа лопастного метателя с горизонтальной осью вращения, приводимую в движение электродвигателем.

Способ относится к методам производственного контроля расхода и дозирования сыпучих материалов и может найти применение в отраслях промышленности, перерабатывающих сыпучие материалы.

Изобретение относится к силовой преобразовательной технике и является DC/DC-преобразователем с трансформаторной связью между источником питания и нагрузкой. Технический результат заключается в повышении эффективности и надежности заявленного устройства.

Предлагается узел (10) расходомерной трубы для магнитного расходомера. Узел (10) расходомерной трубы содержит трубу (12), проходящую от первого монтажного фланца (14) до второго монтажного фланца (16). Каждый из первого и второго монтажных фланцев (14, 16) имеет поверхность (15, 17), обращенную к фланцу трубопровода, для крепления к соответствующему фланцу трубопровода. Камера (42) катушки расположена снаружи трубы (12) между первым и вторым монтажными фланцами (14, 16). Камера (42) катушки имеет по меньшей мере одну катушку (40), расположенную внутри камеры и выполненную с возможностью генерировать магнитное поле внутри трубы (12). Модуль (22) гильзы/электрода расположен внутри трубы (12) и имеет неэлектропроводную гильзу, по меньшей мере один электрод (50, 51) и по меньшей мере один проводник (76, 78) электрода. Неэлектропроводная гильза проходит от первого монтажного фланца (14) до второго монтажного фланца (16). По меньшей мере один электрод (50, 51) расположен в неэлектропроводной гильзе для взаимодействия с электропроводной технологической текучей средой. Проводник (76, 78) электрода проходит от по меньшей мере одного электрода (50 51) до соединительного вывода (24), расположенного рядом с обращенной к трубопроводу поверхностью фланца одного из первого и второго монтажных фланцев (14, 16). Модуль (22) гильзы/электрода выполнен с возможностью позиционирования в трубе (12). Технический результат – возможность замены узла гильзы/электрода без привлечения электрика, что приводит к сокращению простоев. 3 н. и 19 з.п. ф-лы, 8 ил.
Наверх