Аппарат для охлаждения суспензий и растворов

Изобретение относится к оборудованию гидрометаллургических производств, предназначено для охлаждения суспензий и растворов, например, в процессе разложения алюминатных растворов методом декомпозиции при производстве глинозема из любых видов глиноземсодержащего сырья. Аппарат включает цилиндрический корпус с крышкой и днищем, трубные решетки, закрепленные в верхней и нижней частях корпуса, трубы для подачи суспензии или раствора, герметично закрепленные в трубных решетках, патрубки для подачи в трубное пространство и отвода из него суспензии или раствора, патрубки для подачи в межтрубное пространство и отвода из него воды - хладоагента. Дополнительно аппарат включает среднюю трубную решетку, разделяющую корпус на две отдельные цилиндрические обечайки с образованием зазора между нижней и средней трубными решетками, не охватываемого поверхностью обечаек, составляющих корпус. В трубы для подачи раствора или суспензии врезаны патрубки для подачи воздуха. Технический результат: улучшение условий охлаждения суспензии или раствора, что повышает величину коэффициента теплоотдачи; предотвращение отложений твердой фазы на поверхности труб; повышение работоспособности аппарата; снижение металлоемкости. 2 з.п. ф-лы, 2 ил., 2 табл.

 

Изобретение относится к оборудованию гидрометаллургических производств, предназначено для охлаждения суспензий и растворов, например, в процессе разложения алюминатных растворов методом декомпозиции при производстве глинозема из любых видов глиноземсодержащего сырья. Аппарат может использоваться также в других областях промышленности, где в соответствии с технологией производства требуется охлаждение суспензий и растворов.

Известен аппарат для охлаждения растворов и суспензий (теплообменник) типа «труба в трубе», представляющий собой ряд последовательно соединенных звеньев (Чернобыльский М.И. «Машины и аппараты химических производств», М., Машиностроение, 1975 г., с. 139). Каждое звено представляет собой две трубы разного диаметра, соосно помещенные одна в другую. Внутренние трубы соединены между собой «калачами». Наружные по торцам герметично соединены с внутренними заглушками, а между собой переточными патрубками. В полость, образованную внешней поверхностью внутренней трубы и внутренней поверхностью коаксиально установленной наружной трубы, т.е. в кольцевое пространство, подается либо вода, либо пар в зависимости от необходимости охлаждать или нагревать суспензию (раствор). При необходимости создания больших поверхностей теплообмена устанавливают несколько параллельно соединенных батарей, каждая из которых включает несколько последовательно соединенных с «калачами» звеньев.

К недостаткам этих теплообменников следует отнести громоздкость и большую металлоемкость, а также большое гидравлическое сопротивление, что предопределяет повышенные энергетические затраты на осуществление технологических процессов. Это обусловлено собственно конструкцией аппарата, поскольку поток раствора или суспензии, поступающий в теплообменник, многократно на 180° меняет направление своего движения. Кроме того, следует отметить быстрый эрозионный износ так называемых «калачей» в случае переработки суспензий. Наиболее близким по технической сущности и достигаемому результату к заявляемому решению является вертикальный кожухотрубчатый теплообменник с неподвижными трубными решетками (Дытнерский Ю.И. «Процессы и аппараты химической технологии», М., «Химия», ч. 1, 1995 г., с. 334).

Аппарат состоит из цилиндрической царги-корпуса, к которой с двух сторон приварены трубные решетки. В трубных решетках герметично завальцован пучок труб. К корпусу с помощью фланцевых соединений крепятся крышка и днище. Аппарат снабжен патрубками для подвода в трубное пространство и отвода из него раствора и подвода в межтрубное пространство и отвода из него теплоносителя. К недостаткам данной конструкции аппарата следует отнести большую металлоемкость, а также высокие энергетические затраты на подачу жидкости в трубное пространство, что связано с необходимостью увеличивать скорость ее движения с целью повышения коэффициента теплопередачи и предотвращения отложения твердой фазы на внутренней поверхности труб трубного пучка в случае переработки суспензий или пресыщенных растворов.

В основу изобретения поставлена задача повышения коэффициента теплопередачи и предотвращения отложения твердой фазы на внутренней поверхности труб при переработке суспензий или пересыщенных растворов, из которых в процессе охлаждения выделяется твердая фаза.

При этом техническим результатом является повышение работоспособности аппарата, снижение его металлоемкости, снижение энергетических затрат на осуществление заданных процессов.

Достижение технического результата обеспечивается тем, что аппарат для охлаждения суспензий или растворов, включающий цилиндрический корпус с крышкой и днищем, трубные решетки, закрепленные в верхней и нижней частях корпуса, трубы для подачи суспензии или раствора, герметично закрепленные в трубных решетках, патрубки для подачи в трубное пространство и отвода из него суспензии или раствора, патрубки для подачи в межтрубное пространство и отвода из него воды (хладоагента), дополнительно включает среднюю трубную решетку, разделяющую корпус на две отдельные цилиндрические обечайки с образованием зазора между нижней и средней трубными решетками, не охватываемого поверхностью обечаек, составляющих корпус, при этом в трубы для подачи раствора или суспензии врезаны патрубки для подачи воздуха.

Патрубки для подачи в трубы воздуха могут быть снабжены запорной арматурой с элементами регулирования подачи воздуха и байонетами.

Подача воздуха через патрубки в каждую из труб позволяет существенно повысить коэффициент теплопередачи за счет турбулизации потока, значительного повышения истинной скорости движения в трубах суспензии или раствора, что предопределяет снижение термического сопротивления пристенного слоя. Наличие на каждом из патрубков запорной арматуры с байонетом позволяет регулировать скорость движения суспензии или раствора в трубах за счет изменения расхода воздуха, а с помощью байонетов производить очистку патрубков в случае забивки их твердой фазой суспензии.

Эффективность работы заявляемого аппарата в определяющей степени зависит от величины коэффициента теплопередачи (К), который, в свою очередь, прямо пропорционален величине коэффициента теплоотдачи (α), от стенки трубы к нагреваемому (охлаждаемому) потоку жидкости (раствора или суспензии):

где

α0 - коэффициент теплоотдачи от теплоносителя (хладоносителя) к стенке трубы, Вт/м2 °С.

Величина коэффициента теплоотдачи α является функцией скорости потока жидкости (раствора или суспензии) в трубе:

Wж=G/S,

где:

Wж - приведенная скорость потока жидкости (раствора или суспензии), м/сек;

G - расход нагреваемой (охлаждаемой) жидкости, м3/с;

S - площадь поперечного сечения трубы, м2.

Чем больше величина Wж, тем больше коэффициент теплоотдачи α и, следовательно, коэффициент теплопередачи К.

При подаче воздуха в трубы аппарата в них существенно возрастает скорость нагреваемого (охлаждаемого) раствора или суспензии, поскольку так называемая истинная скорость жидкости (м/с) в трубах аппарата определяется, как:

Wж.и=Wж/1-ϕ,

где

Wж.и - истинная скорость жидкости, м/с;

ϕ - газосодержание системы, т.е. доля объема в газожидкостном потоке, занимаемая газовыми включениями.

Скорость воздуха в трубах аппарата определяется, как:

Wг=Qг/S,

где

Qг - расход воздуха, подаваемого в трубы аппарата, м3/с.

Ниже в таблицах 1 и 2 приводятся экспериментальные данные о влиянии скорости воздуха Wг на коэффициент теплоотдачи α, соответственно, при приведенных скоростях потока жидкости Wж=1,0 м/с=const и Wж=0,75 м/с=const.

Таким образом, увеличение скорости воздуха, подаваемого в трубы аппарата, существенно увеличивает значение коэффициента теплоотдачи и, следовательно, снижает (при прочих равных условиях) необходимые энергетические затраты на осуществление процесса.

Также известно основное уравнение теплопередачи:

Q=K*F*Δtср,

где

Q - тепловой поток (расход передаваемой теплоты), Вт;

K - коэффициент теплопередачи;

F - площадь поверхности теплообмена, м2;

t - средняя разность температур горячего и холодного теплоносителей, °С.

Таким образом, чем больше величина К, тем, при прочих равных условиях, необходима меньшая площадь поверхности теплообмена для передачи заданного теплового потока, т.е. требуется меньшее количество труб для установки в заявляемом аппарате, что однозначно снижает его металлоемкость.

Сущность изобретения поясняется следующими чертежами.

На фиг. 1 показана схема аппарата для охлаждения раствора и суспензии.

На фиг. 2 - поперечный разрез аппарата.

Аппарат для охлаждения суспензий или растворов включает цилиндрический корпус, состоящий из двух отдельных обечаек 1 и 2, днище 3 и крышку 4 с патрубками 5 и 6 соответственно для подачи и отбора перерабатываемой суспензии или раствора.

В каждой из обечаек герметично закреплены трубные решетки 7, 8 и 9, которые жестко соединены между собой трубами 10. В каждую из труб 10 врезаны патрубки 11, снабженные запорной арматурой с элементами регулирования подачи воздуха 12 и байонетами 13. Воздух (газ) в каждый из патрубков 11 подается по трубопроводам 14, которые, в свою очередь, соединены с кольцевым коллектором 15. В кольцевой коллектор 15 воздух (газ) подается по трубопроводу 16. Охлаждающий агент (вода) подается в межтрубное пространство через патрубок 17 и отводится из межтрубного пространства через патрубок 18. Вода может подводиться в межтрубное пространство сверху, через патрубок 18 и отводиться из него через патрубок 19.

Аппарат работает следующим образом.

Суспензия или раствор, подлежащие охлаждению, поступают в аппарат через патрубок 5. После заполнения аппарата до уровня расположения трубной решетки 9 открывается с помощью арматуры 12 подача воздуха в каждую из труб 10. Образующаяся в трубах 10 газожидкостная смесь с большой скоростью движется вверх и выводится из аппарата на дальнейшую переработку через патрубок 6. Таким образом, каждая из труб 10 начинает «работать» как эрлифт. Одновременно с подачей воздуха в трубы 10 открывается подача в межтрубное пространство аппарата через патрубок 17 воды (охлаждающего агента), которая выводится из межтрубного пространства через патрубок 18. При подаче воды на охлаждение в межтрубное пространство сверху через патрубок 18 она отводится через патрубок 19.

Таким образом, при подаче воздуха в трубы существенно улучшаются условия охлаждения суспензии или раствора за счет интенсивной турбулизации газожидкостной смеси, что предопределяет значительное повышение величины коэффициента теплоотдачи от массы движущегося по трубам потока к внутренней поверхности труб.

1. Аппарат для охлаждения суспензий или растворов, включающий цилиндрический корпус с крышкой и днищем, трубные решетки, закрепленные в верхней и нижней частях корпуса, трубы для подачи суспензии или раствора, герметично закрепленные в трубных решетках, патрубки для подачи в трубное пространство и отвода из него суспензии или раствора, патрубки для подачи в межтрубное пространство и отвода из него воды - хладоагента, отличающийся тем, что аппарат дополнительно включает среднюю трубную решетку, разделяющую корпус на две отдельные цилиндрические обечайки с образованием зазора между нижней и средней трубными решетками, не охватываемого поверхностью обечаек, составляющих корпус, при этом в трубы для подачи раствора или суспензии врезаны патрубки для подачи воздуха.

2. Аппарат по п. 1, отличающийся тем, что патрубки для подачи в трубы воздуха снабжены запорной арматурой с элементами регулирования подачи воздуха.

3. Аппарат по п. 2, отличающийся тем, что патрубки с запорной арматурой снабжены байонетами.



 

Похожие патенты:
Изобретение относится к теплотехнике и может быть использовано в энергетической, нефтехимической, пищевой и других отраслях. Сущность изобретения: теплообменный элемент кожухотрубных теплообменников, имеющий в своем составе трубные доски и теплообменные трубки, характеризующийся тем, что теплообменные трубки после короткого технологического прямолинейного участка выполнены по винтообразной линии диаметром, соответствующим месту входа-выхода трубки в трубных досках, а теплогидравлические характеристики трубок по направлению от периферии к центру выравниваются увеличением по дуге угла между входом-выходом трубки, изменением диаметра трубок, дросселированием, а также их комбинацией, выдерживая равенство отношения I/dэ.

Изобретение относится к системе трубопроводов для теплообменников для транспорта вязких жидкостей с большим количеством отдельных теплообменников в виде элементов трубопроводов и с предопределенным контролируемым распределением температуры и/или давления вдоль системы трубопроводов, а также в поперечном сечении трубопроводов, отличающейся тем, что на равных промежутках системы трубопроводов предусматриваются теплообменники в виде элементов трубопроводов, причем равные промежутки выбираются таким образом, чтобы поддержать предопределенное распределение температуры и/или давления, причем в теплообменниках предусматриваются средства, поддерживающие определенную температуру вязкой жидкости, транспортируемой в трубопроводе для теплообменника, а также в качестве опции смесительные элементы, чтобы в зависимости от поперечного сечения трубопроводов поддерживать заданное распределение температуры и/или давления в поперечном сечении трубопроводов, и причем, по меньшей мере, 30% длины системы трубопроводов для теплообменников оборудовано теплообменниками, а также к способу транспорта вязких жидкостей с помощью трубопроводов для теплообменников.

Изобретение относится к области теплотехники и может быть использовано для создания высокоэффективных малогабаритных теплообменников. В теплообменном модуле, включающем полый цилиндрический корпус, ограниченный торцевыми концевыми пластинами с отверстиями для прохождения первой среды по расположенным внутри корпуса сквозным каналам и имеющий в боковой стенке вблизи торцевых концевых пластин отверстия для входа и выхода второй среды, а также примыкающие к наружным сторонам торцевых концевых пластин замкнутые полости для подвода и отвода первой среды, все соседние каналы для прохождения первой среды соединены между собой продольными ребрами, разделяющими межканальное пространство на отдельные продольные каналы для прохождения второй среды и имеющими длину, меньшую длины каналов для прохождения первой среды с образованием кольцевых камер для накапливания второй среды, включающих отверстия в стенке корпуса для входа и выхода второй среды.

Изобретение относится к химической, нефтехимической и энергетической промышленности и может быть использовано для проведения каталитических процессов со значительными тепловыми эффектами при частичном превращении углеводородов.

Изобретения относятся к химической, нефтяной, газовой и другим отраслям промышленности, а именно к технологии и оборудованию, предназначенным для охлаждения влажного природного газа.

Изобретение относится к теплотехнике и может быть использовано в рекуперативных теплообменниках. Теплообменник содержит внешнюю трубу с подводящим и отводящим патрубками греющей среды и вставленную в нее внутреннюю трубу с подводящим и отводящим патрубками нагреваемой среды, в межтрубном пространстве установлены вставки, которые ступенчато расположены по длине внешней трубы с образованием ходов в межтрубном пространстве и введены во внутреннюю трубу с перекрытием не менее половины ее сечения.

Изобретение относится к области энергетики, предназначено для одновременного получения пресной воды, холода и электроэнергии. Достигаемые технические результаты - более высокая экономия потребляемой электроэнергии, вплоть до полной компенсации энергозатрат на собственные нужды установки, сопровождающаяся снижением количества выбросов токсичных и парниковых газов судовой энергетической установки, больший коэффициент полезного действия, а также возможность получать холод - получены путем совмещения процесса опреснения воды с получением холода и электроэнергии.

Изобретение относится к области теплотехники и может использоваться в теплообменниках для подогрева или охлаждения среды в жилищно-коммунальном хозяйстве. Теплообменник содержит наружную и U-образную внутреннюю трубы, встроенные друг в друга, присоединительный фланец, патрубки подвода и отвода греющей или охлаждающей среды, внутренняя труба теплообменника жестко закреплена к фланцу наружной трубы, которая выполнена цилиндрической, заглушена с одной стороны и имеет с другой стороны фланец с патрубками подвода и отвода греющей или охлаждающей среды, причем патрубок подвода удлинен, во внутреннюю трубу встроен турбулизатор в виде винтообразной ленты, периодически витой в различных направлениях.
Изобретение относится к охладителю синтез-газа и способу его сборки. Описан охладитель синтез-газа, предназначенный для использования в системе газификации, включающий верхнюю часть (216), содержащую насадки (314) трубопроводов.

Изобретение относится к области теплотехники, а именно к теплообменникам корпусного или погружного типа. Изобретение заключается в том, что теплообменник имеет вертикальные теплообменные трубы для прохода охлаждающего теплоносителя, простирающиеся вдоль всей теплообменной полости, при этом теплообменные трубы объединены в отдельные группы труб и отдельные группы труб разделены между собой вертикальными каналами.

Описан способ подачи катализатора в реактор полимеризации, включающий нагревание текучей среды, включающей инертный жидкий углеводород, в теплообменнике с целью испарения по меньшей мере части инертного жидкого углеводорода и образования инертного углеводорода в газообразной форме; контактирование катализатора с несущей текучей средой, включающей инертный углеводород, который имеет температуру кипения при нормальных условиях от -1°C до 81°C; и подачу несущей текучей среды в реактор полимеризации так, что несущая текучая среда транспортирует катализатор в реактор полимеризации, причем инертный углеводород присутствует в несущей текучей среде в газообразной форме или в виде комбинации жидкой и газообразной форм.

Предложены способы и установки для получения потоков высокооктановых продуктов с низким содержанием ароматических соединений. Способ включает в себя: изомеризацию потока сырья, содержащего циклические С6-соединения, для получения выходящего потока изомеризации; отделение из указанного выходящего потока изомеризации тяжелого потока, содержащего С4 и более тяжелые углеводороды, и потока, содержащего водород и С3 и более легкокипящие углеводороды; отгонку изогексана или изогептана от указанного тяжелого потока и получение головного потока, содержащего легкие газы и бутан, потока верхнего бокового погона, содержащего нормальный пентан, метилбутан и диметилбутаны, потока нижнего бокового погона, содержащего нормальный гексан и монометилпентаны, и обогащенного циклоалканами потока; и изомеризацию указанного обогащенного циклоалканами потока в равновесных условиях, благоприятствующих образованию циклопентанов по сравнению с циклогексанами, с получением потоков высокооктановых продуктов с низким содержанием ароматических соединений.

Изобретение относится к регулированию способа дегазации полимеров. Описан способ работы вертикального дегазатора с неподвижным слоем.

Изобретение относится к способу осуществления теплообмена с использованием маточного раствора в способе кристаллизации пара-ксилола (PX). Способ включает подачу потока поступающего материала и потока маточного раствора в РХ кристаллизационную установку, содержащую первый теплообменник для осуществления теплообмена через стенку между потоком маточного раствора и потоком поступающего материала и кристаллизатор для кристаллизации РХ из потока поступающего материла, при этом поток маточного раствора охлаждается до температуры -50°С, предоставление второго теплообменника для охлаждения потока поступающего материала до его поступления в РХ кристаллизационную установку для охлаждения потока поступающего материала вторым низкотемпературным источником энергии от охлаждающего агента и предоставление третьего теплообменника для осуществления теплообмена через стенку между потоком маточного раствора и потоком поступающего материала до того, как поток поступающего материала входит во второй теплообменник.

Изобретение относится к усовершенствованному способу непрерывного получения раствора солей, в частности получения адипата гексаметилендиамина, и к устройству для осуществления такого способа.

Изобретение относится к способу селективного удаления газообразных продуктов реакции из газообразной системы, включающей реагенты и продукты, при проведении химических реакций, таких как синтез аммиака, метанола и т.д., и реакторам для проведения способа.

Изобретение относится к аппаратам погружного горения, основное назначение которых - выпарка различных растворов минеральных солей. В ряде случаев аппараты погружного горения применяются для других целей: подогрева и охлаждения, декарбонизации и т.п.

Изобретение относится к области нефтехимии, в частности к установке получения олефиновых или изоолефиновых С3-С5 углеводородов дегидрированием парафиновых или изопарафиновых С3-С5 углеводородов.

Изобретение относится к технологии производства полиолефинов, в частности, предложенная технология относится к режимам работы при полимеризации полиолефинов. Способ производства полиолефина включает соединение в реакторе жидкофазной полимеризации катализатора с разбавительной смесью, содержащей разбавитель и олефиновый мономер.

Изобретение относится к аппарату для обработки зернистого материала жидкостью под давлением и может быть использовано для десорбции различных компонентов из адсорбентов, например из активированного угля в технологических процессах извлечения благородных металлов.

Изобретение относится к установке низкотемпературного получения метанола, включающей блок конверсии углеводородного сырья, состоящий из конвертора и узла водоподготовки, и блок синтеза метанола, состоящий по меньшей мере из одного узла синтеза метанола, который содержит устройство для охлаждения, сепарации, рекуперационного нагрева синтез-газа и охлаждаемый конвертор синтез-газа, также включающий устройство для выделения метанола, оснащенное линиями подачи отходящего газа на сжигание и вывода метанола с установки. При этом в качестве конвертора установлен низкотемпературный конвертор углеводородного сырья, в качестве конвертора синтез-газа установлен каталитический реактор, оснащенный линией ввода/вывода смеси сырья и воды, предварительно нагретой в устройстве для выделения метанола, в качестве хладагента, на которой после блока синтеза метанола установлено устройство для рекуперационного нагрева и сепарации, оснащенное линией подачи продувочной воды в узел водоподготовки и линией ввода/вывода синтез-газа, на которой перед блоком синтеза метанола установлено устройство для выделения метана, оснащенное линиями подачи водного конденсата в узел водоподготовки и линией вывода метана, связанной с линией подачи отходящего газа. Предлагаемая установка позволяет снизить расход топлива для получения целевого продукта. 1 з.п. ф-лы, 1 ил.
Наверх