Способ получения известково-аммиачной селитры

Изобретение относится к сельскому хозяйству. Способ получения известково-аммиачной селитры включает смешение плава нитрата аммония с карбонатным сырьем в присутствии ингибирующей добавки, гранулирование и охлаждение готового продукта, причем в качестве добавки используют порошок оксида магния, вводимый на стадии смешения одновременно с карбонатным сырьем. Изобретение позволяет повысить потребительские свойства известково-аммиачной селитры за счет снижения содержания в ее составе гигроскопичных нитратов кальция и магния, а также повысить эффективность производства известково-аммиачной селитры путем упрощения технологии. 4 з.п. ф-лы, 1 табл., 2 пр.

 

Способ относится к химической технологии получения азотных удобрений на основе аммиачной селитры и может найти применение при получении известково-аммиачной селитры.

Промышленные способы производства известково-аммиачной селитры основаны на смешении плава аммиачной селитры, получаемого по известным технологиям, с измельченным природным или синтетическим карбонатным сырьем, преимущественно карбонатом кальция или доломитом, с последующим гранулированием получаемой суспензии и получением целевого продукта, содержащего 18-28% азота.

Известково-аммиачная селитра, несмотря на более низкое содержание азота, имеет ряд преимуществ перед аммиачной селитрой, что обуславливает ее широкое применение в качестве удобрения. Главным преимуществом известково-аммиачной селитры перед аммиачной селитрой является ее значительно более низкая взрывоопасность, что позволяет безопасно осуществлять ее транспортировку и хранение навалом. Кроме того, даже регулярное использование известково-аммиачной селитры не приводит к закислению удобряемых почв, вследствие наличия в ее составе карбонатов кальция и магния.

Одним из недостатков известково-аммиачной селитры является наличие в ее составе нитратов кальция и магния, образующихся при смешении карбонатного сырья с плавом аммиачной селитры. Содержание нитратов кальция и магния в составе получаемой тем или иным способом известково-аммиачной селитры существенно колеблется в зависимости от природы и реакционной способности применяемого карбонатного сырья, его дисперсности, концентрации плава аммиачной селитры, температуры, времени смешения и других факторов. Присутствие нитратов кальция и магния - высоко гигроскопичных солей, существенно повышает склонность известково-аммиачной селитры к сорбции влаги при контакте с окружающим воздухом, что может являться причиной потери ею рассыпчатости и слеживанию.

Кроме того, взаимодействие плава аммиачной селитры с карбонатным сырьем сопровождается пенообразованием, потерями азота и увеличением содержания влаги в известково-аммиачной селитре, вследствие разложения образующегося в результате реакции карбоната аммония с выделением в газовую фазу углекислого газа и аммиака.

СаСО3 (карбонат кальция)+ 2NH4NO3→Ca(NO3)2+(NH4)2CO3

[Ca,Mg]CO3 (доломит)+ 4NH4NO3→Ca(NO3)2+Mg(NO3)2+2(NH4)2CO3

(NH4)2CO3→NH3↑+CO2↑+H2O

Образование нитратов кальция и магния при взаимодействии карбонатного сырья с плавом аммиачной селитры при их смешении может быть ингибировано путем использования различных добавок.

Известен способ получения известково-аммиачной селитры, включающий смешение плава аммиачной селитры с измельченным карбонатным сырьем с последующим гранулированием смеси, сушкой и охлаждением продукта, отличающийся тем, что карбонатное сырье с размером частиц 0,8-1,5 мм предварительно, перед смешением с плавом, обрабатывают 20-45% раствором гидросульфата аммония с расходом 0,01-0,3 масс.ч. на 1 масс.ч. карбонатного сырья. (RU 2265001 С1, опубл. 27.11.2005).

Недостатком предложенного способа является применение в качестве ингибитора гидросульфата аммония - достаточно специфичного продукта, ограниченно доступного на рынке. Кроме того, необходимость проведения предварительной обработки карбонатного сырья с определенной крупностью частиц раствором гидросульфата аммония существенно усложняет технологический процесс производства известково-аммиачной селитры.

Известен также способ получения гранулированного известково-аммиачного удобрения, сущность которого заключается в проведении гранулирования окатыванием во вращающемся грануляторе тарельчатого вида, в который подаются в качестве центров гранулообразования приллированные гранулы аммиачной селитры, на которые при окатывании одновременно наносят подаваемые раздельно жидкую и твердую составляющие. В качестве жидкой составляющей используют 80-90% раствор аммиачной селитры с температурой 100-110°С и добавку, включающую 2% сульфата аммония, 2% каустического магнезита, 0,5% фосфата аммония или добавку, включающую 1% каустического магнезита, 1% фосфата аммония. В качестве твердой составляющей используют карбонаты кальция и магния в виде порошка с размером частиц 50-200 мкм (RU 2367638 С2, опубл. 20.09.2009).

Недостатками данного способа являются его неприменимость для получения известково-аммиачной селитры на основе концентрированного плава нитрата аммония методом башенного гранулирования, а также технологическая сложность, обусловленная необходимостью одновременного использования в качестве азотсодержащего компонента, как 80-90% раствора нитрата аммония, так и приллированных гранул аммиачной селитры, а также применение нескольких видов ингибирующих добавок с учетом необходимости их введения совместно с жидкой составляющей.

Наиболее близким по своей сущности к предлагаемому способу является способ получения известково-аммиачной селитры, заключающийся в смешении плава аммиачной селитры с карбонатом кальция в присутствии соли магния с последующим гранулированием и охлаждением продукта. В качестве соли магния используют нитрат магния в количестве 0,1-0,4% в пересчете на магний к массе продукта. (RU 2223934 С1, опубл. 20.02.2004).

Недостатками данного способа являются необходимость проведения дополнительной стадии получения, используемой в способе ингибирующей добавки - нитрата магния путем разложения магнезиального сырья азотной кислотой. Кроме того, использование нитрата магния хоть и позволяет существенно снизить образование нитрата кальция при смешении карбоната кальция с плавом аммиачной селитры, однако не позволяет существенно снизить гигроскопичность получаемого продукта. Причиной этого является то, что нитрат магния является также весьма гигроскопичным соединением и его присутствие в составе известково-аммиачной селитры повышает ее склонность к сорбции влаги и понижает гигроскопичную точку, т.е. ухудшает ее физико-механические характеристики.

Задачей, на решение которой направлен предлагаемый способ, является упрощение технологии получения известково-аммиачной селитры и улучшение ее физико-механических характеристик путем снижения содержания гигроскопичных нитратов кальция и магния.

Технический результат, на достижение которого направлено предлагаемое изобретение, заключается в повышении потребительских свойств известково-аммиачной селитры за счет снижения содержания в ее составе гигроскопичных нитратов кальция и магния, а также повышении эффективности производства известково-аммиачной селитры путем упрощения технологии.

Для достижения технического результата в предлагаемом способе, включающем смешение плава нитрата аммония с карбонатным сырьем с последующим гранулированием и охлаждением готового продукта, в качестве ингибирующей добавки используют порошок оксида магния в количестве не менее 0,2% (предпочтительно, 0,5-1,5%) от массы плава аммиачной селитры, который вводится на стадии смешения одновременно с карбонатным сырьем. При этом в качестве оксида магния применяют каустический магнезит, получаемый при обжиге природного магнезита, а в качестве карбонатного сырья применяют дисперсный карбонат кальция или доломит. Также в качестве карбонатного сырья можно использовать карбонат кальция, получаемый в производстве NPK-удобрений азотнокислотным разложением фосфатного сырья, содержащий не более 0,5% влаги, с размером частиц менее 1 мм.

При использовании заявляемых признаков предлагаемого способа достигается существенное снижение суммарного содержания нитратов кальция и магния в известково-аммиачной селитре по сравнению с известным способом, что обеспечивает получение продукта с пониженной гигроскопичностью и, тем самым, лучшими качественными характеристиками - меньшей склонностью к сорбции влаги и слеживанию.

Применимость и преимущества заявленного способа для решения поставленной задачи подтверждаются следующими примерами конкретного выполнения.

Пример 1 (по прототипу)

В плав аммиачной селитры в количестве 200 г с температурой 180°С вносят при интенсивном перемешивании 66,6 г карбоната кальция, предварительно подогретого до температуры 80°С. Массовое соотношение компонентов составляет 75:25, что соответствует получению известково-аммиачной селитры с содержанием азота ~26%. Плав аммиачной селитры содержит 0,21% влаги (определение здесь и далее методом сушки) и 0,45% нитрата магния в пересчете на MgO, остальное - NH4NO3. Величина рН плава - 5,0. В качестве карбонатного сырья используют карбонат кальция, полученный в производстве NPK-удобрений, следующего состава: CaCO3 - 96,4%, NH4NO3 - 0,10%, влага - 0,05%. Зерновой состав карбоната кальция (в % по фракциям): <0,045 мм - 12,8%, 0,045…0,1 мкм - 51,9%, >0,1 мм - 35,3%, <1 мм - 100%). Продолжительность смешения составляет 4 минуты, в течение которых температуру суспензии поддерживают в интервале 150…160°С.

Далее суспензию гранулируют путем ее диспергирования в инертную жидкую среду (гексан). Полученные гранулы продукта отделяют от гексана и анализируют. Состав полученного продукта - известково-аммиачной селитры: содержание азота (N) - 25,8%, суммарное содержание нитратов кальция и магния - 1,75%, в том числе Ca(NO3)2 - 0,50%, Mg(NO3)2 - 1,25% (0,21% в пересчете на Mg), содержание влаги - 0,50%. Величина рН продукта - 7,30.

Пример 2

В 200 г плава аммиачной селитры с температурой 180°С, содержащего более 99,8%) NH4NO3 и 0,16% влаги с величиной рН - 5,1, вносят 66,6 г карбоната кальция и одновременно заданное количество порошкообразного каустического магнезита марки ПМК-83, предварительно подогретых до температуры 80°С. Состав использованного карбоната кальция, условия смешения и дальнейшего гранулирования суспензии аналогичны примеру 1.

Проводят серию опытов, в которых изменяют расход каустического магнезита (опыты 2-11), а также вид применяемого карбонатного сырья (опыты 12-13). В качестве карбонатного сырья в опытах 12-13 используют доломитовую муку Данковского месторождения марки А по ГОСТ 14050-93. Зерновой состав доломитовой муки (в % по фракциям): 0,045 мм - 53,5%, 0,045…0,1 мкм - 32,2%, >0,1 мм - 14,3%, <1 мм - 100%. Содержание влаги менее 0,10%.

Результаты опытов приведены в таблице.

Как видно из приведенных примеров, получение известково-аммиачной селитры по предлагаемому способу приводит к значительному снижению содержания в конечном продукте нитратов кальция и магния, что обеспечивает в сравнении с прототипом его лучшие физико-механические характеристики.

Положительный эффект при внесении порошка оксида магния связан как с образованием при его внесении в горячий плав аммиачной селитры нитрата магния, так и с увеличением величины рН суспензии, что в совокупности оказывает значительный ингибирующий эффект в отношении взаимодействия карбонатов кальция и магния с нитратом аммония. При одновременном внесении оксида магния и карбонатного сырья, первый, являясь существенно более реакционно активным, частично вступает в реакцию во взаимодействие как собственно с нитратом аммония, так и примесью свободной азотной кислоты, содержащейся в плаве:

MgO+2NH4NO3→Mg(NO3)2+NH3+H2O

MgO+2HNO3→Mg(NO3)2+H2O

Получаемый в результате взаимодействия нитрат магния, а также рост рН суспензии за счет присутствия в ее составе непрореагировавшего оксида магния, существенно подавляет как взаимодействие основных компонентов - карбонатного сырья и плава аммиачной селитры, так и ограничивает глубину взаимодействия с плавом собственно оксида магния. При этом с увеличением расхода оксида магния, степень его превращения в нитрат магния снижается, а величина рН возрастает. Как результат, при ограниченном образовании нитрата магния за счет взаимодействия оксида магния с плавом аммиачной селитры, достигается существенное снижение суммарного количества образовавшихся при смешении нитратов кальция и магния.

Дополнительным преимуществом предлагаемого способа является отсутствие необходимости в осуществлении предварительной стадии получения нитрата магния в виде его водных растворов путем азотнокислотного разложения того или иного магнийсодержащего сырья, что существенно снизит себестоимость производства известково-аммиачной селитры и значительно упрощает технологическую схему.

В предлагаемом способе порошок оксида магния берут в количестве не менее 0,2% от массы плава аммиачной селитры. При снижении расхода менее 0,2% не обеспечивается достаточное подавление взаимодействия используемого карбонатного сырья с нитратом аммония, следствием чего является повышенное содержание нитратов кальция/магния в составе получаемой известково-аммиачной селитры на уровне способа, взятого в качестве прототипа. В свою очередь, верхний предел расхода порошка оксида магния определяется технико-экономическими соображениями и, прежде всего, его стоимостью. Оптимальный расход составляет 0,5…1,5% от массы плава аммиачной селитры.

В качестве порошка оксида магния используют высокодисперсный и реакционно активный каустический магнезит, который получают в качестве товарного продукта при обжиге природного магнезита. В качестве карбонатного сырья для получения известково-аммиачной селитры используют дисперсные карбонат кальция и доломит, которые получают измельчением природных карбонатных минералов кальция и магния (доломитовая мука, известняковая мука, молотый мел и т.п.), и карбонат кальция, получаемый в производстве NPK-удобрений азотнокислотным разложением фосфатного сырья, содержащий не более 0,5% влаги и имеющий размер частиц менее 1 мм.

1. Способ получения известково-аммиачной селитры, включающий смешение плава нитрата аммония с карбонатным сырьем в присутствии ингибирующей добавки, гранулирование и охлаждение готового продукта, отличающийся тем, что в качестве добавки используют порошок оксида магния, вводимый на стадии смешения одновременно с карбонатным сырьем.

2. Способ по п. 1, отличающийся тем, что порошок оксида магния берут в количестве не менее 0,2% от массы плава нитрата аммония, предпочтительно, 0,5-1,5%.

3. Способ по п. 1, отличающийся тем, что в качестве порошка оксида магния используют каустический магнезит, полученный при обжиге природного магнезита.

4. Способ по п. 1, отличающийся тем, что в качестве карбонатного сырья применяют дисперсные карбонат кальция или доломит.

5. Способ по п. 1, отличающийся тем, что в качестве карбонатного сырья используют карбонат кальция, полученный в производстве NPK-удобрений азотнокислотным разложением фосфатного сырья, содержащий не более 0,5% влаги, с размером частиц менее 1 мм.



 

Похожие патенты:

Изобретение относится к сельскому хозяйству. Биологическое удобрение включает солому зерновых культур и азотные удобрения, причем оно дополнительно содержит навозную жижу, микроудобрения, при этом солому зерновых культур используют озимой пшеницы или ячменя, в качестве азотных удобрений используют карбамидно-аммиачную смесь, а в качестве микроудобрения - сернокислый марганец.
Изобретение относится к сельскому хозяйству. Способ получения комплексного органоминерального удобрения на основе природных алюмосиликатов заключается в одновременном перемешивании и измельчении органических и минеральных компонент, причем измельчение алюмосиликатного сырья и фосфогипса ведут до достижения размеров частиц менее 30 мкм, а затем происходит последующее смешивание с биогумусом.

Изобретение относится к сельскому хозяйству. Способ получения гранулированных биоорганоминеральных удобрений на органической основе включает сушку биоматериала с одновременным его измельчением и его гранулирование, причем в процессе сушки биоматериала в органическую субстанцию вносят минеральные удобрения, которые одновременно измельчаются и смешиваются с ней, затем производят пастеризацию и охлаждение смеси, после чего в поток материала, который направляется на гранулирование, вносят и перемешивают с последним микробиологические удобрения, содержащие предварительно инокулированные в перлите микроорганизмы, при этом полученные гранулы опудривают гидрофобным материалом.

Изобретения относятся к сельскому хозяйству. Органоминеральное удобрение содержит отходы животноводства, калий и производное фосфора, причем в качестве отходов животноводства содержит отходы животноводства с влажностью 75-90%, в качестве калия содержит калий хлористый, в качестве производного фосфора - суперфосфат, дополнительно содержит мочевину и формалин.

Изобретения относятся к сельскому хозяйству. Органическое удобрение содержит источник органического вещества, причем в качестве источника органического вещества содержит отходы животноводства с влажностью 75-90%, дополнительно содержит мочевину и формалин.

Изобретение относится к сельскому хозяйству. Органоминеральное удобрение содержит торф, остаток от гидролиза торфа перекисью водорода и аммиаком, являющийся отходом производства стимулятора роста растений, мочевину, суперфосфат, калий сернокислый, причем оно дополнительно содержит природный цеолит.

Изобретение относится к области сельского хозяйства и может быть использовано при выращивании сельскохозяйственных культур на вечномерзлых почвах, в частности тундровых.

Изобретение относится к области сельского хозяйства, в частности к растениеводству. Способ включает полив растений водным раствором органического и минерального удобрения, полученного путем добавления к 1 литру воды 50 мл азотной кислоты и которое перед применением для полива растений разбавляют водой в 100 раз.
Изобретение относится к восстанавливающему удобрению. Восстанавливающее удобрение, полученное воздействием на смесь дрожжей, экстракта дрожжей или клеточных оболочек дрожжей с фосфорнокислым компонентом и калийным компонентом в условиях гидротермальной реакционной обработки.
Изобретение относится к сельскому хозяйству. Торфоцеолитовое удобрение пролонгированного действия, модифицированное иодидом калия, включает низинный торф и природный цеолит, модифицированный иодидом калия KI, в соотношении 2.3:1-3.4:2, причем природный цеолит, измельченный до размеров зерен 0.5-0.7 мм, насыщают из 0.02-0.04% раствора иодида калия в течение 14-16 ч при соотношении массы природного цеолита и раствора иодида калия 1:7-1:13.
Изобретение относится к сельскому хозяйству. Состав мульчирующего покрытия содержит лигносульфонат, карбамид, причем он дополнительно содержит Na-карбоксиметилцеллюлозу, прошлогодний компост листьев и хвои, осадок сточных вод коммунального хозяйства и двойной суперфосфат. Все компоненты взяты при определенном соотношении. Изобретение позволяет утилизировать отходы хозяйственной деятельности человека при одновременном улучшении состояния почвы. 3 пр.
Изобретение относится к сельскому хозяйству. Минерально-органическое удобрение для подкормки садовых роз содержит органическое составляющее и минеральные компоненты, причем в качестве органического составляющего использован перегной листьев, а в качестве минеральных компонентов - двойной суперфосфат, аммиачная селитра, бура и сульфат калия. Все компоненты взяты при определенном соотношении. Изобретение позволяет ускорить рост и развитие садовых роз. 3 пр.
Изобретение относится к сельскому хозяйству. Минерально-органическое удобрение для подкормки садовых роз содержит минеральные компоненты, причем в качестве минеральных компонентов оно содержит технический грунт, двойной суперфосфат, натриевую селитру, буру и сульфат калия. Все компоненты взяты при определенном соотношении. Изобретение позволяет ускорить рост и развитие садовых роз, улучшить структуру и плодородие почвы. 3 пр.
Изобретение относится к сельскому хозяйству. Минерально-органическое удобрение для подкормки садовых роз содержит органическое составляющее и минеральные компоненты, причем в качестве органического составляющего использован избыточный активный ил биологической очистки предприятий коммунального хозяйства, а в качестве минеральных компонентов - двойной суперфосфат, аммиачная селитра, борная кислота и сульфат калия. Все компоненты взяты при определенном соотношении. Изобретение позволяет ускорить рост и развитие садовых роз, улучшить структуру и плодородие почвы. 3 пр.
Изобретение относится к сельскому хозяйству. Минерально-органическое удобрение для подкормки садовых роз содержит минеральные компоненты, причем в качестве минеральных компонентов использованы зола котельных на твердом топливе, двойной суперфосфат, аммиачная селитра, медный купорос и сульфат калия. Все компоненты взяты при определенном соотношении. Изобретение позволяет ускорить рост и развитие садовых роз, улучшить структуру и плодородие почвы. 3 пр.
Изобретение относится к сельскому хозяйству. Минерально-органическое удобрение для подкормки садовых роз содержит органическое составляющее и минеральные компоненты, причем в качестве органического составляющего использован биогумус, а в качестве минеральных компонентов двойной суперфосфат, аммиачная селитра, медный купорос и сульфат калия. Все компоненты взяты при определенном соотношении. Изобретение позволяет ускорить рост и развитие садовых роз, улучшить структуру и плодородие почвы. 3 пр.

Изобретения относятся к сельскому хозяйству. Комплексное гранулированное удобрение содержит минеральные составляющие, в качестве которых удобрение содержит обогащенный глауконит и минеральные удобрения, причем дополнительно содержит в качестве минеральных составляющих бентонит, диатомит, воду. Все компоненты взяты при определенном соотношении. Комплексное гранулированное удобрение содержит минеральные и органические составляющие, в качестве минеральной составляющей удобрение содержит обогащенный глауконит, причем дополнительно содержит в качестве минеральной составляющей бентонит, диатомит. Все компоненты взяты при определенном соотношении. Способы изготовления комплексного гранулированного удобрения включают смешивание минеральных составляющих или минеральных и органических составляющих, гранулирование, подсушивание гранул воздухом и последующую расфасовку во влагозащитную потребительскую тару. Изобретения позволяют упростить технологический процесс получения комплексного гранулированного удобрения и снизить энергозатраты. 4 н. и 5 з.п. ф-лы, 6 ил., 8 пр.

Изобретения относятся к сельскому хозяйству. Сложное азотно-фосфорно-калийное удобрение (NPK) содержит нитрат аммония, моноаммонийфосфат, сульфат кальция безводный, нитрат калия, хлорид аммония, причем массовая доля общего азота от 13-15%, массовая доля общих фосфатов в пересчете на Р2О5 от 11-15%, массовая доля калия в пересчете на К2О от 7-8%. Способ получения сложного удобрения NPK из твердой фосфатной соли, представляющей собой смесь фторапатита Са5(PO4)3F и дикальций фосфата CaHPO4×nH2O, где n - от 0 до 2, а содержание фторапатита Са5(PO4)3F от 27 до 99% включает стадию разложения указанной твердой фосфатной соли серной кислотой полусухим методом, стадии добавления хлорида калия в качестве источника калия, нитрата аммония в качестве источника азота, стадию приготовления сларри NPK, а также стадию грануляции и сушки готового продукта. Изобретения позволяют улучшить свойства NPK-удобрения, повысить прочность гранул, решить проблему, связанную с пластичностью гранулированных сложных удобрений. 2 н. и 12 з.п. ф-лы, 1 ил., 3 табл., 3 пр.

Изобретения относятся к сельскому хозяйству. Сложное азотно-фосфорно-калийное удобрение (NPK) содержит нитрат аммония, сульфат кальция безводный, дигидрофосфат калия, причем массовая доля общего азота от 13-15%, массовая доля общих фосфатов в пересчете на P2O5 от 9-10%, массовая доля калия в пересчете на K2O от 13-15%. Способ получения сложного удобрения NPK из твердой фосфатной соли, представляющей собой смесь фторапатита Ca5(PO4)3F и дикальций фосфата CaHPO4×nH2O, где n - от 0 до 2, а содержание фторапатита Ca5(PO4)3F от 27 до 99% включает: стадию разложения указанной твердой фосфатной соли серной кислотой полусухим методом, стадии добавления сульфата калия в качестве источника калия, нитрата аммония в качестве источника азота, стадию приготовления сларри NPK, а также стадию грануляции и сушки готового продукта. Изобретения позволяют обеспечить улучшение свойств NPK-удобрения, повысить прочность гранул, решить проблему, связанную с пластичностью гранулированных сложных удобрений, повысить водорастворимость фосфора, содержащегося в удобрении, на 98% и тем самым улучшить потребительские свойства NPK-удобрений. 2 н. и 10 з.п. ф-лы, 1 ил., 3 табл., 3 пр.
Изобретения относятся к сельскому хозяйству. Удобрение содержит массовую долю сульфата аммония коксохимического в порошкообразном виде, массовую долю доломитовой (известняковой) муки, причем дополнительно содержит массовую долю фосфоритной муки, массовую долю порошкообразного хлорида калия. Все компоненты взяты при определенном соотношении. Способ получения удобрения заключается в смешивании и измельчении компонентов с последующим получением удобрения за счет гранулирования, причем после смешивания и измельчения компонентов их подают в смеситель-гранулятор с одновременной подачей нагретого до 40-50°C 35% раствора сульфата аммония, полученная увлажненная крупка из смесителя-гранулятора подается на тарельчатый гранулятор для укрупнения и получения гранул овальной формы, при этом образовавшиеся гранулы подаются на барабанную сушилку для сушки до остаточной влажности 1…1,5%. Изобретения позволяют разработать состав и технологию производства комплексного гранулированного минерального удобрения-мелиоранта, характеризующегося благоприятными экологическими характеристиками, выраженной агрохимической эффективностью и почвопротекторными свойствами. 2 н.п. ф-лы.
Наверх