Способ получения тонких слоев титаната висмута

Способ относится к технологии изготовления сегнетоэлектрических покрытий на токопроводящих поверхностях, в частности тонких слоев титаната висмута на титане, и может быть использовано при создании диэлектрических слоев в качестве фоторефрактивного материала в устройствах записи и обработки информации, в тонкопленочных конденсаторах, при изготовлении пьезоэлектрической керамики и т.д. Способ включает обработку поверхности изделия из титана методом плазменно-электролитического оксидирования в электролите, содержащем 0,1-0,2 М тетрабората Na2B4O7, в гальваностатическом режиме при анодной поляризации изделия в течение 10-15 минут при эффективной плотности тока 0,20-0,25 А/см2 с формированием слоя оксида титана, который затем пропитывают раствором основного азотнокислого висмута в расплаве канифоли, разбавленным скипидаром, и обжигают при температуре 650-700°C в течение 0,5-1,0 часа с получением тонкого слоя, содержащего Bi4Ti3O12. Технический результат: упрощение технологической схемы способа и уменьшение затрат времени на его осуществление. 1 з.п. ф-лы, 3 ил., 2 табл., 2 пр.

 

Способ относится к области технологии изготовления сегнетоэлектрических покрытий на токопроводящих поверхностях, в частности, тонких слоев титаната висмута на титане. Титанаты висмута Bi2 Ti2O7, Bi12 TiO20, Bi4Ti3O12) проявляют фотокаталитические свойства в оптическом диапазоне (при видимом свете). Благодаря высокой диэлектрической постоянной они используются при создании диэлектрических слоев, в качестве фоторефрактивного материала в устройствах записи и обработки информации, в тонкопленочных конденсаторах, при изготовлении пьезокерамики и т.д.

Известные методы получения титаната висмута в своем большинстве являются дорогостоящими, требуют специального сложного оборудования, при этом не всегда обеспечивают воспроизводимые результаты.

Известен способ получения покрытия из титаната висмута двухстадийным синтезом (Chenn K., Hu R., Feng X., Xie K., Li Y., Gu H Bi4Ti3O12/TiO2 heterostructure: Synthesis. // Ceram. Int. 2013. V. 39. P. 9109-9114). Сначала электрохимическим способом в растворе этиленгликоля, содержащем дополнительно NH4F, получают оксидное покрытие на титане. После этого оксидированные образцы помещают в раствор Bi(NO3)3 в щелочи KОН и проводят гидротермальный синтез при 200°C в течение определенного времени (до 24 часов). Недостатком известного способа является необходимость использования автоклавного оборудования для осуществления гидротермального процесса и длительность гидротермальной обработки.

Известен способ импульсного эксимерного лазерного осаждения сегнетоэлектрических пленок титаната висмута на подложки из кремния и оксида магния (Pulsed laser deposition and ferroelectric characterization of bismuth titanate films. Appl. Phys. Lett. 58 (14), 8 April 1991. P. 1470-1472). Недостатком известного способа является необходимость использования сложного дорогостоящего оборудования, а также невозможность его использования для обработки изделий со сложным рельефом поверхности.

Известен способ получения покрытий из титаната висмута методом термического разложения летучих металлорганических соединений висмута и титана (Ferroelectric bismuth titanate films у hotwall metalorganic chemical vapor deposition. Jie Si and Seshu B. Desua. J. Appl. Phys. 73 (II), 1 June 1993. P. 7910-7913) с использованием в качестве исходных веществ трифенилвисмута и тетраэтоксититана. Недостатком способа является необходимость использования сложного вакуумного оборудования, а также ограничения, налагаемые на массогабаритные показатели изделий и геометрическую форму их поверхности.

Наиболее близким к заявляемому является способ получения покрытий из титаната висмута на электропроводящих поверхностях (RU 2278910, опубл. 2006.06.27), включающий электрофоретическое осаждение сегнетоэлектрической шихты, содержащей титанат висмута, которую предварительно спекают со скоростью 100-150 град/час, выдерживают при температуре 1150°C в течение 1-3 часов и охлаждают со скоростью 150-300 град/час, затем производят ее помол с получением фракций размером от 0,5 до 100 мкм и загружают в электролит, обеспечивая с помощью перемешивания равномерное распределение порошка по объему электролита. Электрофоретическое осаждение проводят из электролитов с концентрацией сегнетоэлектрического порошка от 10 до 800 г/л в условиях микродуговых разрядов между подложкой и частицами порошка при плотности тока от 2 до 60 А/дм2. После формирования тонкого слоя сегнетоэлектрика образцы промывают в проточной воде и просушивают в течение 30 мин при температуре 180°С.

Недостатки известного способа: многостадийность, необходимость длительной и многоступенчатой предварительной подготовки сегнетоэлектрической шихты, включающей процесс спекания при высокой температуре, а также необходимость приготовления электролита-супензии, усложняющие способ и увеличивающие затраты времени на его осуществление.

Задачей изобретения является создание простого способа получения тонких слоев титаната висмута на титане, не требующего больших затрат времени.

Технический результат предлагаемого способа заключается в упрощении технологической схемы способа и в сокращении времени его осуществления.

Указанный результат достигается способом получения тонких слоев титаната висмута на токопроводящей поверхности с помощью электрохимической обработки в условиях протекания микродуговых разрядов, в котором, в отличие от известного, токопроводящую поверхность титанового изделия обрабатывают методом плазменно-электролитического оксидирования в боратном электролите в гальваностатическом режиме при анодной поляризации титанового изделия в течение 10-15 минут при эффективной плотности тока 0,20-0,25 А/см2 с формированием слоя оксида титана, который затем пропитывают раствором основного азотнокислого висмута в расплаве канифоли, разбавленным скипидаром, и обжигают при температуре 650-700°C в течение 0,5-1,0 часа.

В преимущественном варианте осуществления способа в качестве боратного электролита используют 0,10-0,20 М водный раствор тетрабората Na2B4O7.

Способ осуществляют следующим образом.

Путем плазменно-электролитического оксидирования (ПЭО) в униполярном гальваностатическом режиме в течение 10-15 минут при эффективной плотности тока i=0,20-0,25 А/см2 в водном электролите, содержащем 0,10-0,20 М тетрабората натрия Na2B4O7, на анодно-поляризованной титановой подложке в условиях непрерывных плазменных микроразрядов в приповерхностной области формируют оксидный слой.

Как показывают данные рентгено-спектрального анализа (РСА), в полученном с помощью ПЭО слое (в заявленном режиме с использованием боратного электролита) содержатся кислород и титан.

Образцы с нанесенным оксидным покрытием толщиной до 12 мкм отмывают от электролита, ополаскивают дистиллированной водой и сушат на воздухе при комнатной температуре.

Приготовление органического раствора висмута осуществляют по известной методике, описанной в (Визир В.А., Мартынов М.А. Керамические краски. Киев, «Техника», 1964, с. 191). Для этого в расплавленной канифоли растворяют основной азотнокислый висмут и разбавляют этот расплав скипидаром.

Подготовленным раствором пропитывают, например, путем погружения, промытые и высушенные образцы со сформированным методом ПЭО оксидным покрытием и подвергают пиролизу при 650-700°C в течение 0,5-1,0 часа.

На фиг. 1 приведены рентгенограммы поверхности слоя, сформированного на титане методом ПЭО (фиг. 1а), и слоя, полученного в результате окончательной обработки предлагаемым способом (фиг. 1б).

На фиг. 2 приведены СЭМ изображения поверхности слоя, сформированного методом ПЭО (фиг. 2а и 2б) и его поверхности после пропитки органическим раствором висмута и термообработки (фиг. 2в и 2г), при этом изображения 2а и 2в даны в амплитудном представлении, 2б и 2 г - в фазовом.

На фиг. 3 показаны при различном увеличении изображения отдельных участков слоев, сформированных на поверхности титана предлагаемым способом.

На рентгенограмме, представленной на фиг. 1а, имеются достаточно интенсивные рефлексы титана и диоксида титана в рутильной модификации, а также незначительные пики TiO2 в анатазной модификации, что свидетельствует о том, что при проведении ПЭО в заявляемых условиях компоненты электролита в формируемый оксидный слой не встраиваются: рентгенограмма отражает присутствие только материала подложки. После пропитки оксидного слоя органическим раствором висмута с последующим пиролизом происходит значительное изменение фазового состава нанесенного слоя: на рентгенограмме (фиг. 1б) появляются интенсивные пики, свидетельствующие о преимущественно кристаллическом строении сформированного слоя, а конкретно пики, соответствующие рефлексам Bi4Ti3O12 в орторомбической модификации.

Этому соответствуют данные, приведенные в таблице 1, характеризующие фазовый и элементный состав, а также толщину слоев, сформированных с помощью ПЭО (1) и полученных после их пропитки органическим раствором висмута с последующей термообработкой (2). Усредненные для больших участков поверхности данные по элементному составу покрытий получены микрозондовым анализом.

Данные рентгенограммы (фиг. 1б) и таблицы 1 показывают, что в результате пропитки сформированного ПЭО-слоя органическим раствором висмута и последующей термообработки висмут встраивается в сформированный с помощью ПЭО оксидный слой, взаимодействуя с ним с образованием титана висмута.

Толщина полученных слоев, морфология их поверхности в основном определяются составом электролита и условиями проведения ПЭО и практически не изменяются после пропитки и термообработки. В сформированный слой встраивается висмут, при этом содержание титана не изменяется, уменьшается содержание кислорода.

Детальное исследование элементного состава (таблица 2) обогащенных висмутом участков (светлые участки на фиг. 2) показало, что атомное соотношение Bi:Ti:O в полученных покрытиях соответствует фазе Bi4Ti3O12 и таким образом согласуется с данными РФА (фиг. 1). С помощью сканирующей электронной микроскопии высокого разрешения (Hitachi S-5500) было установлено, что участки поверхности, обогащенные висмутом, покрыты наноразмерными кристаллами, состав которых также соответствует Bi4Ti3O12.

Присутствие в составе покрытия углерода (до 23 ат. %), по всей видимости, является результатом взаимодействия органического раствора висмута с оксидным ПЭО-слоем с образованием прочных углеродсодержащих соединений, устойчивых после отжига при температуре 700°C, при которой происходит пиролиз упомянутого раствора.

Примеры конкретного осуществления способа

В качестве образцов использовали пластинки технического титана марки ВТ1-0 размером 0,5×2,5×0,1 см. Образцы подвергали механической шлифовке и химической полировке в смеси кислот HF:HNO3 = 1:3 при 60-80 C в течение 2-3 с, отмывали дистиллированной водой и сушили на воздухе.

Для приготовления растворов использовали коммерческий реактив Na2B4O7⋅10Н2O и дистиллированную воду.

В качестве источника тока при формировании оксидных покрытий с помощью плазменно-электролитического оксидирования использовали тиристорный агрегат ТЕР4-63/460Н с однополярной импульсной формой тока. Оксидные покрытия на погруженном в электролит анодно-поляризованном титане формировали в гальваностатическом режиме. Противоэлектродом (катодом) служил змеевик, выполненный из полой (диаметр 0,5 см) трубки из нержавеющей стали, через который пропускали холодную воду для охлаждения электролита, который заметно нагревался в ходе оксидирования при используемых высоких плотностях тока. В ходе процесса оксидирования электролит перемешивали при помощи магнитной мешалки.

Элементный состав поверхности покрытий определяли с помощью микрозондового рентгеноспектрального анализатора SUPERPROBE JXA-8100 фирмы JEOL, на котором одновременно получены снимки поверхности. Изучение поверхности электродов также проводили на сканирующем электронном микроскопе Hitachi S-5500 (Hitachi, Япония) с системой энергодисперсионного рентгеноспектрального микроанализа (EDX) производства «ThermoScientific».

Фазовый состав определяли методом рентгенофазового анализа на дифрактометре D8 ADVANCE (Германия) в Cuka-излучении с идентификацией соединений в автоматическом режиме поиска EVA с использованием банка данных (PDF-2).

Пример 1

На подготовленном образце из титанового сплава с помощью ПЭО в электролите, содержащем 38,2 г/л Na2B4O7⋅10H2O, в анодном гальваностатическом режиме при эффективном значении плотности тока, равном 0,20 А/см2, в течение 10 мин формировали оксидное покрытие. Начальная температура электролита 18°C, конечная 22°С.

После ПЭО образцы ополаскивали дистиллированной водой и сушили на воздухе при комнатной температуре.

В 10 г расплавленной канифоли растворяли 2 г основного азотнокислого висмута и разбавляли этот расплав скипидаром в объемном соотношении 1:1. Полученным раствором путем погружения пропитывали образец, обработанный методом ПЭО, и обжигали при 700°C в течение 0,5 часа. В результате на поверхности образца получено покрытие, содержащее, по данным рентгенофазового анализа, Bi4Ti3O12.

Пример 2

Процесс осуществляли в условиях примера 1 в электролите, содержащем 76,4 г/л Na2B4O7⋅10Н2О, при эффективном значении плотности тока, равном 0,25 А/см2, в течение 15 мин. Начальная температура электролита 18°С, конечная 28°С. Затем промытый и высушенный образец с нанесенным оксидным слоем пропитывали раствором основного азотнокислого висмута в расплаве канифоли, разбавленным скипидаром, и обжигали при 650°С в течение 1,0 часа. Результат аналогичен полученному в примере 1.

1. Способ получения тонких слоев титаната висмута на токопроводящей поверхности с использованием электрохимической обработки в условиях протекания микродуговых разрядов, отличающийся тем, что токопроводящую поверхность изделия из титана обрабатывают методом плазменно-электролитического оксидирования в боратном электролите в гальваностатическом режиме при анодной поляризации изделия в течение 10-15 минут при эффективной плотности тока 0,20-0,25 А/см2 с формированием слоя оксида титана, который затем пропитывают раствором основного азотнокислого висмута в расплаве канифоли, разбавленным скипидаром, и обжигают при температуре 650-700°C в течение 0,5-1,0 часа.

2. Способ по п. 1, отличающийся тем, что формирование оксидного слоя на титане осуществляют в электролите, содержащем 0,1-0,2 М тетрабората Na2B4O7.



 

Похожие патенты:

Изобретение относится к технологии нанесения покрытий на имплантаты из различных сплавов титана для травматолого-ортопедических, нейрохирургических, челюстно-лицевых и стоматологических операций.

Изобретение относится к области гальванотехники и может быть использовано для создания фотокаталитических устройств. Способ включает изготовление детали из спеченного порошка сплава титан-алюминий с размерами гранул 1-10 мкм, промывку детали в этаноле, сушку, промывку в дистиллированной воде, сушку при температуре 80-90°С, формирование нанопористого оксида на поверхности детали анодированием, при этом анодирование проводят в этиленгликоле с добавкой 0,25 % NH4F при комнатной температуре и постоянном напряжении U=60В и термообрабатывают в воздухе при температуре 800-820°С в течение 30-40 мин.

Изобретение относится к титановым лопаткам большого размера последних ступеней паротурбинных двигателей. Лопатка содержит сплав на основе титана и имеет переднюю кромку, включающую оксид титана, содержащий поры и верхний герметизирующий слой, заполняющий поры, выбранный из группы, состоящей из хрома, кобальта, никеля, полиимида, политетрафторэтилена и сложного полиэфира.

Изобретение относится к области гальванотехники и может быть использовано в приборостроении и медицине. Способ упрочнения изделий из титана и его сплавов с максимальным линейным размером от 0,8 до 1,4 мм включает упрочнение изделий в процессе формирования оксидного покрытия методом микродугового оксидирования продолжительностью от 20 до 30 минут в анодном режиме при постоянной плотности тока (1-2)×103 А/м2 в щелочном электролите на основе гидроксида натрия или алюмината натрия.
Изобретение относится к области гальванотехники и может быть использовано для изготовления материалов, содержащих пленочные структуры с новыми электрическими, магнитными и оптическими характеристиками, в частности, для получения имплантатов, обладающих электретными свойствами.
Изобретение относится к области гальванотехники и может быть использовано в промышленности для формирования тонких слоев защитно-декоративных покрытий нитрида титана на поверхностях из титана и его сплавов.

Изобретение относится к области гальванотехники и может быть использовано для увеличения удельной поверхности деталей из сплавов устройств различной функциональности, в частности, при создании каталитически активных устройств.
Изобретение относится к области медицинской техники, в частности к биологически совместимым покрытиям на имплантате, обладающим свойствами остеоинтеграции, и может быть использовано в стоматологии, травматологии и ортопедии при изготовлении высоконагруженных костных имплантатов из конструкционных материалов.

Изобретение относится к электролитическим методам обработки поверхности металлических материалов и может быть использован в стоматологическом протезировании. Способ заключается в получении биосовместимого покрытия на стоматологических имплантатах, выполненных из титана и его сплавов, включающий помещение изделий в водный раствор электролита, содержащий гидроксид калия и наноструктурный гидроксиаиатит в виде водного коллоидного раствора, возбуждение на поверхности изделий микродуговых разрядов, при этом оксидирование обрабатываемых изделий осуществляют в химически стойкой непроводящей ванне; в раствор электролита помещают одновременно две партии обрабатываемых изделий, предварительно закрепив изделия одной партии к клеммам для обрабатываемых деталей, изделия другой партии - к клеммам вспомогательного электрода; а электролит дополнительно содержит гидроксид натрия, гидрофосфат натрия, натриевое жидкое стекло, метасиликат натрия, в следующих соотношениях, из расчета массы сухого вещества в граммах на литр состава: гидроксид калия КОН - 2, гидроксида натрия NaOH - 1, гидрофосфата натрия Na2HРО4×12H2О - 5, жидкое стекло nNa2O·mSiO2 (М=3,2) - 5, метасиликат натрия Na2SiO3×9H2O - 8, нанодисперсный гидроксиапатит - 0,5÷5, причем отклонения от указанных концентраций компонентов электролита не превышают ±10%.
Изобретение относится к области гальванотехники и может быть использовано для получения защитно-декоративных покрытий в промышленности, в частности для формирования тонких пленок нитрида титана на поверхностях из титана и его сплавов.

Изобретение относится к технологии изготовления тонких слоев силиката висмута, которые обладают высокой диэлектрической постоянной и могут найти применение для создания диэлектрических слоев на токопроводящих поверхностях, используемых в качестве фоторефрактивного материала в устройствах записи и обработки информации, в тонкопленочных конденсаторах. Способ осуществляют путем плазменно-электролитического оксидирования поверхности титана в силикатном электролите, содержащем Na2SiO3, в униполярном гальваностатическом режиме при эффективной плотности тока 0,20-0,25 А/см2 в течение 10-15 мин с последующей пропиткой сформированного слоя раствором основного азотнокислого висмута в расплаве канифоли, разбавленным скипидаром, и пиролизом при температуре 650-700°C. Технический результат - сокращение времени осуществления способа, упрощение способа и его аппаратурного оформления. 1 з.п. ф-лы, 2 табл., 2 пр., 3 ил.

Изобретение относится к области гальванотехники и может быть использовано для микродугового оксидирования (МДО) сварочной проволоки из титановых сплавов, применяемой при изготовлении изделий судовой арматуры и механизмов, изделий химического машиностроения и др. Способ МДО прутков из титановой проволоки марки ВТ6св для износостойкой наплавки изделий из титановых сплавов, работающих длительное время при жестких режимах циклического нагружения, включает электролитический процесс, протекающий при напряжении 290÷310 В, при этом МДО выполняют в водном электролите с раствором Na3PO4 с концентрацией 14 г/л, рН 10,5÷11 при температуре 20°C в течение (150±10) минут. Техническим результатом изобретения является разработка способа МДО титанового сплава для износостойких наплавок, позволяющего обеспечить повышение твердости наплавленного металла до 500÷540 кгс/мм2. 1 табл.

Изобретение относится к области электрохимии, в частности к технологии получения пористого покрытия, представляющего собой высокоупорядоченный массив нанотрубок диоксида титана, и может быть использовано в устройствах для очистки воды и воздуха от органических соединений, в производстве комплексов промышленной экологии, а также в устройствах для выработки водорода. Способ получения покрытий, синтезируемых методом анодного окисления в водном растворе органического электролита на основе этиленгликоля, включает предварительный этап очистки поверхности титана, дополнительно включающий полирование поверхности, а анодное окисление поверхности титана проводят в потенциодинамическом режиме при наложении переменной составляющей потенциала синусоидальной формы амплитудой 1-10 В с частотой 1 Гц - 10 кГц на постоянную составляющую потенциала величиной 30-80 В. Технический результат: увеличение толщины нанопористого покрытия в 1,2-1,4 раза, повышение степени упорядоченности массива нанотрубок, твердости покрытия, стойкости к истиранию и прочности на изгиб. 2 ил.

Изобретение относится к области гальванотехники и может быть использовано при изготовлении имплантатов. Способ формирования нанопористого оксида на поверхности имплантата из порошкового ниобия, включающий обработку в ультразвуковой ванне последовательно в ацетоне и этаноле, промывку в дистиллированной воде, сушку на воздухе и анодирование в водном растворе 1М H2SO4+1% HF в гальваностатическом режиме при плотности тока 0.01 А/дм2 в течение одного часа. Технический результат: увеличение удельной поверхности покрытия, повышение смачиваемости покрытия водой и физиологическим раствором и сохранение высокой коррозионной стойкости имплантата в биосредах. 3 пр., 2 ил.

Изобретение относится к области гальванотехники и может быть использовано при изготовлении имплантатов, катализаторов и фильтрующих элементов. Способ включает обработку изделий из порошкового губчатого титана в ультразвуковой ванне последовательно в этаноле и воде по 10-12 минут, затем сушку при 90°C и анодирование во фторсодержащем растворе серной кислоты в течение 30-60 минут с последующей отмывкой в воде и сушкой при 90°C. Технический результат: увеличение удельной поверхности изделия, придание поверхности изделия гидрофильных свойств, при этом способ не требует привлечения сложного оборудования и больших энергозатрат. 2 ил., 2 пр.
Наверх