Способ получения углеродных нанотрубок в сверхзвуковом потоке и устройство для его осуществления

Изобретение относится к физике, химии, биофизике, медицине, биологии, электронике, оптоэлектронике. В смесителе-газоформирователе 8 готовят смесь путём подачи в него углерода и/или углеродсодержащих веществ из блока 15, порошка катализатора из блока 16, инертного газа из системы 6 через расходомер 7 и подогретого в устройстве 17 водорода из источника 18. Подключение указанных элементов осуществляют при помощи программно-коммутирующего устройства (ПКУ) 14. Полученную смесь подают в систему нагревания 2, включающую разрядную камеру 1, помещённую внутрь радиопрозрачной трубки 3, находящейся в индукторе 4, выполненном в виде спирали, соединённом с высокочастотным генератором 5. ПКУ 14 включает импульсный лазер 19, луч 20 которого, сфокусированный на поверхности металлического стержня 21, инициирует разряд в полученной смеси. Продукты индукционного нагрева направляют в накопительную емкость 9 через сопловой блок, содержащий сопло Лаваля 13 с числами Маха 1,5÷5. В накопительной ёмкости 9, герметично соединенной с системой нагревания 2 и системой отвода инертного газа 12, размещён охлаждаемый с помощью системы 11 сажеуловитель 10. Изобретение позволяет значительно увеличить содержание углеродных нанотрубок в полученной саже. 2 н.п. ф-лы, 1 ил.

 

Изобретение относится к фундаментальным наукам - физике, химии, биофизике, медицине, биологии, а также к промышленным технологиям в областях электроники, оптоэлектроники.

Известна установка для получения углеродных нанотрубок по патенту US 2002127170 A1. К ее недостаткам следует отнести низкую эффективность получения углеродных нанотрубок при испарении поверхности углеродных образцов из графита в замкнутом объеме.

Известен способ получения углеродных нанотрубок путем термического разложения углеводородов на слое твердотельного катализатора, отделенного от реакторной зоны внутренней шлюзовой камерой, продуваемой защитным инертным газом, откуда получаемые углеродные нанотрубки попадают во внешнюю шлюзовую камеру. Данный способ описан в патенте US 2012269696 A1.

Преимуществом такого способа получения углеродных нанотрубок является защищенность поверхности катализатора, длительность времени работы.

Недостатки и ограничения, связанные с применением способа, заключаются в большом количестве используемого катализатора и большой вероятности его отравления в ходе длительной работы реактора, что делает данный способ непригодным для длительных циклов синтеза углеродных нанотрубок.

В качестве прототипа выбрано изобретение «Способ получения фуллеренсодержащей сажи» (патент РФ №2423318 от 10.07.2011). Известный способ в вышеуказанном патенте основан на нагревании и испарении углерода и/или углеродосодержащих образцов в зоне индукционного нагрева в атмосфере инертного газа при пониженном давлении в замкнутом объеме и осаждении испарившихся компонентов в виде фуллереносодержащей сажи на холодной поверхности в накопительной емкости.

Преимуществом такого способа получения углеродных нанотрубок является отсутствие ограничений по вкладываемым мощностям и длительность циклов синтеза фуллереносодержащей сажи.

Недостатком способа является низкая производительность получения углеродных нанотрубок.

Целью изобретения является повышение производительности получения углеродных нанотрубок без снижения качества получаемого продукта.

Техническим результатом предлагаемого изобретения является увеличение содержания углеродных нанотрубок в саже без снижения качества получаемого из нее продукта.

Достижение технического результата в способе получения углеродных нанотрубок осуществляется за счет нагревания и испарения углерода и/или углеродосодержащих образцов в зоне индукционного нагрева в атмосфере инертного газа при пониженном давлении в замкнутом объеме и осаждении испарившихся компонентов в виде углеродных нанотрубок на холодной поверхности в накопительной емкости, герметично соединенной с системой нагревания и системой отвода инертного газа. При этом пары углерода и инертного газа дополнительно смешиваются с подогретым водородом, а образованная смесь затем подается на выход соплового блока, содержащего сопло Лаваля с числами Маха M=1,5÷5. Продукты индукционного нагрева направляют на охлаждаемый сажеуловитель, размещенный в автономной накопительной емкости, связанной с замкнутым объемом.

Фиг. 1 иллюстрирует устройство для осуществления способа получения углеродных нанотрубок.

Разрядная камера 1 системы нагревания 2, имеющая цилиндрическую форму, помещена внутри радиопрозрачной трубки 3, находящейся в индукторе 4, выполненном в виде спирали, соединенном с высокочастотным генератором 5. Инертный газ подается с торца кварцевой трубки из системы подачи 6 через расходомер (поплавковый ротаметр) 7, последовательно соединенный с многозаходовым смесителем-газоформирователем 8. Накопительная емкость 9, где расположен охлаждаемый сажеуловитель 10, снабженный системой охлаждения 11, находится между радиопрозрачной трубкой 3 и системой отвода газа 12. Система отвода газа 12, система подачи газа 6, радиопрозрачная трубка 3 и накопительная емкость 9 герметично связаны между собой. Между радиопрозрачной трубкой 3 и накопительной емкостью 9 устанавливается сопловой блок, сопловой блок, содержащий сопло Лаваля 13 с числами Маха M=1,5÷5. Программно-коммутирующее устройство (ПКУ) 14 дополнительно подключает к входу многозаходового смесителя-газоформирователя 8 блок 16 для хранения и подачи порошка металлического катализатора. Для реализации режима производства углеродных нанотрубок из углерода и/или углеродосодержащих веществ ПКУ 14 подключает блок хранения и подачи мелкодисперсного углерода и/или углеродосодержащих веществ 15, блок 16 для хранения и подачи порошка-катализатора, источник водорода 18 и устройство для его подогрева 17 к моногозаходовому вихревому смесителю-газоформирователю 8 с целью последующего формирования смеси углерода и инертного газа в реакционной зоне нагревания в радиопрозрачной трубке 3 с использованием энергии высокочастотного индуктора 4, выполненного в виде спирали, витки которой размещены с зазором по отношению к радиопрозрачной трубке 3, и соединенного с высокочастотным генератором 5. Подачу электрического напряжения на высокочастотный генератор 5 и включение системы подачи инертного газа 7 и его отвода 12 осуществляют с использованием ПКУ 14, который включает импульсный лазер 19, луч 20 которого через кварцевую стенку радиопрозрачной трубки 3 направлен в зоне нагревания индуктора 4 и инициирует разряд в технологической смеси.

Функционирование устройства осуществления способа получения углеродных нанотрубок согласно чертежу установки для реализации данного способа и его вариантов происходит следующим образом.

Для запуска технологического процесса ПКУ 14 включает импульсный лазер 19, луч 20 которого через кварцевую стенку радиопрозрачной трубки 3 направлен в технологическую смесь в зоне нагревания индуктора 4 и инициирует разряд в технологической смеси. ПКУ 14 обеспечивает реализацию различных вариантов способа получения углеродных нанотрубок в устройстве для их осуществления. При этом инертный газ из системы подачи 6 через регулируемый расходомер (поплавковый ротаметр) 7 поступает в смеситель-газоформирователь 8, имеющий винтовую нарезку и создающий закрученный поток. За счет начальной окружной закрутки подаваемого через газоформирователь 8 газа в радиопрозрачной трубке 3 разряд отжимается от стенок камеры и возникает сложная газодинамическая картина течения с рециркуляционной зоной.

Охлаждение сажеуловителя 10 осуществляется с помощью змеевика с проточной водой или другого жидкого охладителя или с помощью термоэлектрического преобразователя. Сажеуловитель 10 располагается вне системы нагрева 2 и может перемещаться внутри накопительной емкости 9.

Для реализации режима производства углеродных нанотрубок из угольного порошка или углеродсодержащих веществ с помощью ПКУ 14 включают импульсный лазер 19 и направляют луч лазера 20 через кварцевую стенку радиопрозрачной трубки 3 с фокусировкой луча на поверхности металлического стержня 21, выполненного из материала-катализатора в зоне нагревания индуктора 4. При производстве нанотрубок (HT) между радиопрозрачной трубкой 3 и накопительной емкостью 9 устанавливается сопловой блок, содержащий сопло Лаваля 13 с числами Маха M=1,5÷5.

При слишком большом притоке углеродных атомов и ограниченном количестве атомов катализатора более вероятно производство углеродных нанотрубок. Необходимым условием сборки HT является достаточная разреженность углеродного пара. При этом должен быть разрежен и каталитический пар. Во избежание забивания и блокирования поступления углеродных атомов и фиксации плоских кольцевых кластеров без роста HT. Поэтому оптимальным для производства HT является реализация режима формирования HT в дальней окрестности испаряемой лазером металлической мишени. Таким образом, рост одностенных HT из колец происходит лишь в присутствии металлического катализатора под воздействием лазерного луча 20 на металлическую мишень-катализатор 21.

Предлагаемый способ подтвердил свою осуществимость и эффективность при получении углеродных HT путем сублимации углерода и/или углеродосодержащих веществ в плазме аргона с последующей конденсацией паров углерода на охлаждаемом медном сажеуловителе. Эксперименты проводились при относительно небольших энергозатратах N=100 кВт и расходе аргона G=10 г/с.

После окончания эксперимента, который длился до полного расходования порошка в емкости (~20 с), производилась разгерметизация накопительной емкости 9. Торцевая часть медного сажеуловителя была покрыта равномерным довольно толстым слоем сажи.

Значительно более тонкий слой сажи оседал на стенках охлаждаемого водой соплового блока, содержащего сопло Лаваля с числами Маха M=1,5÷5. На стенках кварцевой радиопрозрачной трубки 3 осаждения сажи, по крайней мере, в эксперименте малой продолжительности практически не происходит. Сажа торцевой части легко счищается. Даже визуально счищенная с поверхности меди сажа отличается от исходного порошка.

Предложенное комплексное техническое решение имеет существенные отличия и преимущества по сравнению с рассмотренными прототипами, заключающиеся в использовании соплового блока, содержащего сопло Лаваля с числами Маха от 1,5 до 5, и добавлении в исходную смесь подогретого водорода, что значительно увеличивает содержание УНТ в получаемой саже.

1. Способ получения углеродных нанотрубок, заключающийся в индукционном нагреве смеси углерода и/или углеродосодержащих веществ и инертного газа в замкнутом объеме при пониженном давлении и обеспечении осаждения испарившихся компонентов в виде углеродных нанотрубок на охлажденной поверхности накопительной емкости, герметично соединенной с системой нагревания и системой отвода инертного газа, отличающийся тем, что в образованную смесь углерода и/или углеродосодержащих веществ и инертного газа добавляют подогретый водород, а продукты индукционного нагрева направляют в накопительную емкость через сопло Лаваля с числами Маха М=1,5÷5.

2. Устройство для осуществления способа получения углеродных нанотрубок, содержащее систему нагревания углерода и/или углеродосодержащих веществ высокочастотным электромагнитным полем высокочастотного плазмотрона в замкнутом объеме внутри радиопрозрачной трубки, герметично связанную с системой подачи инертного газа, газоформирователем, сопловым блоком, накопительной емкостью с охлаждаемым сажеуловителем и системой отвода инертного газа, отличающееся тем, что сопловой блок содержит сопло Лаваля с числами Маха М=1,5÷5, а к газоформирователю подключен источник водорода с устройством для его подогрева.



 

Похожие патенты:

Установка получения синтетического жидкого топлива относится к химической промышленности и может быть использовано, в частности, для проведения химического процесса получения синтетического жидкого топлива.

Изобретение предназначено для химической промышленности и может быть использовано при получении водорода. Устройство конверсии окиси углерода включает охладитель-сепаратор 1, оснащённый линией вывода водного конденсата 12, несколько охлаждаемых реакторов 2, 3, 4 каталитической конверсии окиси углерода, между которыми на линиях подачи частично конвертированного газа расположены сатураторы 5 и 6, соединённые с линией вывода водного конденсата 12, с линией подачи смеси части синтез-газа 13 и части водного конденсата 14.

Изобретение относится к установкам для получения водорода методом паровой конверсии углеводородного сырья и может быть использовано в различных отраслях промышленности.

Изобретение относится к нефтехимии и может быть использовано для получения моторных топлив. Внутреннюю полость реактора загружают сырьём фракцией до 50 мм: биотопливом, твердыми бытовыми или сельскохозяйственными отходами, угольными шламами посредством узла загрузки 3.

Изобретение может быть использовано в химической промышленности. Генератор синтез-газа содержит цилиндрический корпус 1, внутри которого с кольцевым зазором установлена камера сгорания 2.

Изобретение относится к химической промышленности, а именно к реактору переработки газового углеводородного сырья для получения синтез-газа, который может быть использован в газохимии для получения метилового спирта, диметилового эфира, альдегидов и спиртов, углеводородов и синтетического моторного топлива.

Изобретение относится к области добычи и переработки полезных ископаемых. Установка для извлечения водорода из воды Черного моря содержит реактор, соединенный трубопроводами с воздухозаборником и емкостью с серной кислотой, поступающей из окислителя.

Изобретение относится к получению синтетического газа и может быть использовано в химической промышленности. Способ получения синтетического газа включает введение метана и углекислого газа в реакционную камеру.

Изобретение относится к области получения аммиака на основе риформинга углеводородов, в частности к способу повышения производительности установки для получения аммиака.

Изобретение относится к обработке отходящего газа из синтеза Фишера-Тропша, приводящей к понижению выделения углерода. Нециркуляционный остаточный газ, вырабатываемый после реакции синтеза Фишера-Тропша подвергается реформингу паром и превращается в обогащенный водородом синтез-газ.
Изобретение относится к сельскому хозяйству, в частности к аэрогидропонному способу выращивания зеленых кормов. Увлажняют посевной материал и вегетативную массу католитом при активном непрерывном в течение 7-8 суток барботаже раствора воздухом.

Изобретение относится к неорганической химии и касается способа получения наногидроксиапатита, который может быть использован в медицине для производства медицинских материалов, стимулирующих восстановление дефектов костной ткани, в том числе в стоматологии.

Изобретение может быть использовано для получения наноразмерных порошков элементов и их неорганических соединений методом «испарения - конденсации» в потоке газа.

Изобретение относится к области технологии ядерных материалов и может быть использовано для конверсии тетрафторида урана, в том числе обедненного, в наноструктурированные оксиды урана и с получением другого ценного неорганического вещества - тетрафторида кремния.

Изобретение относится к технологиям получения износостойких, прочностных тонких алмазных пленок методом вакуумной лазерной абляции и может быть использовано в различных областях промышленности и науки для получения тонкопленочных упрочняющих покрытий и создания наноструктурных материалов.

Изобретение относится к химии, оптоэлектронике и нанотехнологии и может быть использовано при изготовлении прозрачных электродов и приборов наноэлектроники. В кварцевый реактор помещают подложку - Х-срез пьезоэлектрического кристалла, например, La3Ga5,5Ta0,5O14, плоскости (110) которого параллельны поверхности кристалла.

Изобретение относится к способам синтеза гибридных наноструктурированных материалов, а именно к способу получения гибридных плазмонно-люминесцентных маркеров. Способ заключается в формировании металлических плазмонных наночастиц на поверхности неорганических люминесцентных наночастиц, предварительно активированных ионами редкоземельных металлов.

Изобретение относится к технологии получения керамических наноматериалов, а именно дискретных нанотрубок нитрида бора, применяющихся в качестве упрочняющей фазы для полимерных и металлических матриц.
Изобретение относится к порошковой металлургии, а именно к металлополимерным композициям для изготовления PIM-изделий путем формования и спекания указанных композиций.

Изобретение относится к способам получения нанопористых керамических материалов, в частности из нитрида бора, применяемых для очистки газов или жидкостей от вредных примесей, а также для сорбции и хранения водорода.

Изобретение относится к области разработки способа получения фотокатализатора на основе диоксида титана, модифицированного частицами платины, проявляющего активность под действием ультрафиолетового излучения в реакции фотокаталитического окисления монооксида углерода при комнатной температуре.
Наверх