Состав реагента для увеличения нефтеотдачи пластов

Изобретение относится к области разработки нефтяных месторождений, в частности к реагентам для повышения отдачи нефтеносных пластов, находящихся на различной стадии разработки. Технический результат - повышение эффективности и экономичности обработки. Состав реагента для увеличения нефтеотдачи пластов, включающий смесь натрий алкилбензосульфонатов (С1824), смесь полиэтиленгликолевых эфиров синтетических высших жирных спиртов (C16-C18), смесь моноалкиловых эфиров полиэтиленгликоля на основе первичных жирных спиртов (CnH2n+1O(C2H4O)mH, где n=7-9, m=10-12) содержит компоненты в следующем соотношении, мас.%: указанная смесь натрий алкилбензосульфонатов 89,55, указанная смесь полиэтиленгликолевых эфиров синтетических высших жирных спиртов 9,95, указанная смесь моноалкиловых эфиров полиэтиленгликоля на основе первичных жирных спиртов 0,5. 3 пр., 6 табл.

 

Изобретение относится к области разработки нефтяных месторождений, в частности к способам повышения отдачи нефтеносных пластов, находящихся на различной стадии разработки.

Известен способ разработки нефтяных месторождений при помощи закачки биологически активного вещества биоПАВ и углеводородного растворителя, где предварительно закачивается алюмосиликатная композиция на основе 11% раствора соляной кислоты (RU №2502864, опубл. 27.12.2013).

Недостатком данного способа является высокая концентрация (до 6% углеводородного раствора биоПАВ в воде), а также невысокий прирост (лишь до 26,4%) коэффициента извлечения нефти.

Существует способ повышения нефтеотдачи пластов, который включает в себя последовательную закачку в пласт: водной эмульсионнно-дисперсионной системы, содержащей 0,5-1% масс. 25%-го раствора Неонол АФ 9-12, или ОП-10 в ароматическом растворителе, затем водного раствора силиката натрия (RU №2266398, опубл. 20.12. 2005).

Данный способ является малоэффективным в связи с низким показателем коэффициента извлечения нефти из низкопроницаемого пропластка (20%) и не достаточно высоким результатом вытеснения нефти из высокопроницаемого пропластка (80%), особенно в связи с отсутствием сопоставления данных результатов с результатами вытеснения нефти пластовой водой данного месторождения.

Известен способ повышения нефтеотдачи с применением состава для извлечения нефти, содержащего жидкий углеводород 10,0-20,0% масс., маслорастворимое ПАВ 0,3-5,0% масс., водорастворимое, или маслорастворимое ПАВ 0,1-1%, высокодисперсный гидрофобный материал 0,1-2,0% масс. и воду (RU №2244809 опубл. 20.01.2005).

Недостатком данного способа является высокая концентрация углеводорода (10-20%) и поверхностно-активных веществ (1,1-6%), что значительно повышает затраты при закачке данного раствора оторочками по несколько тысяч кубометров для заполнения порового объема эксплуатируемого участка пласта, что очевидно связано с низкой эффективностью используемых индивидуальных ПАВ.

Наиболее близким к заявленному изобретению является «Состав реагента для увеличения коэффициента извлечения нефти» (заявка №2014125918/03 опубл. 27.01.2016), который является композицией анионактивных и неионогенных ПАВ, применяемых в качестве 0,1-0,2% масс. раствора в подтоварной воде для закачки в пласт через систему нагнетательных (добывающих) скважин оторочками по 1-5 тыс.м3.

Недостатком данного состава является невозможность его реализации из-за того, что сумма процентных долей компонентов данного изобретения в ряде вариантов его реализации не равна 100%, а также не точно указаны наименования химических соединений и их фракций.

Задачей, на решение которой была направлена разработка заявленного изобретения, является разработка состава реагента для увеличения нефтеотдачи пластов на основе аналогичных компонентов, но с точно определенным количественным и качественным составом, который обладал бы не меньшей эффективностью и экономичностью.

Поставленная цель достигалась применением научных методов разработки, оптимизации составов, а также оценки их эффективности. Основным принципом разработки состава стала его композиционность: то есть сочетание наилучших качеств каждого из исходных компонентов в композиции. В частности, с составе присутствует анионактивный ПАВ, обладающий хорошим моющим действием, при невысокой стоимости. Вследствие нуклиофильности песчаника, как основной породы, составляющей нефтенасыщенный гидрофильный коллектор, данный анионактивный ПАВ не будет в значительной степени адсорбироваться на породе. Другими компонентами разработанной композиции стали неионогенные ПАВ. Они являются в основном мицеллообразующими компонентами, препятствующими, в том числе, нарушению гидрофильно-липофильного баланса раствора и, как следствие, выпадению солей. Состав композиции был оптимизирован индуктивным диэлектрическим методом (Патент РФ №2347230, МПК G01R 72/26, 01.2006) путем определения потерь индукции электромагнитного поля в водном растворе исходных веществ (tgδ), а также их композиций, входящих в состав заявленного реагента. По высоте экстремальных значений данных потерь в диапазоне частот 15-1500 кГц определялась величина электростатических сил межмолекулярных взаимодействий в исследуемых композициях, максимальное значение которых обуславливает прочность и стабильность образованных мицелл, что в свою очередь предотвращает их распад и адсорбцию на породе нефтеносного коллектора. Таким образом, если при введении нового компонента в композицию максимальное значение tgδ композиции увеличивается на той же частоте, что и у предыдущей композиции или индивидуального вещества, то мицеллы, образованные в присутствии данного вещества, являются более связанными и стабильными, что обосновывает целесообразность введения этого компонента в композицию. Наличие мицелл подтверждалось исследованием размеров частиц в растворах заявленного реагента на лазерном анализаторе Zetatrac, табл. 5.

Пример 1

Готовят три раствора 0,2% масс. в пластовой воде Соровского месторождения с содержанием хлористых солей 280 мг/л:

- смесь натрий алкилбензосульфонатов (С1824) технической чистоты (Реагент 1),

- смесь полиэтиленгликолевых эфиров синтетических высших жирных спиртов (C16-C18) технической чистоты (Реагент 2),

- смесь моноалкиловых эфиров полиэтиленгликоля на основе первичных жирных спиртов CnH2n+1O(C2H4O)mH, где n=7-9, m-10-12 (Реагент 3).

Затем поочередно смешивают раствор Реагента 1 с раствором Реагента 2 в соотношениях 10, 20, 30…90% масс. Реагента 1 в смеси при комнатной температуре 20-30°С. Оптическую плотность по пластовой воде каждого из полученных растворов определяют на КФК и по этому значению определяют относительное содержание нерастворенных солей (высалевание раствора), которое является следствием нарушения гидрофильно-липофильного баланса и негативно сказывается на фильтрационных свойствах раствора. Затем исследуют влияние композиций растворов реагентов, показавших наименьшие значения оптической плотности, т.е. не стимулирующие выпадение солей при минимальном содержании дорогостоящих неионогенных ПАВ, на значение поверхностного натяжения на границе раздела фаз нефть-вода, определяемого на сталагмометре СТ-2 с термостатированием жидкостей при пластовой температуре 83°С. При этом используется нефть и вода из того пласта, к которому производится подбор данного реагента. Композицию реагентов, которая показывает наилучшие результаты по влиянию не межфазное натяжение на границе фаз нефть-вода, отбирают для дальнейших исследований табл. 1.

В 10 мл отобранной композиции поочередно вводят: 0,05; 0,1; 0,2; 0,5; 1; 2; 3 мл 0,2% масс. раствора Реагента 3. Композиции ПАВ, полученные из трех исходных компонентов, исследуются по величине оптической плотности в сравнении с пластовой водой. Композиции, демонстрирующие наименьшие значения оптической плотности, далее исследуются по влиянию на межфазное натяжение по вышеописанной методике. Определяют оптимальные составы реагентов, которые снижают поверхностное натяжение на границе раздела фаз нефть-вода. Такие растворы отбираются впоследствии для модельных испытаний и оптимизации концентрации. Результаты определения оптической плотности и силы межфазного натяжения на границе раздела фаз нефть-вода Соровского месторождения пласт БС-7/0, для реагентов, использованных при разработке и оптимизации заявленного состава, представлены в таблицах 2-5.

Было определено, что оптимальным составом для дальнейших исследований является состав, выделенный в таблице 2, так как он содержит наименьшую долю дорогостоящего неионогенного ПАВ (Реагент 3).

Пример 2

Оптимизация концентрации водного раствора производится путем исследования эффективности снижения межфазного натяжения полученными растворами реагентов в различной концентрации по вышеописанной методике. Такие исследования проводятся при концентрациях выбранной композиции в водном растворе 0,05; 0,1; 0,2; 0,3; 0,5; 1% масс. для определения ее оптимального значения с учетом величины межфазного натяжения, табл. 4.

Данные результаты, табл. 4, дополнительно подтверждались исследованиями отмывающей способности полученной композиции в определенных в табл. 4 концентрациях на силикатном покровном стекле прямоугольной формы толщиной менее 50 мкм, шириной 23,94 мм, длиной 48,30 мм. Определяли время отмыва пленки нефти от данного стекла в растворе полученных композиций. Для этого стекло, смачиваемое в течение 30 минут нефтью опускали в кювету для КФК, в которую предварительно наливали 14 мл 0,1-0,2% масс. раствора композиции в пластовой воде. На боковых стенках такой кюветы закреплены светодиод и фотодиоды так, чтобы свет, генерируемый светодиодом, воспринимался фотодиодами на всей противоположной поверхности боковой стенки кюветы. Данные с этих датчиков через микропроцессорную плату Unduino выводятся на компьютер. Таким образом, фиксируется диаграмма зависимости от времени доли света, попавшего на фотодиод в кювете с раствором, к доле света, попавшего на фотодиод в кювете с покровным стеклом, смоченным нефтью, что напрямую зависит от степени отмыва (%) силикатного стекла от пленки, насыщенный образец закрепляют в кернодержатель установки. Путем нагнетания насосом создают необходимый градиент горного и пластового давлений (4 МПа). Устанавливают минимальные обороты перистальтического насоса и начинают прокачку раствора ПАВ 0,1% масс. через образец керна №3. Расход раствора ПАВ замеряют путем определения времени протекания определенного объема раствора, либо нефти через керн. Объем истекшего раствора составил V=5,6 мл, а время истекания 680 сек. Таким образом, скорость истечения составила υ=0,00823 мл/сек. Тогда, с учетом полученных результатов по вытеснению, по формуле для определения линейной скорости фильтрации из ОСТ-39-195-86 рассчитывают ее значение: υлин=55,93 м/сут. Для определения необходимого количества прокачек раствора ПАВ, при вытеснении нефти, пробы отфильтрованной и вытесненной жидкости отбирают парциально: по одному поровому объему жидкости в пробирку. Для этого определили объем пор в данном образце керна V=5,69 мл. Затем, в соответствии с методикой, увеличивают скорость прокачки раствора ПАВ и отбирают двойной поровый объем. V (р-ра ПАВ)=11,2 мл, время 676 с, υ=0,0165 мл/с, что в 2 раза больше начальной. Объем нефти из пробирок с отобранными первыми пятью поровыми объемами после суточного отстаивания замеряют и отбирают вместе с частью воды с перемещением в пластиковую неградуированную пробирку для центрифугирования. Отбор производился так, чтобы слой нефти полностью помещался в цилиндрической части пробирки. Замеряют высоту данного слоя нефти в пластиковой пробирке, а также фотографируют ее. Затем пробирку с нефтью и водой центрифугируют в течение 30 минут на скорости 10 тыс. об.мин. После центрифугирования пробирку снова фотографируют и измеряют высоту слоя штангенциркулем, затем туда добавляют 1 мкл водорастворимого деэмульгатора для глубокого обезвоживания нефти, встряхивают пробирку и снова центрифугируют 10 минут на скорости 10 тыс. об.мин. нефти. По значениям минимального времени солюбилизации нефти с силикатного стекла, поверхностного натяжения и оптической плотности определялись оптимальные концентрации заявленного реагента в пластовой воде, табл. 5.

Результаты исследования размеров частиц в растворе заявленного реагента показывают наличие мицелл, повышающих эффективность вытеснения нефти, а также индивидуальных молекул неионогенных ПАВ, обладающих высокой проникающей способностью, что влияет на увеличение коэффициента охвата путем применения заявленного реагента. Оптимальная концентрация ПАВ в растворе подтоварной воды составляет 0,1-0,2% масс.

Пример 3

Модельные испытания раствора заявленного композиционного реагента производились путем исследования и сопоставления данных об эффективности вытеснения нефти Соровского месторождения, пласт БС-7/0 из нефтеводонасыщеных образцов керна №3 и №20 Соровского месторождения на установке многофазной фильтрации через керн ТВР-604 компании Coretest Systems по ОСТ-39-195-86.

Для исследования вытесняющей способности заявленного состава водного раствора ПАВ, водонефтенасыщенный образец керна обтирают и затем взвешивают m(обр. №3 нас. нефть.)=50,65 гр. Массу сопоставляют с массой сухого образца m(обр. №3 сух.)=46,3 гр. и, исходя из определенной ранее доли остаточной воды в порах (37% масс.), определяют массу жидкости в порах m(жидкости в порах обр. №3)=4,37 гр.

Затем пробирку фотографируют и замеряют высоту слоя. Наименьшую высоту слоя нефти в двух последних измерениях делят на высоту слоя нефти перед центрифугированием, и полученный коэффициент умножают на каждый из объемов нефти, отобранных в пять пробирок. Таким образом, получают реальный объем обезвоженной нефти, вытесненный в каждую из пробирок. Для определения массы нефти полученный объем относят к плотности нефти. Массу затем относят к массе нефти, находящейся в керне, с учетом коэффициента насыщения, получая таким образом Кв - коэффициент вытеснения нефти после прокачки каждого порового объема раствора заявленного ПАВ, а также суммарный коэффициент. Сопоставление различных показателей процесса вытеснения нефти Соровского месторождения заявленным раствором ПАВ и пластовой водой того же месторождения, на двух образцах керна с низкими фильтрационными свойствами, представлены в табл. 6.

Таким образом, техническим результатом разработки стало создание композиционного реагента на основе ПАВ, с эффективностью и экономичностью, равными прототипу, на основе точно определенных по качественному, количественному и фракционному составу компонентов.

Состав реагента для увеличения нефтеотдачи пластов, включающий смесь натрий алкилбензосульфонатов (С1824), смесь полиэтиленгликолевых эфиров синтетических высших жирных спиртов (C16-C18), смесь моноалкиловых эфиров полиэтиленгликоля на основе первичных жирных спиртов (CnH2n+1O(C2H4O)mH, где n=7-9, m=10-12), отличающийся тем, что содержит компоненты в следующем соотношении, мас.%:

указанная смесь натрий алкилбензосульфонатов 89,55;

указанная смесь полиэтиленгликолевых эфиров

синтетических высших жирных спиртов 9,95;

указанная смесь моноалкиловых эфиров полиэтиленгликоля

на основе первичных жирных спиртов 0,5.



 

Похожие патенты:

Предложенное изобретение относится к нефтедобывающей промышленности и может быть использовано для проведения водоизоляционных работ в обводненных карбонатных пластах, в том числе ограничения притока подошвенной, законтурной или закачиваемой воды, поступающей по высокопроницаемым трещинам.

Изобретение относится к нефтегазодобывающей промышленности. Технический результат - повышение селективности растворения кислоторастворимых минералов терригенного коллектора и осадкоудерживающей способности.

Изобретение относится к буровым растворам на водной основе и может найти применение при бурении нефтяных и газовых скважин, преимущественно при бурении неустойчивых глинистых пород в терригенных и солевых отложениях.

Изобретение относится к буровым растворам на водной основе и может найти применение при бурении нефтяных и газовых скважин, преимущественно при бурении неустойчивых глинистых пород в терригенных и солевых отложениях.

Изобретение относится к буровым растворам на водной основе и может найти применение при бурении нефтяных и газовых скважин, преимущественно при бурении неустойчивых глинистых пород.

Настоящее изобретение относится к способу гидравлического разрыва подземного пласта. Способ гидравлического разрыва водным раствором несшитого полимера, включающий введение в ствол скважины водной текучей среды для гидравлического разрыва, содержащей полиэтиленоксид – ПЭО, в качестве агента снижения трения и неионный полимер - НП, и снижение трения водной текучей среды для гидравлического разрыва, когда указанная среда закачивается в ствол скважины, где НП защищает ПЭО от сдвигового разложения и где указанную среду вводят в ствол скважины при давлении, достаточном для создания или расширения гидравлического разрыва в подземном пласте, и массовое соотношение ПЭО и НП составляет от 1:20 до 20:1, и препятствование сдвиговому разложению ПЭО из-за турбулентного потока указанной среды.

Изобретение относится к эмульгаторам инвертных эмульсий и может быть использовано при получении однородной смеси двух несмешивающихся жидкостей, таких как нефть и вода, применяющихся в нефтедобывающей промышленности для увеличения нефтеотдачи пластов на поздней стадии разработки.
Изобретение относится к нефтегазодобывающей промышленности, а именно к бурению горизонтальных стволов большой протяженности, связанного с развитием кустового бурения и, в том числе, со строительством скважин в условиях Крайнего Севера и континентального шельфа.

Изобретение относится к области нефтегазодобывающей промышленности и может быть применено для гидравлического разрыва продуктивного пласта, содержащего прослой глины с газоносным горизонтом.

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления керамических проппантов средней плотности, предназначенных для использования в качестве расклинивающих агентов при добыче нефти или газа методом гидравлического разрыва пласта - ГРП.

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления среднеплотных и легковесных керамических проппантов с насыпной плотностью 1,4 – 1,55 г/см3 из шихты на основе смеси термообработанного природного магнийсиликатного сырья и кварцполевошпатного песка. Магнийсиликатный проппант представляет собой керамические гранулы на основе метасиликата магния, изготовленные путем предварительной термообработки и помола исходных компонентов шихты, формования гранул, их обжига, охлаждения и рассева, где охлаждение осуществляют со скоростью 250°С/ч и более, а указанный метасиликат представлен протоэнстатитом и клиноэнстатитом при следующем их соотношении, об.%: протоэнстатит 55-95, клиноэнстатит 5-45. Технический результат – повышение устойчивости к циклическим сжимающим нагрузкам при сохранении требуемых прочностных характеристик. 2 пр., 2 табл.

Изобретение относится к керамическому расклинивающему агенту. Способ получения керамического расклинивающего агента включает стадии: а) подготовку, включающую измельчение исходных материалов, содержащих магнийсодержащий материал, и вспомогательных материалов с получением шихты, б) гранулирование шихты с получением гранул предшественника расклинивающего агента, в) обжиг гранул предшественника расклинивающего агента с получением гранул расклинивающего агента и стадию предварительного обжига магнийсодержащего материала в восстановительной атмосфере, которую проводят перед стадией а). Керамический расклинивающий агент, полученный указанным выше способом, характеризуется содержанием энстатита от 50 до 80 масс. % и магнезиоферрита от 4 до 8 масс. %. Способ обработки подземного пласта включает обеспечение указанного выше керамического расклинивающего агента, смешивание его с рабочей жидкостью для гидроразрыва пласта и введение полученной смеси в подземный пласт. Применение указанного выше керамического расклинивающего агента - для гидроразрыва подземного пласта. Изобретение развито в зависимых пунктах формулы. Технический результат – улучшение эксплуатационных характеристик расклинивающего агента. 4 н. и 15 з.п. ф-лы, 1 табл., 6 пр.

Изобретение относится к бурению нефтяных, газовых и геологоразведочных скважин, а именно к органическим ингибиторам глин для буровых растворов. Технический результат - повышенине устойчивости глинистых минералов к гидратации и диспергируемости при бурении буровыми растворами на водной основе, предотвращение сальникообразования, снижение коллоидной фазы и повышение смазочных и противоприхватных свойств. Органический ингибитор глин для буровых растворов содержит смазочную добавку ФК-2000 Плюс, состоящую из жирных кислот триглицеридов подсолнечного, кукурузного, соевого, рапсового масла с числом углеродных атомов от 14 до 24 в количестве 50-80 мас.%, нейтрализующего агента в количестве 3-6 мас.%, полиэтиленгликолевого эфира моноизононилфенола с 6-12 мономерными звеньями в радикале в количестве 5-30 мас.% и воды остальное, Дипроксамин 157 и смесь растительных и минеральных масел в соотношении от 1:1 до 1:9 при следующем соотношении ингредиентов, мас.%: смазочная добавка ФК-2000 Плюс 4-8; Дипроксамин 157 6-28; смесь растительных и минеральных масел - остальное. 1 з.п. ф-лы, 2 табл.

Изобретение относится к области внутригрунтовой гидроизоляции сооружений различного назначения, а именно при создании внутригрунтовой объемной мембраны. Технический результат - повышение качества гидроизоляции заглубленных сооружений, находящихся под воздействием гидродинамических нагрузок в широком диапазоне глубин, при одновременном обеспечении экологичности работ, исключающих негативное воздействие изолирующего материала на окружающую среду. Поставленная задача решается тампонажным составом, содержащим, мас.%: 15-25 сополимерной непластифицированной акриловой эмульсии на основе стирола и эфиров метакриловой кислоты, 4-15 сополимера карбоновых кислот акрилового ряда, их эфиров и солей и 64-70 тонкодисперсных минеральных добавок. 1 табл.

Изобретение относится к нефтегазодобывающей промышленности, а именно к глушению нефтяных скважин. Технический результат заключается в повышении надежности глушения нефтяных скважин и блокирования призабойной зоны продуктивного пласта в условиях ММП без их растепления. Способ глушения нефтяной скважины включает закачивание в скважину по колонне НКТ солевого раствора на основе хлорида калия с плотностью, необходимой для пластовых условий. Далее закачивают вязкоупругий состав, включающий солевой раствор на основе хлорида калия, 0,1 мас.% каустической соды и полимер-загуститель с наполнителем - 0,75 мас.% ксантановой камеди и с 2,5 мас.% вермикулита. Закаченные компоненты продавливают через перфорационные отверстия в эксплуатационной колонне и образовавшуюся в процессе гидроразрыва трещину разрыва в прискважинную зону с образованием на забое и в призабойной зоне пласта блокирующего экрана, непроницаемого для воды и газа, содержащегося в добываемой нефти. Затем закачивают по колонне НКТ в затрубное пространство только солевой раствор созданием прямой циркуляции между эксплуатационной колонной и спущенной в нее колонной НКТ. 2 ил.

Изобретение относится к бурению скважин. Технический результат - вскрытие продуктивных горизонтов в процессе бурения скважин с сохранением фильтрационно-емкостных свойств пород-коллекторов. Полимерторфощелочной буровой раствор для вскрытия продуктивных пластов нефтяных и газовых скважин в процессе бурения содержит, %: торф 5-8; калийносодержащий щелочной модификатор 0,5-1,5; пеногаситель МАС-200М 1-3; утяжелитель Барит 10-40; смазывающую добавку - сапропель 1-10; понизитель водоотдачи и флоккулянт - полимер DK DRILL 0,3-1,4; воду - остальное. 2 табл.

Изобретение относится к области добычи газа и газового конденсата. Технический результат - повышение эффективности удаления жидкого пластового флюида из газовых и газоконденсатных скважин, продукция которых содержит пластовую воду с содержанием солей до 300 г/л при температуре до 85°C и содержанием углеводородного конденсата до 50 об. %. Твердый пенообразователь для удаления жидкого пластового флюида из газовых и газоконденсатных скважин, содержащий мас. %: сополимер суспензионный метилметакрилата с метакриловой кислотой марки метакрил - 354 К 5-20, поливинилпирролидон 10-25, неонол АФ 9-12 10-25, кальция гидроокись 5-20, вода остальное. 2 ил., 1 табл., 4 пр.
Предложенное техническое решение относится к способу обработки призабойной зоны пласта, в частности к способу ограничения водопритока в добывающих нефтяных скважинах. Подготавливают водный раствор модификатора коллекторских свойств пласта Компонекс-21, в следующем соотношении компонентов, мас.%: хлорид натрия и/или хлорид калия 0,1-7,0, соль аммония 1,5-2,8, комплексоны 0,1-0,8, комплексонаты или хелаты 0,1-2,7, ПАВ 0,2-1,0, вода пресная или минерализованная - остальное. Устанавливают пакер или двухпакерную сборку для отсечения обводненного пласта или его части - пропластка от необрабатываемой части пласта и от затрубного пространства скважины. Осуществляют порционную закачку приготовленного раствора через насосно-компрессорные трубы в обрабатываемую зону перфорации пласта с выдержкой между закачками 10-12 часов. Измеряют давление на устье скважины в начале и в конце каждой закачки. После достижения давления на устье скважины, превышающего начальное давление закачки более чем на 20 МПа, но не превышающей величины давления гидравлического разрыва пласта, проводят окончательную продавку в пласт оставшегося водного раствора модификатора коллекторских свойств пласта Компонекс-21. Изобретение позволяет ограничить водоприток из пласта или обработанного пропластка в добывающую скважину и увеличить зону охвата обрабатываемого пласта заводнением.

Изобретение относится к нефтегазодобывающей промышленности, в частности к составам для кислотной обработки призабойной зоны терригенного пласта с повышенной карбонатностью. Состав включает 36%-ную соляную кислоту, ингибитор коррозии ИКУ-118, пресную воду, 86,5%-ную муравьиную кислоту, динатриевую соль этилендиаминтетрауксусной кислоты, бифторид аммония, эриторбат натрия, гидрофобизатор ГФ-15МПС. Технический результат заключается в получении кислотного состава, обладающего высокой растворяющей способностью карбонатной составляющей продуктивного пласта, пониженным межфазным натяжением на границе керосин/кислотный состав, низкой скоростью коррозии и не образующего нерастворимых осадков при высоких пластовых температурах. 3 табл., 4 пр.

Изобретение относится к нефтедобывающей промышленности. Технический результат - интенсификации притока нефти, увеличение проницаемости пласта, замедление скорости реакции с породой состава для обработки пласта и исключение образования кремниевых кислот при реакции с глинами при высокой пластовой температуре. Кислотный состав для обработки низкопроницаемых высокотемпературных пластов с повышенным содержанием глин и карбонатов содержит, мас.%: соляную кислоту 4-6; уксусную или муравьиную кислоту 5-8; ингибитор коррозии типа «ИКУ-118» или «Prod Ci-300» 0,1-0,5; поверхностно-активное вещество Нефтенол-ВВД 0,1-0,5; стабилизатор железа Hi-Iron 0,75-2; воду - остальное. 3 табл., 4 пр.
Наверх