Способ формирования сигнала стабилизации продольного углового движения беспилотного летательного аппарата

Изобретение относится к способу формирования сигнала стабилизации продольного углового движения беспилотного летательного аппарата. Для формирования сигнала производят идентификацию аэродинамических характеристик летательного аппарата на основе восстановления угла атаки определенным образом, измеренных углов тангажа, углов отклонения рулевых поверхностей, угловой скорости тангажа, а также нормального ускорения. Корректируют коэффициенты усиления контура стабилизации продольного углового движения летательного аппарата, формируют сигнал стабилизации продольного углового движения беспилотного летательного аппарата на основе скорректированных коэффициентов. Обеспечивается требуемое качество стабилизации углового движения летательного аппарата в широком диапазоне скоростей и высот полета при действии возмущений.

 

Настоящее изобретение относится к бортовым автоматическим системам управления движением и стабилизации атмосферного беспилотного летательного аппарата, выполненного по нормальной аэродинамической схеме, совершающего маневры в широком диапазоне скоростей и высот полета, подвергающегося в процессе полета внешним и внутренним возмущающим воздействиям.

Из существующего уровня техники известны способ формирования интегрального адаптивного сигнала стабилизации планирующего движения беспилотного летательного аппарата (RU 2460113, опубл. 02.03.2011), способ формирования сигнала управления и стабилизации продольно-балансировочного движения летательного аппарата (RU 2310899, опубл. 25.05.2006) и система управления угловым движением беспилотного летательного аппарата (RU 2234117, опубл. 13.01.2003).

Недостатками данных технических решений является необходимость введения дополнительных измерительных устройств для измерения скоростного напора, отсутствие учета разбросов параметров объекта - аэродинамических характеристик и невысокая точность управления.

Наиболее близким к предлагаемому изобретению является «Способ формирования сигнала управления и стабилизации продольно-балансировочного движения летательного аппарата и устройство для его осуществления» (RU 2310899, опубл. 25.05.2006).

Этот способ состоит в том, что задают сигнал управления, измеряют сигнал углового положения летательного аппарата, измеряют сигнал угловой скорости летательного аппарата, формируют сигнал рассогласования между заданным сигналом управления и измеренным сигналом углового положения, усиливают сигнал рассогласования, усиливают сигнал угловой скорости, формируют сигнал суммы усиленных сигналов рассогласования и угловой скорости и ограничивают сигнал суммы, масштабируют сигнал рассогласования, интегрируют масштабированный сигнал рассогласования, ограничивают интегральный сигнал и суммируют ограниченный интегральный сигнал с ограниченным сигналом суммы усиленных сигналов рассогласования и угловой скорости.

Недостатками способа, принятого за прототип, являются отсутствие учета априорной информации о возмущающих ветровых воздействиях, отсутствие учета неточностей знания параметров атмосферы и неточностей знания аэродинамических характеристик летательного аппарата.

Решаемой в предложенном способе формирования сигнала стабилизации продольного углового движения беспилотного летательного аппарата технической задачей является обеспечение требуемого качества стабилизации углового движения летательного аппарата в широком диапазоне скоростей и высот полета при действии возмущений.

Для решения указанной технической задачи в процессе полета производится идентификация аэродинамических характеристик летательного аппарата на основе восстановления угла атаки, уточнения измеряемой угловой скорости тангажа, измеренных значений угла тангажа и углов отклонения рулевых поверхностей летательного аппарата.

Восстановление угла атаки производится с использованием линейного непрерывного фильтра Калмана с учетом погрешностей измерений нормального ускорения и угловой скорости тангажа.

Сущность способа заключается в определении коэффициентов усиления контура угловой стабилизации летательного аппарата на основе уточняемых аэродинамических характеристик.

Последовательность способа формирования сигнала стабилизации продольного углового движения описывается следующим образом.

Продольное возмущенное движение описывается следующими уравнениями (1):

где α, ϑ, δ - углы атаки, тангажа и отклонения рулевых поверхностей летательного аппарата соответственно,

ωz - угловая скорость тангажа,

ny - нормальная перегрузка,

ϑи, ω - измеренные значения угла тангажа и угловой скорости тангажа соответственно,

, , , ,

, , , - производные аэродинамических коэффициентов летательного аппарата по углам α и δ,

S, L - характерные площадь и длина летательного аппарата соответственно,

V - скорость летательного аппарата,

g - ускорение силы тяжести,

q - скоростной напор,

m - масса летательного аппарата,

Iz - момент инерции летательного аппарата относительно оси OZ связанной системы координат,

- изменение угловой скорости угла атаки за счет ветрового воздействия,

а в - возмущающее угловое ускорение по каналу тангажа, Т - постоянная времени рулевого привода,

ϑпр - программное значение угла тангажа,

- коэффициенты усиления контура стабилизации тангажа,

σ - сигнал стабилизации продольного углового движения беспилотного летательного аппарата.

Математическая модель измерений описывается системой уравнений (2)

Здесь nуи, δи - измеренные значения нормальной перегрузки и углов отклонения рулевых поверхностей соответственно,

- ошибки измерений угловой скорости тангажа и нормальной перегрузки соответственно.

Восстановление угла атаки проводится на основе линейного непрерывного фильтра Калмана-Бьюси (ФКБ).

Векторные уравнения ФКБ (3) приведены ниже:

где - вектор оцениваемых параметров,

А - матрица правой части математической модели движения (1),

u - вектор известных составляющих правой части,

Р - матрица ковариаций ошибки оценки в процессе оценки,

Н - известная матрица правой части модели измерений,

R - матрица ковариаций шумов измерений,

Q - матрица ковариаций внешних возмущений.

Восстановление угла атаки, а также оценка измеряемой с погрешностью угловой скорости тангажа, проводятся с использованием следующих уравнений (4):

Здесь - оценки угла атаки и угловой скорости, - априорные дисперсии измерений, - априорная дисперсия угловой скорости ветрового порыва.

На основании уравнения (1) можно записать выражение для определения реализованного коэффициента :

Сформированный сигнал стабилизации продольного углового движения беспилотного летательного аппарата имеет вид (6):

где - скорректированные в соответствии с формулами (7) коэффициенты усиления контура стабилизации продольного углового движения

Здесь а20 - значение коэффициента а2 для номинальных аэродинамических характеристик, - коэффициенты усиления, обеспечивающие выполнение требований к качеству переходных процессов при номинальных аэродинамических характеристиках, D - добротность рулевого привода, а и а0 вычисляются по формулам (8):

Предложенная схема коррекции коэффициентов контура стабилизации на основе идентифицированных аэродинамических коэффициентов позволяет повысить качество переходных процессов отработки возмущений.

Эффективность принятого подхода к коррекции коэффициентов в процессе полета подтверждена результатами анализа и математического моделирования.

Все составные операции способа могут быть выполнены программно-алгоритмически в бортовых вычислительных машинах беспилотных летательных аппаратов.

Способ формирования сигнала стабилизации продольного углового движения беспилотного летательного аппарата, при котором производят идентификацию аэродинамических характеристик летательного аппарата на основе восстановления угла атаки, измеренных углов тангажа, углов отклонения рулевых поверхностей, угловой скорости тангажа, а также нормального ускорения, при этом восстановление угла атаки производят с использованием линейного непрерывного фильтра Калмана-Бьюси с учетом погрешностей измерения нормального ускорения и угловой скорости тангажа, корректируют коэффициенты усиления контура стабилизации продольного углового движения беспилотного летательного аппарата, формируют сигнал стабилизации продольного углового движения беспилотного летательного аппарата на основе скорректированных коэффициентов.



 

Похожие патенты:

Группа изобретений относится к способу и бортовой системе автоматического управления самолетом в случае недееспособности экипажа. Для автоматического управления самолетом в случае недееспособности экипажа определяют недееспособность экипажа путем передачи на индикатор кокпита сообщения, требующего подтверждения экипажем путем введения кода безопасности, подают команду для управления самолетом на автопилот при отсутствии подтверждения от экипажа, управляют самолетом с помощью автопилота к месту приземления, перед приземлением самолета подают другое сообщение, требующее подтверждения от экипажа путем введения кода безопасности, определяют безопасную зону для полета самолета до выработки топлива, производят полет в безопасной зоне до выработки топлива.

Модернизированная бортовая адаптивная система стабилизации бокового движения летательного аппарата содержит задатчик сигнала управления по курсу, пять блоков вычитания, три усилителя, сумматор, ограничитель сигнала, измеритель угла курса, измеритель угловой скорости по курсу, управляемый ключ, три задатчика порогового сигнала, адаптивное инерционное звено, два формирователя модульной функции, три однополярных двухпозиционных реле с гистерезисом, два логических элемента «ИЛИ», задатчик сигнала управления по тангажу, датчик скоростного напора, соединенные определенным образом.

.Изобретение относится к способу формирования полетной траектории летательного аппарата (ЛА). Для формирования траектории загружают из бортовой базы данных и накладывают на электронную карту местности маршрут полета в виде последовательности заданных координатами местоположения навигационных точек (HT), соединяют НТ прямолинейными траекториями, формируют заданный курс, при необходимости соединяют НТ между собой траекториями произвольной формы (ТПФ) определенным образом, производят декомпозицию ТПФ на несколько взаимосвязанных прямолинейных микротраекторий (ПМТ) определенным образом, определяют координаты местоположения каждой из точек взаимосоединения (ТВС) ПМТ, запоминают ТВС ПМТ в бортовой базе данных в качестве дополнительных НТ, используют их в дальнейшем как эквивалентные основным НТ.

Способ определения положения мобильной машины на плоскости основан на определении положения мобильной машины на плоскости путем использования электромагнитного излучения, полученного от передатчика и воспринимаемого принимающим устройством, установленным на движущейся мобильной машине, и определения координат мобильной машины.

Изобретение относится к обработке телеметрической информации (ТМИ), получаемой при проведении приемо-сдаточных и летно-конструкторских испытаний беспилотных летательных аппаратов (БПЛА).

Группа изобретений относится к автоматическому управлению трактором для контурной вспашки. Способ местоопределения тракторного агрегата заключается в том, что измеряют величину напряженности магнитного поля, сравнивают измеренное значение с компенсационным и формируют сигнал траекторного рассогласования как разность сравниваемых значений.

Группа изобретений относится к способу и системе проведения испытаний беспилотной авиационной системы (БАС), а также испытательной системе для БАС с внешней подвеской.
Изобретение относится к управлению движением стыкуемых космических аппаратов (КА). Способ обеспечивает касание активного (АК) и пассивного (ПА) КА с требуемыми значениями скорости, для чего регулируют скорость причаливания в зависимости от дальности.

Группа изобретений относится к способу и устройствам ориентации транспортных средств по лазерному лучу. Для ориентации транспортного средства направляют лазерный луч в сторону транспортного средства параллельно или под небольшим углом к траектории его движения, формируют линейную поляризацию излучения, устанавливают положение плоскости поляризации перпендикулярно плоскости, проходящей через лазерный луч и траекторию движения, определяют отклонение от заданной траектории движения.

Группа изобретений относится к способу и системе стабилизации углового положения беспилотного летательного аппарата. Для формирования нелинейного адаптивного цифроаналогового сигнала стабилизации углового положения задают и измеряют цифровой сигнал углового положения, измеряют аналоговый сигнал угловой скорости, формируют цифровой сигнал рассогласования и преобразуют его в аналоговый, измеряют сигнал скоростного напора, формируют ограничения сигнала запаздывания в адаптивной функции и заданного сигнала углового положения в адаптивной функции в зависимости от сигнала скоростного напора, формируют сигнал рассогласования, как разность между сформированными ограниченными сигналами, формируют выходной сигнал определенным образом.

Изобретение относится к способу точной посадки беспилотного летательного аппарата (БПЛА). Для точной посадки БПЛА получают временную последовательность кадров с оптической камеры на БПЛА, закодированную в битовый поток и содержащую данные об не менее одной оптической метке, расположенной в точке посадки, определяют не менее двух углов смещения при помощи алгоритмов компьютерного зрения, получают и обрабатывают с помощью рекурсивного фильтра данные о не менее двух углов наклона и высоте БПЛА, определяют вектор смещения БПЛА, формируют и направляют сигналы управления при помощи пропорционально-интегрально-дифференцирующего регулятора на полетный контроллер БПЛА, корректируют траекторию посадки БПЛА. Обеспечивается точность посадки с погрешностью не менее 15 см. 6 з.п. ф-лы, 3 ил.

Использование: для определения относительного взаимного положения ведущего и ведомого транспортного средства. Сущность изобретения заключается в том, что определение относительного взаимного положения производится на основе результатов измерений длительности распространения ультразвукового импульса от источника, размещенного на ведущем до трех или большего количества приемников, размещенных на ведомом транспортном средстве, при этом определение относительного взаимного положения ведущего и ведомого транспортного средства производится по значимому подмножеству результатов измерений длительности распространения ультразвукового импульса, формируемому из результатов измерений, завершившихся к моменту окончания заранее заданного интервала времени. Технический результат: расширение функциональных возможностей средств определения относительного взаимного положения ведущего и ведомого транспортного средства, дающее возможность определять взаимное положение в ситуациях, когда не все приемники контрольных ультразвуковых импульсов находятся в прямой видимости источника импульсов. 2 н.п. ф-лы, 3 ил.
Изобретение относится к способу управления полетом летательного аппарата (ЛА). Для управления полетом ЛА выполняют вычислительные операции с резервированным процессорным определением локальных сигналов управления, передают данные по разветвленной сети из линии передачи данных, осуществляют согласование управляющих сигналов, направляют их к исполнительным органам, производят контроль исправности резервированных каналов управления, размещенных по два резерва на левом и правом борту ЛА, по результатам проверки автоматически производят реконфигурацию структуры блоков вычисления и управления, выбирают один из трех режимов управления: основной, альтернативный (упрощенный) или резервный (аварийный) в зависимости от количества обнаруженных отказов. Обеспечивается расширение функциональных возможностей управления полетом ЛА, его живучесть и отказобезопасность.

Изобретение относится к способу определения условия возможного пуска беспилотного летательного аппарата (БПЛА). Для определения возможности пуска с помощью первого пользовательского интерфейса вводят координаты цели, количество и координаты пунктов перемены маршрута, курс стрельбы, угол подхода к цели, угол целеуказания, признак и размер цели, тип топлива, скорость ветра, отображают текущие параметры носителя, через равные промежутки времени в вычислительном модуле носителя рассчитывают точку предполагаемого начала поиска цели, время выхода БПЛА на рубеж атаки, вероятность захвата цели активной радиолокационной головкой самонаведения, минимальную и максимальную дальность использования БПЛА, способ обнаружения цели, суммарную траекторию полета БПЛА до цели, необходимое количество топлива, которые отражают на экране второго пользовательского интерфейса носителя, выводят на экран с помощью третьего пользовательского интерфейса диаграмму отображения траектории полетного задания БПЛА, цель, пункты перемены маршрута, траекторию полета БПЛА, зону неопределенности положения цели, точку начала поиска цели, радиус рубежа атаки, угол прокачки антенны, передают в БПЛА полетное задание и дают разрешение на пуск при условии вхождения параметров в пределы заданных диапазонов. Обеспечивается точность определения момента выдачи команды на пуск БПЛА с разных типов носителей. 3ил.

Предложен способ многорежимного навигационного управления движением транспортного средства, обеспечивающий множественность режимов управления транспортным средством и режимов его работы. При осуществлении способа, команда на автоматическое управление поступает в модуль навигационного управления (МНУ), который сконфигурирован под реализацию режима автоматического управления транспортным средством. Определяют команду на режим работы и команду на режим управления. Определяют тип режима работы, связанного с командой на режим работы. Определяют тип режима управления, связанного с командой на режим управления. Передают сигнал с модуля МНУ на модуль управления транспортным средством (МУТ), установленный на погрузчике, который идентифицирует операцию управления. Операцию управления соотносят с типом рабочего режима и типом режима управления. Включают двигатель транспортного средства, исходя из типа режима работы и типа режима управления. Предложены также система обеспечения множественности режимов управления транспортным средством и режимов его работы, а также транспортное средство. Достигается повышение производительности указанного транспортного средства. 3 н. и 18 з.п. ф-лы, 4 ил., 3 табл.

Автопилот // 2619675
Изобретение относится к области авиации, в частности к конструкциям и способам управления вертолетами. Система автопилота вертолета включает в себя внутренний контур для поддержания пространственного положения для полета вертолета, включающая в себя заданный уровень резервирования, приложенный к внутреннему контуру. Внешний контур выполнен с возможностью предоставления функции навигации относительно полета вертолета, включающей в себя другой уровень резервирования, чем уровень резервирования внутреннего контура. Элемент привода прикладывает силу торможения к соединению, которое используется для стабилизации полета вертолета во время отказа при полете. Элемент привода выполнен электромеханическим и принимает сигналы электрического привода для обеспечения автоматического управления полетом вертолета без необходимости использования гидравлической вспомогательной системы в вертолете. Автопилот может управлять вертолетом в режиме с отказом гидравлической вспомогательной системы. Множество режимов полета описано с соответствующими входными сигналами датчиков, включающими в себя сигналы на основе скорости, и тремя режимами пространственного положения. Достигается возможность создания упрощенных систем автоматического управления для легких вертолетов. 11 н. и 40 з.п. ф-лы, 11 ил.

Система автоматического управления самолетом при наборе и стабилизации заданной высоты полета содержит датчики заданной и текущей скорости самолета, семь сумматоров, шесть масштабных блоков, интегратор, рулевой привод, руль высоты, датчик продольной перегрузки, датчик нормальной перегрузки, датчик угла атаки, датчик вертикальной скорости самолета, датчики заданной и текущей высоты полета, блок вычисления тригонометрической функции, два блока перемножения сигналов, два блока формирования сигнала заданной перегрузки, блок ограничения сигнала по величине, блок логики, коммутатор, блок формирования сигнала отработки заданной перегрузки, два фильтра, дополнительный блок ограничения сигнала по величине, соединенные определенным образом. Обеспечивается повышение точности, быстродействия, надежности и безопасности пилотирования. 2 з.п. ф-лы, 3 ил.

Изобретение относится к управляющим станциям. Управляющая станция для подвижных и неподвижных платформ содержит первую управляющую станцию, расположенную в первой платформе, содержащую управляющую систему для получения информации для задачи; дисплейную систему для ее надевания на голову оператора станции; систему захвата движения на основе инерционного датчика, отслеживающую перемещения головы; пользовательское устройство ввода. Также имеется кресло, связанное с пользовательским устройством; кислородная система управляющей станции; рабочая поверхность и процессор, сообщающийся с дисплейной системой, системой захвата движения и пользовательским устройством ввода. Повышается компактность станции. 2 н. и 14 з.п. ф-лы, 20 ил.

Изобретение относится к области электротехники и может быть использовано при организации безопасного и удобного способа складирования в автоматизированных системах обработки и хранения грузов (AS/RS) путем решения задачи локализации складских грузовых платформ в режиме реального времени внутри складских сооружений. Согласно изобретению способ автоматического контроля перемещения складских грузовых платформ сводится к обработке информации результатов контроля в N контрольных точках, для чего разбивают складское помещение на зоны размещения складских грузовых платформ, в этих зонах задают контрольные точки присутствия складских грузовых платформ, которые последовательно нумеруют, масштабируют токи от каждой контрольной точки с коэффициентом масштабирования от каждой контрольной точки пропорционально номеру контрольной точки, масштабированные токи от каждой контрольной точки суммируют в точке суммирования и передают через канал связи в орган обработки информации, где преобразуют данный ток в пропорциональное напряжение, из которого вычитается напряжение, пропорциональное суммарным координатам уже размещенных в помещении склада складских грузовых платформ, и по величине результирующего напряжения идентифицируют координату положения складской грузовой платформы. Технический результат заключается в увеличении производительности и надежности грузовых платформ в AS/RS системах за счет локализации объектов в режиме реального времени внутри складских сооружений. 2 н.п. ф-лы, 3 ил.

Предложена система управления навигацией транспортного средства. Система управления навигацией транспортного средства содержит навигационную систему и транспортное средство с модулем управления транспортным средством (VCM), модулем управления навигацией (NCM) и интерфейсом средств управления навигацией. Модуль VCM принимает команду ручного управления от оператора для ее выполнения в ручном режиме. Модуль NCM принимает команду автоматического управления от навигационной системы для ее выполнения посредством модуля VCM. Интерфейс средств управления навигацией непосредственно соединяет модули VCM и NCM для обеспечения обмена информацией между ними для осуществления режима автоматического управления и для передачи сообщений об осуществлении режима ручного управления. Модуль VCM передает информацию, относящуюся к рулевому управлению, в модуль NCM через интерфейс средств управления навигацией. Информация, относящаяся к рулевому управлению, включает: текущую величину угла поворота колеса, или предельную величину угла поворота колеса против часовой стрелки, или предельную величину угла поворота колеса по часовой стрелке, или предельную величину скорости поворота колеса. Предложены также варианты системы управления навигацией транспортного средства и транспортные средства на ее основе (варианты). Достигается управление навигацией транспортного средства. 7 н. и 17 з. п. ф-лы, 4 ил., 17 табл.
Наверх