Способ обнаружения подводных ферромагнитных объектов и система для обнаружения подводных ферромагнитных объектов

Изобретение относится к разведке с использованием магнитных полей и может быть использовано для обнаружения подводных ферромагнитных объектов. Сущность: буксируют два источника магнитного поля вдоль полосы обследования. Причем границы полосы обследования задают путем рассеивания ферромагнитного материла, сформированного в виде масс в 1 м3, размещенных на расстоянии 80-170 м друг от друга вдоль оси границы с образованием четырехугольника. Осуществляют посредством блока управления попеременной работы буксируемых источников магнитного поля регистрацию суммарного магнитного поля буксируемых источников и ферромагнитных масс первичным трехкомпонентным преобразователем магнитного поля. Усиливают и преобразуют зарегистрированные сигналы суммарного магнитного поля буксируемых источников и ферромагнитных масс вторичным преобразователем. Передают усиленные и преобразованные сигналы суммарного магнитного поля буксируемых источников и ферромагнитных масс в вычислительный блок. В вычислительном блоке определяется сигнал, обусловленный наличием ферромагнитных масс или подводного ферромагнитного объекта. Передают сигнал с вычислительного блока на исполнительный блок с последующей его ретрансляцией в блок управления. Блок управления обеспечивает движение буксируемых источников магнитного поля в заданных границах полосы обследования путем определения координат сигнала в навигационном модуле. Предварительно выполняют батиметрическую съемку, посредством многолучевого эхолота, акустическое зондирование рельефа дна гидролокатором бокового обзора, по эхо и теневым контактам выявляют обнаруженные подводные объекты, выполняют картирование рельефа дна с выявлением линий водораздела и водосливных линий, дополнительно выполняют зондирование обнаруженного объекта, посредством лазерно-лучевого источника с передачей изображения на видеосистему с выделением границ на изображении посредством оператора Собела и детектора Канне. Система для обнаружения подводных ферромагнитных объектов состоит из измерительной системы магнитного поля, которая включает два буксируемых источника магнитного поля, подключенных посредством кабель-тросов соответственно к блоку питания через блок управления, два буксируемых первичных трехкомпонентных преобразователя магнитного поля, подключенных посредством кабель-тросов соответственно ко вторичному преобразователю через блок управления, вычислительный блок, вход которого подключен к выходу вторичного преобразователя, а выход подключен к входу исполнительного блока, многолучевого эхолота и гидролокатора бокового обзора, которые подключены через блок управления и вторичный преобразователь к вычислительному блоку, отличающаяся тем, что введены лазерно-лучевой модуль, видеосистема, блок обработки изображений, который через блок управления соединен с лазерно-лучевым модулем, многолучевым эхолотом, гидролокатором бокового обзора и вычислителем. Технический результат: повышение достоверности обнаружения подводных объектов. 2 н. и 1 з.п. ф-лы, 6 ил.

 

Изобретение относится к способам и устройствам разведки и обследования морского дна с использованием магнитных полей и может быть использовано для обнаружения подводных ферромагнитных объектов.

Освоение ресурсов Мирового океана является обязательным и необходимым условием сохранения и расширения сырьевой базы РФ, обеспечения ее экономической и продовольственной независимости. Кроме того, известно, что перспектива истощения запасов углеводородного сырья и других минеральных ресурсов на континентальной части предопределила переориентацию разведки и добычи ресурсов полезных ископаемых на континентальный шельф Российской Федерации, а также на международные районы морского дна.

Данное обстоятельство привело к необходимости широкого использования подводной техники для проведения инженерных изысканий и обследования дна отдельных морей для обнаружения объектов естественного происхождения (камни, валуны и т.п.), объектов техногенного происхождения (корабли, суда, другие объекты, затонувшие в результате стихийных бедствий или военных действий, другое имущество, взрывоопасные предметы, в том числе мины, фрагменты тралов и т.п.).

Необходимость обследования дна отдельных морей в интересах обнаружения и ликвидации взрывоопасных предметов обусловлена с одной стороны остаточной минной и другой взрывоопасностью, ограничением в плавании и производственной деятельности судов, установленной нормативными документами ВМФ - с другой стороны.

При выполнении подобных задач используются поисковые средства, к которым относятся многолучевые эхолоты, гидролокаторы бокового обзора, буксируемые и опускаемые магнитометрические средства, а также телеуправляемые подводные аппараты (Технология обследования очистки дна от взрывоопасных предметов в исключительной экономической зоне РФ в Финском заливе / Блинков В.И., Быстров Б.В., Пироженко В.А. // СПб., НГО-11, ОАО «ГНИНГИ», 2011, с. 653-657 [1]).

Использование подводных аппаратов в интересах обнаружения и ликвидации взрывоопасных предметов сопряжено с существенными материальными затратами и трудоемкостью выполнения данных работ, обусловленных необходимостью их позиционирования относительно подводных объектов.

Известны способы обнаружения подводных ферромагнитных объектов (авторское свидетельство SU №1073607 А1, 15.02.1984 [2]; Геофизические методы исследования. Учеб. пособие под ред. В.К. Хмелевского. - М.: Недра, 1988, стр. 57 [3]; авторское свидетельство SU №506820 А1, 15.03.1976 [4]; патент BE №1011126 А, 04.05.1999 [5]; патент RU №2030583 С1, 10.03.1995 [6]).

Известный способ подводной добычи полезных ископаемых [2], включает передвижение по ориентиру подводного добычного агрегата по дну параллельными полосами и сбор полезных ископаемых, в котором задание границ производят путем, рассеивания ферромагнитного материала, а на агрегате устанавливают устройство для контроля наличия ферромагнитного материала и измерения величины магнитного поля, при этом при передвижении агрегата задание границы очередной полосы производят с борта агрегата одновременно со сбором ферромагнитного материала и полезного ископаемого на предыдущей полосе.

Недостатком известного способа является малая ширина полосы обследования, что существенно увеличивает время технологического процесса, а соответственно и материальные затраты.

Известен также способ обнаружения подводных объектов из ферромагнитных материалов, основанный на измерении напряженности магнитного поля вдоль полосы обследования с помощью магнитометра [3]. Данный способ также имеет малую ширину обследования, в частности, при поиске ферромагнитных объектов, имеющих незначительное собственное поле.

Для обнаружения и измерения полезного сигнала в известных способах используется магнитная система [4], содержащая трехкомпонентный преобразователь магнитного поля, блок питания, блок усиления и преобразования сигнала, исполнительный блок, второй трехкомпонентный преобразователь магнитного поля, два источника магнитного поля, блок управления и вычислительный блок, в котором выходы первого и второго источников магнитного поля и выходы первого и второго трехкомпонентных преобразователей магнитного поля через блок управления соединены соответственно с блоком питания и блоком усиления и преобразования сигнала, выход которого через вычислительный блок соединен с входом исполнительного блока. При этом трехкомпонентные преобразователи и источники магнитного поля расположены в вершинах углов прямоугольника, ориентированного поперек полосы обследования, нижняя сторона которого образована источником и трехкомпонентным преобразователем магнитного поля.

Данная система по сравнению с известными способами [2, 3] за счет применения двух трехкомпонентных преобразователей магнитного поля повышает точность обнаружения подводных объектов и увеличивает ширину полосы обследования. Однако при поиске ферромагнитных объектов с незначительным собственным полем ширина полосы обследования также характеризуется незначительной величиной. Кроме того, данная система практически неприменима для обнаружения слабо намагниченных объектов.

В известном способе подводной добычи полезных ископаемых и обнаружения подводных объектов по магнитным полям, включающем передвижение по ориентиру носителя измерения магнитного поля, с заданием границ путем рассеивания ферромагнитного материала или по естественном источникам магнитного поля с последующим измерением величины магнитного поля с созданием попеременного магнитного поля в двух диагонально расположенных вершинах четырехугольника, ориентированного поперек полосы обследования, образованной границами, нижняя сторона которого образована источником магнитного поля и измерителем и расположена на горизонте обследования, а верхняя сторона образована первичными трехкомпонентными преобразователями магнитометра - перед заданием границ путем рассеивания ферромагнитного материала, из ферромагнитного материала формируют массы объемом в один кубический метр, которые размещают на расстояниях 80÷170 м друг от друга по оси границы (патент RU №2297650 С2, 20.04.2007 [7]).

Сущность известного способа [7] заключается в том, что буксируют два источника магнитного поля вдоль полосы обследования. Причем границы полосы обследования задают путем рассеивания ферромагнитного материала, сформированного в виде масс в 1 м3, размещенных на расстоянии 80-170 м друг от друга вдоль оси границы с образованием четырехугольника. Осуществляют посредством блока управления попеременной работы буксируемых источников магнитного поля регистрацию суммарного магнитного поля буксируемых источников и ферромагнитных масс первичным трехкомпонентным преобразователем магнитного поля. Усиливают и преобразуют зарегистрированные сигналы суммарного магнитного поля буксируемых источников и ферромагнитных масс вторичным преобразователем. Передают усиленные и преобразованные сигналы суммарного магнитного поля буксируемых источников и ферромагнитных масс в вычислительный блок. В вычислительном блоке определяется сигнал, обусловленный наличием ферромагнитных масс или подводного ферромагнитного объекта. Передают сигнал с вычислительного блока на исполнительный блок с последующей его ретрансляцией в блок управления. Блок управления обеспечивает движение буксируемых источников магнитного поля в заданных границах полосы обследования путем определения координат сигнала в навигационном модуле. Технический результат: расширение полосы обследования морского дна.

В отличие от способов [2-6] в известном способе [7] перед заданием границ области обследования путем рассеивания ферромагнитного материала из него формируют массы объемом в один кубический метр, которые размещают на расстояниях 80÷170 м друг от друга по оси границы.

Известно [1], что дальность действия магнитометра не является постоянной и определяется магнитными характеристиками объекта, помеховой обстановкой и чувствительностью.

Существенным преимуществом магнитометра в сравнении с акустическими средствами является его эффективность в условиях реверберационных помех мелкого моря.

К недостаткам магнитометрического обследования относится невозможность точного определения местоположения объекта, а также значительная зависимость от вариаций магнитного поля Земли.

Известно также техническое решение, в котором предварительно выполняют батиметрическую съемку посредством многолучевого эхолота и акустическое зондирование рельефа дна гидролокатором бокового обзора, по эхо и теневым контактам выявляют обнаруженные подводные объекты. При этом выполняют картирование рельефа дна с выявлением линий водоразделов и водосливных линий (С.А. Миколенко, Г.А. Гринь. Опыт использования современного гидрографического оборудования при обследовании подводных переходов трубопроводов. II Научно-техническая конференция «Сварочные родственные технологии для подводных переходов и морских нефтегазовых сооружений». 19-20 ноября 2009 г., курорт-парк МИД РФ «Союз», Московская обл., с. 5-16 [8]). Известное техническое решение [8] позволяет идентифицировать подводные объекты либо амплитудным методом, когда определяется сила цели подводного объекта и, иногда, его протяженность. При этом, идентифицировать заиленные и занесенные донными отложениями подводные объекты, включая минно-торпедное оружие и контейнеры с отравляющими отходами, практически не реально.

Кроме того, согласно ГОСТ 17.1.3.08-82 в выбранных пунктах контроля наблюдения проводят по полной и сокращенной программам. Наблюдения должны проводиться на горизонтах 0, 5, 10, 20, 50, 100, 500, 1000 м и у дна.

Полная программа контроля (за исключением гидробиологических показателей), включает нижеследующие параметры:

- нефтяные углеводороды, мг/дм3 (мг/л),

- растворенный кислород, мг/дм3 (мг/л) и % насыщения,

- водородный показатель (рН), ед. рН,

- визуальные наблюдения за состоянием поверхности морского водного объекта,

- хлорированные углеводороды, в том числе пестициды, мкг/дм3 (мкг/л),

- тяжелые металлы (ртуть, свинец, кадмий, медь), мкг/дм3 (мкг/л),

- фенолы, мкг/дм3 (мкг/л),

- синтетические поверхностно-активные вещества (СПАВ), мкг/дм3 (мкг/л),

- дополнительные ингредиенты, специфичные для данного района,

- нитритный азот, мкг/дм3 (мкг/л),

- кремний, мкг/дм3 (мкг/л),

- соленость воды, %,

- температура воды и воздуха, °C,

- скорость и направление ветра, м/с,

- прозрачность воды, м,

- цветность воды, ед. цветности,

- волнение, балл.

При визуальных наблюдениях отмечают явления, необычные для данного района моря (наличие плавающих примесей, пленок, масляных пятен, включений и других примесей; развитие, скопление и отмирание водорослей; гибель рыбы и других животных; массовый выброс моллюсков (мидий) на берег; появление повышенной мутности, необычной окраски, пены и т.д.).

Известные способы и устройства не позволяют в полной мере выполнить необходимые наблюдения из-за их ограниченной информативности.

Кроме того, источниками исходных данных для создания цифровых морских карт рельефа дна (ЦМР), служат данные промерных гидрографических работ. При этом принята следующая технология построения ЦМР (Суворов С.Г., Дворецкий Е.М., Коваленко С.А. Методика создания цифровых моделей рельефа повышенной точности // Информация и космос. №1, 2005, с. 52-54). Вся доступная информация оцифровывается. Полученные от разнообразных источников данные сводятся в единый набор координат точек и высот в них. Этот набор триангулируется (обычно методом Делоне). Процедура триангуляции дает систему непересекающихся треугольников, покрывающих рассматриваемую область поверхности земли (TIN-модель). В результате чего рельеф представляется многогранной (элементарная грань - треугольник) поверхностью с высотными отметками (отметками глубин) в узлах треугольной сети. Каждая грань этой поверхности описывается либо линейной функцией (полиэдральная модель), либо полиномиальной поверхностью, коэффициенты которой определяются по значениям в вершинах граней-треугольников. Эта технология в различных вариантах реализована во всех применяемых на практике ГИС.

При этом цель построения ЦМР - получение адекватной прямой и косвенной информации о рельефе в автоматизированных системах - не достигается. Источником всех недостатков этой технологии является этап триангуляции. При этом рельеф представляется в виде непрерывной функции, но с разрывами уже в соответствующей функции первого дифференциала на ребрах триангуляции (т.е. негладкая функция). Это противоречит модели рельефа, которая принята при построении топографических или навигационных карт, где поверхность рельефа представляется гладкой функцией. Кроме того, истинное назначение триангуляции - это задать порядок (сеть) по степени близости и взаимному расположению на множестве точек в плоскости, следовательно, при этом не учитывается взаимоотношение высот (глубин) между точками, что приводит к искажению пространственного направления и смещению в местоположении структурных линий рельефа. К основным видам структурных линий рельефа относятся гребневые и килевые линии, линии выпуклого и вогнутого перегибов. Под гребневыми линиями, или водоразделами, понимают линии плановой корреляции точек с максимальными высотами. Килевые линии (тальвеги, русла) соединяют точки с минимальными высотами. Кроме того, результат триангуляции резко и непредсказуемо изменится при изменении исходного набора точек, т.е. при удалении, добавлении точки (точек) или при изменении координат в исходном массиве точек. Это свойство триангуляции не позволяет «управлять» (редактировать) построением локальной формы рельефа. Кроме того, если ЦМР при этом построена с использованием триангуляции, то результаты вычислений дифференциалов рельефа различных порядков не являются достоверными. Можно констатировать, что в этой области геоинформатики существует проблемная ситуация, выражающаяся в том, что технология построения ЦМР с использованием процедуры триангуляции не позволяет достичь требуемой цели. Разрешить сложившуюся проблемную ситуацию можно путем применения таких средств построения ЦМР, которые не используют процедуру триангуляции и которые приводят к построению всюду гладкой поверхности.

Кроме того, в материалах, посвященных идентификации и классификации подводных объектов (A SYSTEM FOR AUTOMATIC DETECTION AND CLASSIFICATION FOR A MINE COUNTERMEASURE AUV Konstantinos Siantidis, Ursula Holscher-HobingATLAS ELEKTRONIK GmbH Sebaldsbrucker Heerstra.e 235 D-28309 Bremen GERMANY), подчеркивается, что основным недостатком миссии по обнаружению, идентификации или классификации подводного объекта и принятия решения существующими на сегодня методами является увеличение вдвое общего времени на поиск из-за наличия задержки между временем обследования подводного объекта и оценкой полученных данных. Поэтому рекомендуется обнаружение и классификацию производить в режиме «онлайн». Это тем более актуально, что в настоящее время наиболее сложные задачи, такие как самостоятельное принятие решений в условиях неопределенности, распознавание образов, идентификация и классификация объектов, как правило, решаются средствами носителя с участием человека и, что характерно, по недостаточно достоверным данным.

Задачей предлагаемого технического решения является расширение функциональных возможностей известных способов обнаружения подводных объектов по магнитным полям с одновременным повышением достоверности обнаружения ферромагнитных объектов.

Поставленная задача решается за счет того, что в способе обнаружения подводных ферромагнитных объектов, включающим буксировку двух источников магнитного поля вдоль полосы обследования с заданием ей границ путем рассеивания ферромагнитного материала, сформированного в виде масс в один кубический метр, размещенных на расстоянии 80-170 м друг от друга вдоль оси границы с образованием четырехугольника, осуществление посредством блока управления попеременной работы буксируемых источников магнитного поля, регистрацию суммарного магнитного поля буксируемых источников и ферромагнитных масс первичным трехкомпонентным преобразователем магнитного поля, усиление и преобразование зарегистрированных сигналов суммарного магнитного поля буксируемых источников и ферромагнитных масс вторичным преобразователем, передачу усиленных и преобразованных сигналов суммарного магнитного поля буксируемых источников и ферромагнитных масс в вычислительный блок, определяющий сигнал, обусловленный наличием ферромагнитных масс или подводного ферромагнитного объекта, передачу сигнала с вычислительного блока на исполнительный блок с последующей его ретрансляцией в блок управления, обеспечивающий движение буксируемых источников магнитного поля в заданных границах полосы обследования путем определения координат сигнала в навигационном модуле, предварительно выполняют батиметрическую съемку, посредством многолучевого эхолота, акустическое зондирование рельефа дна гидролокатором бокового обзора, по эхо и теневым контактам выявляют обнаруженные подводные объекты, выполняют картирование рельефа дна с выявлением линий водораздела и водосливных линий, дополнительно выполняют зондирование обнаруженного объекта, посредством лазерно-лучевого источника с передачей изображения на видеосистему с выделением границ на изображении посредством оператора Собела и детектора Канне, а в систему для обнаружения подводных ферромагнитных объектов, состоящую из измерительной системы магнитного поля, которая включает два буксируемых источника магнитного поля, подключенных посредством кабель-тросов соответственно к блоку питания через блок управления, два буксируемых первичных трехкомпонентных преобразователя магнитного поля, подключенных посредством кабель-тросов соответственно ко вторичному преобразователю через блок управления, вычислительный блок, вход которого подключен к выходу вторичного преобразователя, а выход подключен к входу исполнительного блока, многолучевого эхолота и гидролокатора бокового обзора, которые подключены через блок управления и вторичный преобразователь к вычислительному блоку, введены лазерно-лучевой модуль, видеосистема, блок обработки изображений, который через блок управления соединен с лазерно-лучевым модулем, многолучевым эхолотом, гидролокатором бокового обзора и вычислителем. При этом лазерно-лучевой модуль состоит из блока формирования лазерного излучения, излучателя лазера, антенны приема отраженного луча, концентратора отраженных лучей, оптико-волоконного кабеля.

Сущность изобретения поясняется чертежами (фиг. 1-6).

Фиг. 1 - блок-схема измерительной системы магнитного поля, которая включает два буксируемых источника магнитного поля 1 и 2, подключенных посредством кабель-тросов 3 соответственно к блоку питания 5 через блок управления 6, лазерно-лучевой модуль 4, два буксируемых первичных трехкомпонентных преобразователя магнитного поля 7, подключенных посредством кабель-тросов 9 соответственно ко вторичному преобразователю 11 через блок управления 6, видеосистему 8, блок 10 обработки изображений, вычислительный блок 12, вход которого подключен к выходу вторичного преобразователя 11, а выход подключен к входу исполнительного блока 13, многолучевой эхолот 14 и гидролокатор бокового обзора 15, подключенные через блок управления 6 и вторичный преобразователь 11 к вычислительному блоку 12, который через блок управления 6 соединен с блоком 10 обработки изображений, который соединен с лазерно-лучевым модулем 4, многолучевым эхолотом 14, гидролокатором бокового обзора 15 и видеосистемой 8.

Фиг. 2 - экспозиция полосы обследования. Массы ферромагнитного материала 16, ось границы 17, носитель 18 измерительной системы магнитного поля.

Фиг. 3. Иллюстрация расхождения результатов численного дифференцирования с истинными значениями. Здесь функция Ln(x) - функция, интерполирующая "истинную" функцию y(х), в точках измерения xi.

Фиг. 4. Исходная поверхность представлена регулярным набором 15×15 точек.

Фиг. 5. Вычисленное положение: впадины - локальные минимумы 19, перевалы - седла 20, пики - локальные максимумы 21, гребни 22 - цепочки треугольников, тальвеги 23 - цепочки отрезков «-»>, векторное поле 24 для дискретной функции Морса (показано в виде стрелок, цифры вблизи узлов триангуляции - значения высот 25.

Фиг. 6. Блок-схема лазерно-лучевого модуля. Лазерно-лучевой модуль 2 состоит из блока 26 формирования лазерного излучения, излучателя 27 лазера, антенны 28 приема отраженного луча, концентратора 29 отраженных лучей, оптико-волоконного кабеля 30.

Суть способа заключается в следующем.

Предварительно выполняют батиметрическую съемку, посредством многолучевого эхолота, и акустическое зондирование рельефа дна гидролокатором бокового обзора, по эхо и теневым контактам выявляют обнаруженные подводные объекты, выполняют картирование рельефа дна с выявлением линий водораздела и водосливных линий, а далее, как в прототипе [7], выполняют буксировку двух источников магнитного поля вдоль полосы обследования с заданием ей границ путем рассеивания ферромагнитного материала, сформированного в виде масс в один кубический метр, размещенных на расстоянии 80-170 м друг от друга вдоль оси границы с образованием четырехугольника, осуществление посредством блока управления попеременной работы буксируемых источников магнитного поля регистрации суммарного магнитного поля буксируемых источников и ферромагнитных масс первичным трехкомпонентным преобразователем магнитного поля, усиление и преобразование зарегистрированных сигналов суммарного магнитного поля буксируемых источников и ферромагнитных масс вторичным преобразователем, передачу усиленных и преобразованных сигналов суммарного магнитного поля буксируемых источников и ферромагнитных масс в вычислительный блок, определяющий сигнал, обусловленный наличием ферромагнитных масс или подводного ферромагнитного объекта, передачу сигнала с вычислительного блока на исполнительный блок с последующей его ретрансляцией в блок управления, обеспечивающий движение буксируемых источников магнитного поля в заданных границах полосы обследования путем определения координат сигнала в навигационном модуле.

Съемка рельефа дна проводится штатными судовыми многолучевыми эхолотами без пропусков с перекрытием смежных полос. Для съемки рельефа дна могут быть использованы многолучевые эхолоты (см., например: Sea Beam 1180, Simrad ЕМ 3002). Акустическое зондирование выполняется с использованием гидролокатора бокового обзора (ГБО) с частотой 500-780 кГц, например, гидролокатор бокового обзора типа «С-max» для обнаружения взрывоопасных предметов на частоте 780 кГц.

Особенностью обнаружения предметов на дне моря с помощью ГБО является то, что на дисплее ГБО отображаются эхо и тенеконтакты обнаруженных предметов, при этом могут определяться их размеры, в том числе высота, в зависимости от длины отбрасываемой тени.

Высота объекта по длине отбрасываемой тени определяется из выражения:

где: Δт - протяженность проекции тени;

Н - отстояние антенны от грунта;

d0 - измеренная наклонная дальность.

Расчеты показали, что для эффективного обнаружения донных объектов целесообразно буксировать антенну ГБО при скорости не более 6 узлов на незначительном отстоянии антенны от грунта (до 5 м).

Одним из недостатков указанного образца гидролокатора бокового обзора является наличие незначительной мертвой зоны, что должно учитываться при планировании, при этом целесообразно осуществление поиска донных объектов на взаимно-перпендикулярных галсах.

Данный недостаток ГБО в части наличия мертвой зоны устраняется за счет использования антенны с синтезированной апертурой.

Опыт использования гидролокатора бокового обзора показал его высокую эффективность по обнаружению донных объектов, однако их распознавание представляет определенные трудности в условиях засоренности дна моря валунами и камнями, которые по габаритам близки к размерам взрывоопасных предметов.

К основным положительным свойствам ГБО следует отнести следующие:

относительно высокая поисковая производительность;

достаточно высокая точность определения координат обнаруженных объектов;

возможность определения размеров объектов.

К недостаткам ГБО указанного типа относятся: наличие «мертвых зон»; сложность интерпретации обнаруженных объектов.

В состав комплекса площадной съемки входят измерители скорости звука и датчики вертикальной качки и крен - дифферента, которые обеспечивают корректуру данных площадной батиметрической съемки и акустического зондирования.

Датчик курса и динамических перемещений судна типа «Octans» с компенсацией динамических перемещений 0,01 град по курсу, вертикального перемещения, бортовой и килевой качки с частотой данных 40 Гц.

Измеритель скорости звука типа «SVP 15» или типа «ОЛД-1».

Измеритель уровня моря типа «ГМУ-2».

Измеренные глубины в постобработке исправляются глубинами на уровень моря по данным временных уровенных постов. По результатам съемки составляются планшеты глубин в масштабе 1:2000.

При картировании рельефа большую роль играют структурные линии рельефа (см., например: Леонтьев О.К., Рычагов Г.И. Общая геоморфология. - Москва: Высшая школа, 1976. - 288 с). Среди этих линий два типа линий наиболее значимые. Это линии водоразделов - пересечение двух противоположных склонов хребта, его гребень, образующий водораздельную линию, и водосливная линия, или тальвег - линия, проходящая по дну понижений, ограниченных с двух сторон склонами.

Обычно структурные линии рельефа суши и дна моря определяются специалистами экспертами - картографами и геоморфологами. Однако внедрение в картографическую деятельность ЭВМ диктует необходимость разработки автоматизированных методов детектирования структурных линий.

Автоматизированное определение структурных линий связано с разрешением проблемы дискретности исходных данных, представляющих рельеф. Это обстоятельство особенно важно в задачах построения рельефа дна. Здесь поверхность рельефа недоступна непосредственному визуальному осмотру.

Используемые в геоинформационных системах методы сводятся к последовательности операций: получению массива глубин (высот) на регулярной сетке координат с последующей двумерной триангуляцией исходного набора точек глубин (высот) и интерполяцией на основе какого-либо алгоритма сглаживания (сплайнами, ближайшего соседа и т.д.). На основе этого массива численным дифференцированием находят векторное поле градиентов поверхности, которое является основой для интерактивного способа выявления структурных линий.

В этой последовательности операций самая проблематичная - операция численного дифференцирования. Эта операция является классическим примером некорректной математической задачи по Адамару (см., например: Шилов Г.Е. Жак Адамар и формирование функционального анализа. Выступление на мемориальном заседании Московского математического общества 10 марта 1964 г. // Успехи математических наук. - 1964. - 19. - №3. - С. 183-185.). Дело в том, что из факта близости значений измеренных глубин к истинным значениям не следует, что вычисленные и "истинные" производные (дифференциалы) будут близки даже при большой плотности точек измерений глубин. Более того, "истинные" уклоны и вычисленные производные могут иметь в одной и той же точке разные знаки (фиг. 3).

Поэтому для автоматизированного определения местоположения структурных линий рельефа дна необходим алгоритм, который не требует обращения к некорректным алгоритмам численного дифференцирования. В качестве базовой основы для такого алгоритма предлагается использовать методы вычисления дискретного векторного поля.

Аргументами для этого являются следующие обстоятельства. Исходной структурой данных является двумерная триангуляция исходного массива координат точек измерения глубин, применяемая в существующих алгоритмах. Операции интерполяции, сглаживания, приведения к регулярной сети координат точек, дифференцирования не используются. Вместо этих операций применяются только комбинаторные методы вычислений, которые базируются на математической теории комбинаторной топологии.

Для конструктивности описания предлагаемого алгоритма требуется привести несколько поясняющих понятий из области дискретной геометрии.

С математической точки зрения картографическое представление рельефа является гладкой функцией Морса (см., например: Жуков Ю.Н. Математические инструменты описания картографического отображения рельефа Земли. // Навигация и гидрография, 2011, №32, с. 60-69.). Линии водоразделов и тальвегов тождественны линиям сепаратрис на соответствующей рельефу функции Морса. Линии водоразделов и тальвегов соединяют пики гор с перевалами, а перевалы с наинизшей точкой котловины. Аналогично этому линии сепаратрис соединяют точки максимумов с седловыми точками, а седловые точки с точками минимума функции Морса.

Для гладкой функции поверхности рельефа возможно использование методов дифференциальной геометрии. Однако на практике поверхность рельефа представлена в дискретных точках, а методы дифференциальной геометрии к дискретно представленной поверхности не применимы. Поэтому естественно дискретно представленный рельеф описывать в виде аналога - дискретной функции Морса, которая в свою очередь является дискретным аналогом гладкой функции Морса.

Дискретная функция Морса является комбинаторным объектом - симплициальным комплексом, получаемым путем симплициального разбиения соответствующей гладкой функции Морса. На практике это означает, что гладкая поверхность задана в узлах триангуляции координат точек измерения рельефа. Но существуют абстрактные понятия, входящие в описание дискретной функции Морса, которым нет простого практического аналога, но без которых невозможно описать метод нахождения линий водоразделов и тальвегов на дискретно заданной триангулированной поверхности рельефа.

Приведем далеко не полный минимальный набор понятий, необходимых для описания дискретной функции Морса и вычисления векторного поля на ней. Теория дискретных функций Морса была разработана Форманом в 1998 г. (см., например: Forman R. Morse theory for cell complexes. // Advances in Mathematics. 1998, №134, 90-145 pp.).

Триангулированное множество точек поверхности представляется симплициальным комплексом К (в нашем случае обязательно конечным), в котором каждый треугольный элемент состоит из самостоятельных объектов а с различной топологической размерностью р, называемых р-симплексами. В нашем случае двумерной поверхности рельефа р-симплексами будут: вершины узлов триангуляции - точки (отдельные) с р=0, стороны треугольников (без конечных точек и внутренней области треугольника) - ребра с р=1, и область внутри треугольника (без вершин и сторон) с р=2.

Дискретной функцией Морса f на К называется отображение

такое, что для каждого σ(p)∈Кр и двух условий:

Здесь R - множество действительных чисел, σ(p) симплекс размерности р, Кр - подкомплекс комплекса К, состоящий из симплексов размерности р, знак # определяет число симплексов, удовлетворяющих условиям, указанным в фигурных скобках. Дискретную функцию Морса f можно представлять как функцию увеличивающуюся с размерностью симплексов в том смысле, что существует не более одного направления, в котором f уменьшается при переходе от р-симплекса σ к (р+1)-симплексу τ.

Структурными точками рельефа являются наинизшие точки котловин, точки перевалов, и точки пиков вершин. Аналогом этих точек можно представить критические точки дискретной функции Морса f, являющиеся симплексами σ(p) (размерностью р), для которых выполняются равенства:

Другими словами, наинизшим точкам котловин соответствуют точки вершин треугольников с минимальными значениями f по сравнению со значениями f на смежных ребрах и треугольниках; точкам перевалов соответствуют ребра, на которых значения f строго не больше, чем на их концевых точках, а значения f на треугольниках, примыкающих к ребрам, строго больше, чем на соответствующих ребрах; точкам пиков горных вершин соответствуют внутренние области треугольников, значения f на которых строго больше, чем на образующих их ребрах.

Вектор в дискретной функции Морса f представляет собой упорядоченную пару симплексов (σ,τ) таких, что σ(p)(p+1) и f(τ)≤f(σ). Говорят что вектор направлен от σ(р) к τ(р+1). Дискретное векторное поле V на К представляет собой набор векторов {σ(p)(p+1)} таких, что каждый симплекс К входит не более чем в один вектор из V. Если дано дискретное векторное поле V на К, то К-путем называется упорядоченная последовательность симплексов

таких, что для каждого i=0,…,r вектор {σ(p)(p+1)}∈V и τ i ( p+1 ) > σ i+1 ( p ) σ i ( p ) .

Существенным обстоятельством является то, что, как показал Форман в 1998 г. (см., например: Forman R. Morse theory for cell complexes. // Advances in Mathematics. 1998, №134, 90-145 pp.), дискретное векторное поле V для дискретной функции Морса f эквивалентно векторному полу градиентов для гладкой функции Морса, соответствующей f.

Последнее обстоятельство позволяет получить следующий строгий метод вычисления местоположения линий водоразделов и тальвегов, который заключается в следующем.

Вычисляют двумерную триангуляцию Делоне для координат измерения глубин.

По данным триангулирования и измеренным глубинам вычисляют дискретную функцию Морса f. Далее вычисляют критические точки f, дискретное векторное поле V для f, векторные пути (по формуле 6), которые ведут из минимумов в седла, а из седел в максимумы f.

Последовательность симплексов этих векторных путей будут представлять местоположения искомых линий водоразделов и тальвегов. Из выражения (6) следует, что сепаратрисы, соединяющие максимум с седлом, образуются последовательностью треугольников, а сепаратрисы, соединяющие седла и минимумы, представляют собой последовательность ребер.

Представленный метод реализован в нескольких алгоритмах, описанных в литературе (см., например: King Н., Knudson К., Mramor N. Generating Discrete Morse Function from Point Dat // Experimental Mathematics, 2005, v. 14, №4. - 435-444 pp.; Gyulassy A., Levine J., Pascucci V. Visualization of Discrete Gradient Construction // Proceedings of the 27th annual ACM symposium on Computational geometry, 2011, 289-290 pp.).

Для иллюстративных расчетов, представленных на фиг. 3-5, был использован алгоритм, предложенный A. Gyulassy (см., например: Gyulassy A., Levine J., Pascucci V. Visualization of Discrete Gradient Construction // Proceedings of the 27th annual ACM symposium on Computational geometry, 2011, 289-290 pp). Его преимущество перед другими состоит в том, что в отличие от других алгоритмов он не требует никакой дополнительной информации, кроме массива точечных измерений глубин. Всю остальную необходимую информацию, например, местоположение критических точек, вычисляют в процессе выполнения алгоритма.

Предложенный метод может служить основой для разработки эффективных строгих автоматизированных алгоритмов картографической генерализации рельефа.

Задача поиска объектов на дне выполняется с применением гидролокаторов бокового обзора типа «С-max» (Великобритания) и буксируемого магнитометра типа «Sea Spy» (Канада), лазерно-лучевого модуля 4 и видеосистемы 8.

Гидролокатор бокового обзора снабжен параметрическим излучателем и параметрическим приемником, обладающих широкой полосой рабочих частот, малыми габаритами, постоянной и гладкой характеристикой направленности на различных частотах.

Распознавание подводных объектов выполняется по их физическим характеристикам путем анализа спектра эхо-сигналов в области низких частот (десятки Гц - единицы кГц) или путем измерения искажения фаз в принятом эхо-сигнале.

Однако параметрические излучатели и приемники имеют существенный недостаток, а именно - низкую эффективность преобразования. Но потери преобразования первичной волны в звук разностной частоты можно скомпенсировать либо применением широкополосного или многокомпонентного зондирующего сигнала, позволяющего увеличить энергию преобразования высокочастотного сигнала в сигнал разностной частоты, тем самым повысив дальность действия гидролокатора в 1,5-2 раза, либо усилением эхо-сигнала при обработке.

Так как некоторые признаки трудно распознаваемы либо из-за гидрологических условий, либо из-за наличия естественных или искусственных помех, то предлагаемая система для обнаружения подводных ферромагнитных объектов также содержит лазерно-лучевой модуль 4 и видеосистему 8 для идентификации материала и конфигурации подводного объекта.

Задача выделения ферромагнитных предметов на фоне подводных объектов, главным образом естественного происхождения, отведена буксируемым магнитометрам, которые используются совместно с гидролокаторам бокового обзора и лазерно-лучевом модулем 4 и видеосистемой 8.

Для выполнения указанных задач применен буксируемый магнитометр типа «Sea Spy» компании Marine Magnetics, который измеряет магнитное поле объекта с помощью средств специальной ядерно-магнитной резонансной технологии, использующей эффект Оверхаузера.

Трассы отрабатывается с расстоянием между профилями 10 м. Далее до ширины коридора 400 и 2000 м (участки расширения) шаг между профилями 50 м. Это позволяет уверено отследить линейно вытянутые объекты - трубы, кабели и пр. Для контроля выполняют промеры по продольным галсам через 1 км.

Существенным преимуществом магнитометра в сравнении с акустическими средствами является его эффективность в условиях реверберационных помех мелкого моря.

Дальности обнаружения ферромагнитных объектов с использованием магнитометра «SeaSpy» составляют:

для объекта массой 250 кг - 30 м;

для объекта массой 50 кг - 18 м;

для объекта массой 18 кг - 12 м;

В гондоле, предназначенной для буксировки магнитометра также размещены: гидролокатор или параметрический гидроакустический профилограф; маяк-ответчик системы подводной навигации; видеосистема 8, например, цветная видеокамера; датчики глубины; лазерный дальномер; галогенные светильники; электромагнитный искатель типа «Pepi Tracker TSS-340/440»; металлоискатель типа «Innovatum», который имеет поисковую полосу шириной 8-10 м, лазерно-лучевой модуль 4.

В лазерно-лучевом модуле 4 (фиг. 6) блок 26 формирования лазерного излучения содержит n-лазеров, предназначенных, соответственно, для выявления взрывчатых веществ (ВВ), металлических и деревянных конструкций, бетона, парафина, промасленной бумаги. Отраженные сигналы от обнаруженного предмета принимаются антенной 28 приема отраженного луча и через концентратор 29 отраженных лучей подаются на оптико-волоконный кабель 30 и далее на блок обработки изображений 10.

На блок обработки изображений 10 также подаются сигналы от видеосистемы 8.

Полученное видеосистемой 8 цифровое изображение подвергается предварительной обработке для устранения шумов методом анизотропной диффузии.

Для того, чтобы выполнялось выравнивание температуры (сглаживание) внутри однородных областей без нарушения границ между областями, необходимо, чтобы проводимость внутри областей была высокой, а на границах - низкой. Этого можно добиться, если выбрать коэффициент диффузии в виде монотонно убывающей функции от градиента интенсивности. Уравнение диффузии решается численным методом. Следующим шагом является выделение границ на изображении посредством оператора Собела и детектора Канне (С. John Canny. A Computation Approach to Edge Detection // EEE Transaction Analysis and Machine Intelligence, №6, vol. 8, November 1986, p. 689).

При этом в контуре границы оставляются только точки максимума градиента изображения, а не максимальные точки, лежащие рядом с границей удаляются. Здесь используется информация, о направлении границы для того, чтобы удалять точки именно границей и не разрывать саму границу вблизи локальных максимумов градиента.

Отнесение обнаруженного объекта к определенному классу осуществляется на основании анализа признаков, присущих взрывоопасным предметам. К основным признакам, по которым осуществляется идентификация (распознавание) объектов относится его «имидж» (образ), характеризуемый: формой объекта; размерами объекта, а также другими отдельными отличительными признаками (гальваноударные колпаки, боевое зарядное отделение, хвостовые оперения, движители торпед и т.д.).

Местоположение судна-носителя поисковых средств определяется с использованием СНС в дифференциальном режиме.

Положение буксируемой гондолы относительно судна-носителя определяется с помощью ГАНС с ультракороткой базой (USBL) типа Hipap (фирмы Kongsberg, Норвегия), которая определяет дальность, пеленг и угол места гондолы относительно приемного устройства ГАНС, размещаемого на обеспечиваемом судне. Указанный образец ГАНС определяет дистанцию до 4000 м, при этом СКО определения дальности может составлять 0,25 процента от дальности, а СКО определения угла места до 0,25 градуса. Указанные погрешности, по сути, являются инструментальными и приведены для «идеальных» условий, не учитывающие ошибки, обусловленные реверберацией, рефракцией акустических лучей и т.д. Опыт использования ГАНС данного типа показал их неустойчивую работу на малых глубинах моря до 10-12 м.

Магнитометрия выполняется с использованием протонного градиентометра типа «Sea SPY» или «Marine Magnetic Explorer». Буксируемое тело (гондола) градиентометра на глубоководных участках буксируется на расстоянии 5 м от дна. Для стабильного удержания буксируемого тела на заданном расстоянии от дна используется лебедка типа «DT VARINE 2005EHLWR» с дистанционным управлением. На мелководных участках рабочее тело градиентометра буксируется на поверхности, его местоположение определяется по длине кабеля и расстоянию до антенны GPS.

Для определения местоположения судна и датчиков информации с необходимой точностью используется аппаратура спутниковой навигационной системы GPS в дифференциальном режиме (DGPS), работающая по двум независимым контрольно-корректирующим станциям, а также геодезические контрольно-корректирующие станции для работы в режиме RTK или для приема поправок Starfix HP по спутниковому каналу.

Такая система координирования обеспечивает определение места со средней квадратической погрешностью не более 0,3 м в любой точке района при круглосуточной работе.

Для навигационного обеспечения может быть использованы базовая геодезическая станция типа «MS 750 Base», судовые приемники типа «Trimble 5700 RTK» и «Trimble DSM 2121», навигационный компьютер с программным обеспечением, электронная навигационная информационная система (ECDIS), система ECS-1000 с программным обеспечением «dKart Navigator», ультракороткобазисная система подводной навигации типа «Simrad HRP 4 ЮР» для высокоточного определения положения гондолы магнитометра с двумя маяками-ответчиками или геодезическая станция типа «Trimble 4600LS», а также программно-математическое обеспечение «Trimble Geomatics Office», геоинформационная система типа «Mapinfo v.7», датчик курса и динамических перемещений судна типа «Octans» с компенсацией динамических перемещений 0,01 град по курсу, вертикальным перемещением, бортовой и килевой качке с частотой данных 40 Гц, измеритель скорости звука типа «SVP 15» или типа «ОЛД-1», измеритель уровня моря типа «ГМУ-2», многолучевой эхолот типа «Simrad ЕМ 3002» или «SEA ВЕАМ».

Далее способ реализуется, как и в прототипе [7].

Из теории постоянных магнитов известно (см., например: Гордин В.М., Розе Е.Н., Углов Б.Д. Морская магнитометрия. М., Недра, 1986, с.232), что одной из основных характеристик постоянных магнитов является удельная магнитная энергия:

где В - магнитная индукция, Н - напряженность магнитного поля.

Данная энергия характеризует потенциальные возможности магнита накапливать магнитную энергию.

При этом

где Br - остаточная магнитная индукция, μ0 - магнитная проницаемость породы магнита.

Исходя из значений максимальной удельной энергии, которую могут создавать те или иные магниты, можно оценить величину магнитного момента. С учетом того, что магнитный момент прямо пропорционален объему ферромагнитного материала, то результаты оценки для одного кубического метра магнитного материала с учетом, что

где ξ - намагниченность, М - магнитный момент, V - объем магнитного материала.

Результаты расчета максимального магнитного момента, который может быть создан одним кубическим метром ферромагнитного материала, имеют следующие значения:

- для сплавов Fe-Al-Ni-Co (Wmax=40-103 Дж/м3; Mmax=500 кА/м2; К=2⋅10-8);

- для редкоземельных соединений типа SmCo (Wmax=72⋅103 Дж/м3; Mmax=670 кА/м2; К=1,5⋅10-8);

- соединений на основе Fe, Fe-Co (Wmax=26⋅103 Дж/м3; Mmax=400 кА/м2; К=2,5⋅10-8);

- различные стали типа ЕХЗ, Е7В6 и другие (Wmax=1÷2 103 Дж/м3; Mmax=80÷110 кА/м2; К=9÷12⋅10-8).

Наиболее высокую энергоемкость имеют соединения редкоземельных металлов (коэффициент 1,5⋅10-8) и стали (коэффициент 9÷12⋅10-8).

Оценка объема ферромагнитного материала, необходимого для создания на различных расстояниях r от центра источника магнитного поля, имеющего значения 1,10 и 100 нТл, выполненная на основании зависимости:

где k=10-5/М - коэффициент, зависящий от используемого магнитного материала;

показала, что для создания постоянного магнитного поля с необходимой напряженностью 10 нТл на расстоянии от центра источника порядка 200 м необходимо, примерно, десять кубических метров стали или два кубических метра редкоземельных металлов.

С учетом того, что средняя длина судна обеспечения составляет порядка 150 м, а погрешность модульных магнитных датчиков составляет 0,1-0,01 нТл (см., например - Семевский Р.Б., Аверкиев В.В., Яроцкий В.А. Специальная магнитометрия. С-П., Наука, 2002, с. 164), то протяженность ферромагнитного материала вдоль рекомендованного курса движения для обнаружения полезного сигнала составит порядка 300 м. При этом значение ширины полосы обследования при использовании магнитометра составит 214 м.

В отличие от известных способов в заявляемом способе, предварительно выполняют батиметрическую съемку, посредством многолучевого эхолота, акустическое зондирование рельефа дна гидролокатором бокового обзора, по эхо и теневым контактам выявляют обнаруженные подводные объекты, выполняют картирование рельефа дна с выявлением линий водораздела и водосливных линий, а также как и в прототипе [7], перед заданием границ области обследования путем рассеивания ферромагнитного материала из него формируют массы объемом в один кубический метр, которые размещают на расстояниях 80÷170 м друг от друга по оси границы.

Измерительная система работает следующим образом. В процессе буксировки вдоль полосы обследования посредством блока управления 6 осуществляется попеременная работа источников магнитного поля 1 и 2. Суммарное магнитное поле источника 1 и ферромагнитных масс 16 воздействует на первичный трекомпонентный преобразователь магнитного поля 8, а суммарное магнитное поле источника 2 и ферромагнитных масс 14 воздействует на первичный трекомпонентный преобразователь магнитного поля 7. Сигналы, возникающие при этом, поступают на вход вторичного преобразователя И, который усиливает и преобразует сигналы. Из вторичного преобразователя 11 сигналы попеременно поступают в вычислительный блок 12, который определяет сигнал, обусловленный наличием ферромагнитных масс или подводного ферромагнитного объекта (при поиске подводных объектов). Далее сигнал поступает на исполнительный блок 13, где он регистрируется и транслируется на систему управления носителя 6, обеспечивающую движение носителя в заданных границах области обследования (производства работ). При поиске подводных объектов сигнал поступает в навигационный модуль, где определяются его координаты.

Создание магнитного поля в двух диагонально расположенных вершинах четырехугольника, ориентированного поперек полосы обследования, образованной границами, нижняя сторона которого образована источником магнитного поля 1 и первичным трехкомпонентным преобразователем 8 с расположением ее на горизонте обследования, а верхняя сторона образована источником магнитного поля 2 и первичным трехкомпонентным преобразователем 7 с образованием границ путем рассеивания ферромагнитного материала объемом один кубический метр на расстоянии 80÷170 м друг от друга по оси границы, позволяет создать постоянное магнитное поле с напряженностью 10 нТл с использованием магнитометров с чувствительностью 0,001÷0,0001 гаммы, что позволяет осуществлять обнаружение ферромагнитных объектов при ширине полосы обследования до 5000 м и маломагнитных объектов с шириной полосы обследования 1000 м и более.

По данным, полученным посредством лазерно-лучевого модуля 4 и видеосистемы 8 уточняют границы обнаружения подводных объектов и их классификацию.

В предлагаемом способе исключаются из результатов обработки систематические погрешности и погрешности, обусловленные магнитным полем Земли и его вариациями за счет компенсационного принципа функционирования измерительной системы в сочетании с расположением ферромагнитного материала, образующего границы области обследования в определенном порядке, что повышает достоверности результатов обследования. Создание искусственного магнитного поля из масс ферромагнитного материала, расположенного в определенном порядке, позволяет при подходах к беспричальным морским загрузочно-разгрузочным буйковым терминалам типа BTL и STL обеспечить навигационную безопасность судов и снижает время выхода на эти станции. В этом варианте использования предлагаемого способа магнитометры могут быть установлены в подводной части шахты лага или гидроакустической аппаратуры в носовой части судна. При расположении магнитометров в судовых условиях созданное искусственное магнитное поле из масс ферромагнитного материала может быть также использовано в качестве кабельной мерной линии для проведения натурных испытаний судовых технических средств навигации (см., например, Кораблев А.Е., Массаров В.Ф. Электромагнитные навигационные системы и приборы. Л., ВМА, с. 9.).

Посредством предлагаемого способа может осуществляться поиск и обнаружение подводных объектов, состоящих из ферромагнитных материалов (железо, сталь и т.п.), подводных опасностей (банки, рифы, скалы), имеющих в своем составе маломагнитные материалы (песок, глина, галька и т.п.), а также подводная разведка полезных ископаемых.

Источники информации.

1. Технология обследования очистки дна от взрывоопасных предметов в исключительной экономической зоне РФ в Финском заливе / Блинков В.И., Быстров Б.В., Пироженко В.А. // СПб., НГО-11, ОАО «ГНИНГИ», 2011, с. 653-657.

2. Авторское свидетельство SU №1073607 А1, 15.02.1984.

3. Геофизические методы исследования. Учеб. пособие под ред. В.К. Хмелевского. - М.: Недра, 1988, стр. 57.

4. Авторское свидетельство SU №506820 А1, 15.03.1976.

5. Патент BE №1011126 А, 04.05.1999.

6. Патент RU №2030583 С1, 10.03.1995.

7. Патент RU №2297650 С2, 20.04.2007.

8. С.А. Миколенко, Г.А. Гринь. Опыт использования современного гидрографического оборудования при обследовании подводных переходов трубопроводов. II Научно-техническая конференция «Сварочные родственные технологии для подводных переходов и морских нефтегазовых сооружений». 19-20 ноября 2009 г., курорт-парк МИД РФ «Союз», Московская обл., с. 5-16.

1. Способ обнаружения подводных ферромагнитных объектов, включающий буксировку двух источников магнитного поля вдоль полосы обследования с заданием ей границ путем рассеивания ферромагнитного материала, сформированного в виде масс в один кубический метр, размещенных на расстоянии 80-170 м друг от друга вдоль оси границы с образованием четырехугольника, осуществление посредством блока управления попеременной работы буксируемых источников магнитного поля, регистрацию суммарного магнитного поля буксируемых источников и ферромагнитных масс первичным трехкомпонентным преобразователем магнитного поля, усиление и преобразование зарегистрированных сигналов суммарного магнитного поля буксируемых источников и ферромагнитных масс вторичным преобразователем, передачу усиленных и преобразованных сигналов суммарного магнитного поля буксируемых источников и ферромагнитных масс в вычислительный блок, определяющий сигнал, обусловленный наличием ферромагнитных масс или подводного ферромагнитного объекта, передачу сигнала с вычислительного блока на исполнительный блок с последующей его ретрансляцией в блок управления, обеспечивающий движение буксируемых источников магнитного поля в заданных границах полосы обследования путем определения координат сигнала в навигационном модуле, предварительное выполнение батиметрической съемки, посредством многолучевого эхолота и акустическое зондирование рельефа дна гидролокатором бокового обзора, по эхо и теневым контактам которых выявляют обнаруженные подводные объекты, выполняют картирование рельефа дна с выявлением линий водораздела и водосливных линий, отличающийся тем, что дополнительно выполняют зондирование обнаруженного объекта, посредством лазерно-лучевого источника с передачей изображения на видеосистему с выделением границ на изображении посредством оператора Собела и детектора Канне.

2. Система для обнаружения подводных ферромагнитных объектов, состоящая из измерительной системы магнитного поля, которая включает два буксируемых источника магнитного поля, подключенных посредством кабель-тросов соответственно к блоку питания через блок управления, два буксируемых первичных трехкомпонентных преобразователя магнитного поля, подключенных посредством кабель-тросов соответственно ко вторичному преобразователю через блок управления, вычислительный блок, вход которого подключен к выходу вторичного преобразователя, а выход подключен к входу исполнительного блока, многолучевого эхолота и гидролокатора бокового обзора, которые подключены через блок управления и вторичный преобразователь к вычислительному блоку, отличающаяся тем, что введены лазерно-лучевой модуль, видеосистема, блок обработки изображений, который через блок управления соединен с лазерно-лучевым модулем, многолучевым эхолотом, гидролокатором бокового обзора и вычислителем.

3. Система для обнаружения подводных ферромагнитных объектов по п. 2, отличающаяся тем, что лазерно-лучевой модуль состоит из блока формирования лазерного излучения, излучателя лазера, антенны приема отраженного луча, концентратора отраженных лучей, оптико-волоконного кабеля.



 

Похожие патенты:
Изобретение относится к области геофизики и может быть полезным в процессе комплексной интерпретации данных сейсморазведки и электроразведки при поисках месторождений углеводородов на шельфе.

Изобретение относится к буровой технике и предназначено для геонавигации бурильного инструмента и управления его траекторией при проводке скважин в нужном направлении.

Изобретение относится к геофизике. Сущность: система датчиков электрического и магнитного поля для измерения магнитотеллурического поля Земли состоит из двух пар заглубленных электродов с единой базой L.

Изобретение относится к обнаружению скрытого диэлектрического объекта. Сущность: устройство содержит потенциал-зонд для определения электрического потенциала в электрическом поле, первое и второе емкостные устройства и управляющее устройство для питания первого и второго емкостных устройств чередующимися по фазе переменными напряжениями.

Изобретение относится к электроразведке методом электросопротивления. Область преимущественного применения: инженерно-геологические изыскания; изучение состояния грунтовых инженерных объектов, в том числе гидротехнических сооружений; картирование геологической среды при выявлении структурно-тектонических неоднородностей; выявление рудоносных объектов, перекрытых рыхлыми отложениями и др.

Изобретение относится к области геофизических методов исследований при поисках и разведке месторождений углеводородов, редких и благородных металлов, алмазов, при проведении инженерных изысканий и решении задач экологического мониторинга с помощью цифровой аппаратуры.

Изобретение относится к геофизике. Сущность: способ геоэлектроразведки основан на использовании магнитного зондирования геологической среды.

Изобретение относится к области геологоразведки и может быть использовано при поисковом или эксплуатационном бурении скважин. Устройство в виде геолого-разведочного измерительно-вычислительного комплекса, предназначенного для каротажа пород и позиционирования снаряда в буровой скважине и состоящего из передающей антенны и индуктора с вертикальной осью намагниченности, размещенных на снаряде и изолированных от буровых труб с помощью немагнитной вставки, и измерительно-вычислительной системы, включающей в свой состав трехосные блоки магнитометров, размещенные в контрольных точках наблюдений с известными координатами на поверхности Земли, и вычислители, связанные с приемными антеннами и магнитометрами через аналого-цифровые преобразователи стандартного интерфейса, при этом в устройство вводится измерительно-вычислительный канал ориентации снаряда в пространстве, состоящий из трехосных блоков магнитоградиентометров, устанавливаемых в тех же контрольных точках наблюдений на поверхности Земли, и дополнительного вычислителя, связанного через дополнительный аналого-цифровой преобразователь со всеми трехосными блоками магнитометров и трехосными блоками магнитоградиентометров.

Изобретение относится к области магниторазведки и может быть использовано для обнаружения, нанесения на карту и оценки спектрально магнитоактивных месторождений, например залежей углеводородов или руды.

Изобретение относится к области судостроения и касается способа определения места нахождения герметизированного отверстия при обрастании, заносе илом или обмерзании подводной части корпуса судна.

Изобретение относится к области электроразведки магнитотеллурическим методом с использованием индукционных датчиков магнитного поля Земли. Способ передачи сигналов в электроразведочных магнитотеллурических системах, включающий передачу по кабелю с датчика магнитного поля - ДМП на блок сбора данных - БСД собственно сигналов, а с блока БСД - в датчик ДМП - электропитания, отличается тем, что дополнительно включает передачу управляющих команд с блока БСД на датчик ДМП, причем передачу собственно сигналов, управляющих команд и электропитания осуществляют по трем раздельным экранированным парам витых проводников, заключенным в общую оболочку кабеля. Техническим результатом заявленного изобретения является разработка способа передачи сигналов в электроразведочных магнитотеллурических системах за счет увеличения соотношения сигнал-шум, в том числе при передаче данных от нескольких первичных преобразователей магнитного поля к системам регистрации и сбора. 3 з.п. ф-лы, 1 табл., 1 ил.
Изобретение относится к области геофизики и может быть использовано для поисков россыпных месторождений на акваториях. Сущность: изучают карту аномального магнитного поля Земли исследуемого участка, полученную по результатам ранее выполненной высокоточной магнитной съемки в перспективной на обнаружение россыпей полезных ископаемых акватории. В районе “живущего” разлома устанавливают сейсмоакустическую мониторинговую станцию для регистрации микроземлетрясений и суточного изменения акустической эмиссии. Определяют периоды активизации и затишья разломной зоны, а также период активности волноприбойной зоны. Во время затишья (после периода активизации) проводят повторную высокоточную магнитную съемку на профиле, пресекающем аномалии магнитного поля на старой карте, или выполняют повторную съемку на всей исследуемой перспективной площади. Вычисляют разности магнитного поля (между старой и повторной съемками), полученные до и после активизации, выделяют на них локальные аномалии. По величине разностных аномалий судят о наличии содержащих магнитные минералы россыпей. Отбирают пробы в центре каждой аномалии и анализируют их на наличие полезного компонента. По контурам значимых аномалий, в которых по результатам анализа проб подтверждено наличие аномальных содержаний полезных компонентов, определяют границы залежи. Технический результат: уменьшение объемов опробования, сокращение времени полевых работ.

Изобретение относится к геофизическим методам разведки полезных ископаемых, а именно к морской электромагнитной разведке источников (залежей) углеводородного сырья, например нефти, газа, гидратов метана и т.д. Способ применим для прилегающих к материковому склону районов морского шельфа с аномально высокой концентрацией метана в поровой воде донных осадков, и/или придонном слое воды, и/или в местах пузырькового выделения метана в водный слой. Сущность: измеряют естественное электрическое поле в исследуемом районе на частотах Шумановских резонансов 6-75 Гц вдоль изобат материкового склона на последовательно увеличивающихся глубинах ниже глубины перехода от шельфа к материковому склону. Глубина установки приемника измерительной антенны, глубже которой Шумановские резонансы не регистрируются, принимается равной максимальной глубине залегания источника углеводородного сырья. Технический результат: повышение точности определения максимальной глубины залегания углеводородной залежи при упрощении методики и схемы измерений. 2 з.п. ф-лы, 2 табл., 3 ил.

Изобретение относится к области морской электроразведки и может быть использовано для прогноза эффективной емкости коллектора. Сущность: в пределах нефтегазоносного района дифференциально-нормированным методом электроразведки (ДНМЭ) на основе оптимальной сети профилей определяют латеральное положение аномалии вызванной поляризации, связанной с залежью углеводородов. В пределах нефтегазоносного района выбирают скважины, изученные по данным геофизических исследований скважин (ГИС) и газового каротажа (ГК). Определяют параметры эффективной емкости в изученных скважинах на основе данных ГИС и анализа керна, принимая их за эталонные. На участках в виде окружностей вокруг указанных изученных скважин проводят измерения или используют ранее проведенные измерения по профилям методом ДНМЭ. Затем для каждого участка определяют среднюю величину коэффициента поляризуемости, принимая ее за эталонную. Определяют закон связи, который отражает зависимость коэффициента поляризуемости от эффективной емкости. Выбирают не менее трех продуктивных скважин, в которых имеются данные по следующим параметрам: суммарная эффективная мощность, коэффициент пористости, коэффициент нефтегазонасыщения, дебиты углеводородов, а также данные газового каротажа. Выбирают, по меньшей мере, одну непродуктивную скважину по имеющимся данным ГИС, газового каротажа и по результатам испытания скважин. Для каждой выбранной продуктивной скважины рассчитывают значения эффективной емкости. На каждой скважине рассчитывают осредненные значения поляризуемости и проводимости, формируют выборку осредненных значений коэффициентов поляризуемости и проводимости с последующим расчетом суммарной проводимости разреза. Для скважины, в которой имеются данные ГИС, проверяют наличие корреляции по коэффициентам корреляции изменения значений коэффициента поляризуемости от изменения значений эффективной емкости. Делают вывод о виде зависимости отклика вызванной поляризации от эффективной емкости. Если коэффициент корреляции не менее 0,7, то делают вывод о прямой зависимости полученного в ходе инверсии отклика вызванной поляризации от эффективной емкости пород и о возможности использования данного параметра для регрессионного анализа. Если коэффициент корреляции меньше 0,7, то производят поиск другого поляризационного параметра для слоя в разрезе, имеющего коэффициент корреляции с эффективной емкостью пород не менее 0,7. Выбирают комплексный параметр поляризуемости с наибольшим коэффициентом корреляции между комплексным параметром поляризуемости и эффективной емкостью по скважинам. Проводят для выбранного параметра регрессионный анализ с целью поиска формулы регрессии для данного параметра и эффективной емкости по скважинам. По полученной формуле регрессии на основе значений выбранного комплексного параметра поляризуемости в пределах скважин рассчитывают эффективную емкость. Делают вывод о достоверности полученной расчетной эффективной емкости, а именно: если значения расчетной эффективной емкости и эффективной емкости, полученной по данным ГИС, отличаются в среднем не более чем на 15% и их распределение на качественном уровне аналогичное, то это подтверждает правильность проведенного анализа. Для последующего прогноза параметра эффективной емкости на каждом пикете в пределах площади исследования в пределах аномалии выявленной поляризации строят карты сглаженных значений коэффициента поляризуемости по значениям в целевом и смежном слоях, а также карты сглаженных значений суммарной проводимости. При этом сглаженное значение на каждом пикете профиля получают путем осреднения значений на близлежащих пикетах. По полученной формуле на основе значений выбранного комплексного параметра поляризуемости для всей исследуемой площади на каждом пикете профиля рассчитывают эффективную емкость. Технический результат: повышение точности и оперативности прогноза. 14 з.п. ф-лы, 6 ил.

Изобретение относится к области геофизики, в частности к геоэлектроразведке, и может быть использовано при определении свойств подземных формаций на основе разделения и интерпретации регистрируемых электромагнитных полей, обусловленных суммарным влиянием различных эффектов. Cогласно изобретению для каждого расположения генераторной петли проводят регистрацию двух значений компонент электромагнитного поля (V1, V2), используя два генераторных контура разного размера и осуществляя электромагнитные измерения в общей точке раздельно от каждого из указанных генераторных контуров. При этом регистрацию сигнала осуществляют до времен, превышающих значение R2σμ, где R - характерный размер контура большего размера, σ - типичная для района работ наибольшая удельная проводимость, μ - магнитная проницаемость среды объектов. В другом варианте изобретения для каждого расположения генераторной петли дополнительно к измерениям компонент электромагнитного поля V0 в центре генераторной петли осуществляют регистрацию четырех различных значений компонент электромагнитного поля (V1, V2, V3, V4). При этом используют четыре выносных измерительных датчика, каждый из которых расположен в пределах ближней зоны при их различных удалениях от центра генераторной петли. Способ геоэлектроразведки согласно изобретению позволяет существенно улучшить решение прогнозных задач за счет выделения и комплексной интерпретации составляющих электромагнитного поля, обусловленных эффектами становления поля, поляризуемости и суперпарамагнетизма, что позволяет обнаруживать не фиксируемые стандартными электроразведочными методами аномальные зоны, привязанные к реальным целевым объектам. Технический результат - создание технологии электроразведочных работ, базирующихся преимущественно на использовании площадных многоразносных зондирований методом становления поля, с выделением и комплексной интерпретацией составляющих, связанных с эффектами поляризуемости и суперпарамагнетизма. 2 н. и 2 з.п. ф-лы, 18 ил., 8 табл.

Изобретение относится к измерительной технике и может быть использовано для измерения составляющих вектора плотности электрического тока в проводящих средах. Устройство для измерения компонент вектора плотности тока в проводящих средах состоит из по меньшей мере одного установленного в корпусе 1 датчика плотности тока 2, состоящего из токопровода 3 с размещенным на нем трансформатором тока 4, и по меньшей мере одного электронного блока. Электронный блок выполнен в виде последовательно соединенных блока 5 преобразования и первичного усиления сигнала, блока 6 настраиваемых аналоговых фильтров, блока 7 аналого-цифрового преобразователя (АЦП) на основе микросхемы звукового АЦП с выходным цифровым сигналом формата USB, блока 8 трансляции сигнала и питания интерфейса USB, выполненного в виде двух установленных на концах кабеля передатчиков-приемников 9 и 10. Выход датчика плотности тока 2 соединен с входом блока 5 преобразования и первичного усиления сигнала, выход блока 8 трансляции сигнала и питания интерфейса USB соединен с входом USB регистрирующего компьютера 11. Токопровод 3 выполнен из проводящего материала, обладающего электропроводностью более 100 См/м. Токопровод 3 может быть выполнен в виде цилиндра или в виде стержня, например, квадратного сечения, при этом измеряется составляющая вектора плотности тока, параллельная оси цилиндра или стержня. Торцы токопровода 3 заделаны заподлицо с внешней поверхностью корпуса 1. Устройство снабжено по меньшей мере тремя кольцеобразными виброгасящими элементами 12, плотно надетыми на трансформатор тока 4 с зазором друг относительно друга с возможностью плотного прилегания к корпусу 1 и выполненными из виброгасящего материала. Корпус 1 устройства выполнен из диэлектрического материала. Токопровод 3 и трансформатор тока 4 вместе с виброгасящими элементами 12 жестко закреплены в корпусе 1, причем виброгасящие элементы 12 примыкают к внутренней поверхности корпуса 1. Токопровод 3 электрически изолирован от трансформатора тока 4, электронного блока и виброгасящих элементов 12. Технический результат заключается в повышении точности измерения и увеличении помехозащищенности. 5 ил.
Изобретение относится к способам геоэлектроразведки, а именно к технологии радиомагнитотеллурического (РМТ) зондирования, и может быть использовано для выявления и оконтуривания загрязнений в почвах и грунтовых водах. Сущность заявляемого изобретения заключается в том, что в способе выявления загрязнений в почвах и грунтовых водах, основанном на регистрации электромагнитного отклика пород на зондирующее электромагнитное излучение с частотой, лежащей в диапазоне от сверхдлинноволновых до средневолновых частот, при этом с помощью источника излучают зондирующий электромагнитный сигнал, с помощью датчиков измеряют электрическую и магнитную составляющие возбужденного указанным зондирующим сигналом электромагнитного поля в точках зондирования, расположенных с некоторым шагом на линиях зондирования, распределенных по площади исследуемой зоны, обрабатывают измеренные данные и определяют значения поверхностного импеданса и частотные зависимости кажущегося сопротивления и фазы импеданса в точках зондирования, по результатам интерпретации которых судят о наличии загрязнения в почвах и в грунтовых водах, согласно изобретению в качестве источника зондирующего сигнала используют автономный генератор с частотным диапазоном от 1 до 1000 кГц и генераторную линию, выполненную в виде заземленного на концах кабеля конечной длины, измеряют электрическую и магнитную составляющие электромагнитного поля в точках зондирования, образующих сеть измерения, заведомо перекрывающую территорию возможной зоны загрязнения, и расположенных с шагом от 5 до 50 м на линиях зондирования, ориентированных в одном направлении, отстоящих друг от друга на расстоянии от 10 до 200 м, при этом контролируют местоположение источника зондирующего излучения таким образом, чтобы точки зондирования находились в дальней зоне его действия. Технический результат - повышение надежности результатов зондирования при выявлении и оконтуривании зон загрязнений. 1 з.п. ф-лы.

Группа изобретений относится к области электроразведки, а именно к методам электромагнитного зондирования. Способ включает размещение генераторного и измерительного контуров, периодическую подачу от генератора импульсов тока на вход контура и периодически, в паузах между импульсами, регистрацию наведенной ЭДС в измерительном контуре, предварительную установку длительности импульсов генерируемого тока, измерение величины импульса тока и регистрацию отношения значения наведенной ЭДС к измеренной величине тока, накопление во времени указанных отношений и расчет среднего значения отношения по количеству точек, выбранных на кривой спада. Программно задают величину шага дискретизации на кривой спада не менее одной микросекунды, и для каждой выбранной точки регистрируют по результатам 2n измерений среднее значение отношения наведенной ЭДС к измеренной величине ГТ в момент времени перед выключением импульса этого тока, где n выбирают от 0 до 8. Устройство содержит световое и звуковое табло, аккумуляторы, микропроцессор, ПЗУ, порт для подключения к компьютеру, коммутатор, усилители, АЦП, генератор импульсов тока, измеритель напряжения на аккумуляторе, генераторный контур, измерительный контур, силовой ключ, блок измерения тока в генераторной петле. Технический результат - повышение точности и достоверности результатов измерений. 2 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к области защиты подземных металлических сооружений от коррозии, вызванной блуждающими токами. Способ идентификации источника блуждающего тока заключается в следующем: отключают средства электрохимической защиты трубопровода и синхронно измеряют разности потенциалов «труба-земля» по меньшей мере в двух точках обследуемого участка трубопровода. Анализируют график изменения разности потенциалов во времени по признакам единства источника блуждающего тока, действующего на обследуемый участок, отсутствия в измеренной разности потенциала переменной составляющей с частотами, кратными промышленной частоте сети переменного тока, идентифицируют источник блуждающего тока. При этом определяют точки-экстремумы на графике изменения разности потенциалов во времени, определяют скорость нарастания разности потенциалов до установления экстремального значения, определяют коэффициент корреляции между массивами значений экстремумов и скорости нарастания разности потенциалов. Далее выполняют спектральный анализ графика разности потенциалов, при значении определяемого коэффициента корреляции по модулю более 0,9 и при частоте колебаний с наибольшей амплитудой от 0,0001 Гц до 0,001 Гц считают, что источник блуждающего тока связан с воздействием геомагнитных вариаций. Достигаемый технический результат - повышение достоверности способа идентификации источника блуждающего тока. 4 ил.

Группа изобретений относится к геомагнитной съемке для многочисленных применений, таких как навигация, определение ориентации управления движущимися объектами, в частности направленное бурение. Техническим результатом является повышение точности получения результатов геомагнитной съемки для обеспечения повышения эффективности ее применения в области направленного бурения скважин. В частности, предложен способ вычисления локального геомагнитного возмущающего поля, согласно которому: измеряют элементы магнитного поля Земли по меньшей мере в одном известном геодезическом положении; измеряют элементы магнитного поля Земли в положении вблизи местоположения, в котором должно быть вычислено локальное геомагнитное возмущающее поле; определяют функцию возмущения из измерений магнитного поля Земли, выполненных по меньшей мере в одном известном геодезическом положении, и вычисляют передаточную функцию измерения магнитного возмущающего поля между по меньшей мере одним известным геодезическим положением и ближним положением для расчета локального геомагнитного возмущающего поля в ближнем положении. Причем вычисление передаточной функции магнитного возмущающего поля включает в себя вычисление оконного преобразования Фурье, измерений по меньшей мере в одном известном геодезическом положении и измерений в ближнем положении с помощью обращения методом наименьших квадратов. 4 н. и 21 з.п. ф-лы, 6 ил.
Наверх