Способ ослабления волнового отрыва при взаимодействии скачка уплотнения с пограничным слоем

Изобретение относится к области летательных аппаратов околозвуковых скоростей. Способ ослабления волнового отрыва при взаимодействии скачка уплотнения с пограничным слоем на обтекаемой поверхности включает выполнение выдува струй округлой поперечной формы из обтекаемой поверхности перед скачком уплотнения под углом 30°-60° к обтекаемой поверхности и под углом 30°-60° к направлению потока у обтекаемой поверхности. Изобретение направлено на снижение аэродинамического сопротивления. 4 ил.

 

Изобретение относится к области авиационной техники, преимущественно к летательным аппаратам околозвуковых скоростей, а также к аэрогазодинамическим установкам и воздушно-реактивным двигателям с околозвуковыми скоростями потока.

При полете летательных аппаратов при больших дозвуковых скоростях, близких к скорости звука, а также в аэрогазодинамических установках и двигателях со скоростями потока, близкими к скорости звука, на поверхностях возникают зоны сверхзвуковых скоростей со скачками уплотнения, которые взаимодействуют с пограничным слоем на обтекаемой поверхности.

На фигуре 1 представлена характерная картина взаимодействия скачка уплотнения с пограничным слоем при околозвуковых скоростях, а на фигуре 2 представлено распределение давления на обтекаемой поверхности в области взаимодействия.

В результате взаимодействия с пограничным слоем на обтекаемой поверхности скачок уплотнения может разделяться на два или несколько расходящихся веером скачков уплотнения (Фиг. 1), и вследствие распределения давления (Фиг. 2), препятствующего течению пограничного слоя, возникает течение с интенсивным вихреобразованием, получившее распространенное название «волновой отрыв» (Фиг. 1). Возникновение волнового отрыва приводит к значительному росту аэродинамического сопротивления, возникновению нестационарности обтекания и нежелательным вибрациям конструкции летательного аппарата, получившим название трансзвуковой бафтинг.

Аналогичные явления имеют место в аэрогазодинамических установках и воздушно-реактивных двигателях с околозвуковыми скоростями потока.

Известен способ ослабления волнового отрыва путем отсоса пограничного слоя из области взаимодействия со скачком уплотнения (патент GB 2064709 A D.сl.F2R 04.12.1980).

Известен также способ ослабления волнового отрыва путем выдува высоконапорных тангенциальных струй перед областью взаимодействия скачка уплотнения с пограничным слоем (Bokser V.D., Wolkov A.V., Petrov A.V. Application of tangentional jet blowing for reduction of drag for supercritical airfoils at high subsonic speeds, TsAGI Science Journal. Vol. 40, No. 1, pp. 9-21, 2009).

Общим недостатком данных способов является необходимость расхода значительной дополнительной энергии для отсоса и выдува сжатого воздуха. Для практического же использования более предпочтительны способы ослабления волнового отрыва, не требующие подвода значительной дополнительной энергии.

Известен способ, включающий выдув из обтекаемой поверхности перед скачком уплотнения низконапорных струй воздуха округлой поперечной формы с наклоном под углом 30°-60° к обтекаемой поверхности и поперек (значит под углом около 90°) к направлению потока перед скачком уплотнения (патент РФ 2502639, 27.12.2013 г.). В данном способе ослабление волнового отрыва обеспечивается за счет сворачивания низконапорных струй в вихревые жгуты. Ослабление волнового отрыва при взаимодействии скачка уплотнения с пограничным слоем на обтекаемой поверхности происходит за счет увеличения энергии пограничного слоя вихревыми жгутами, которые переносят в пограничный слой часть потока с высокой энергией, из области над пограничным слоем. Для сворачивания струй в продольные вихревые жгуты достаточно выдувать воздух с полным давлением, превышающим скоростной напор не более чем на 10%-20%, на что необходимо расходовать незначительное количество энергии.

По техническим признакам данный способ является наиболее близким к предлагаемому изобретению и является его прототипом.

Недостатком данного способа является то, что выдув струй воздуха из обтекаемой поверхности перед скачком уплотнения выполняют поперек к направлению потока, что приводит к дополнительному торможению потока в пограничном слое. Дополнительное торможение пограничного слоя приводит к некоторому усилению волнового отрыва и уменьшает эффективность вихревых жгутов по ослаблению волнового отрыва.

Задачей и техническим результатом изобретения является разработка способа ослабления волнового отрыва, позволяющего снизить аэродинамическое сопротивление крыльев, увеличить тягу воздушно-реактивных двигателей и уменьшить потери энергии в аэрогазодинамических установках с околозвуковыми скоростями потока.

Решение задачи и технический результат достигается тем, что в способе ослабления волнового отрыва при взаимодействии скачка уплотнения с пограничным слоем, включающем выполнение выдува струй округлой поперечной формы из обтекаемой поверхности перед скачком уплотнения с наклоном под углом 30°-60° к обтекаемой поверхности, кроме того, выдув струй воздуха перед скачком уплотнения выполняют под углом 30°-60° к направлению потока у обтекаемой поверхности.

Сущность предлагаемого способа ослабления волнового отрыва при взаимодействии скачка уплотнения с пограничным слоем на обтекаемой поверхности состоит в том, что выдув струй воздуха перед скачком уплотнения выполняют под углом 30°-60° к направлению потока у обтекаемой поверхности. Продольные вихревые жгуты, создаваемые путем выдува низконапорных струй из обтекаемой поверхности под углом 30°-60° к направлению потока у обтекаемой поверхности, значительно меньше затормаживают течение в пограничном слое и значительно эффективнее ослабляют волновой отрыв, что приводит к уменьшению аэродинамического сопротивления при околозвуковых скоростях.

На фиг. 3 представлена картина течения на участке обтекаемой поверхности при осуществлением предлагаемого способа ослабления волнового отрыва.

На фиг. 4 представлены углы выдува струй относительно обтекаемой поверхности и относительно направления потока перед скачком уплотнения.

Изобретение осуществляется при известном или предварительно определенном положении скачка уплотнения 1 и направлении потока перед ним на обтекаемой поверхности. Для ослабления волнового отрыва из обтекаемой поверхности 2 перед скачком уплотнения 1 выполняют выдув струй округлой поперечной формы через протоки 3 (Фиг. 3). Выдуваемые из обтекаемой поверхности струи сворачиваются в вихревые жгуты 4 (Фиг. 3).

Для улучшения формирования и эффективности воздействия продольных вихревых жгутов на ослабление волнового отрыва, направление выдува струй VС перед скачком уплотнения выполняют под углом 30°-60° к обтекаемой поверхности 2 и под углом 30°-60° к направлению потока перед скачком уплотнения VП (Фиг. 4). Для этого протоки 3 в обтекаемой поверхности 2 выполняют с наклонами под углом 30°-60° к обтекаемой поверхности и под углом 30°-60° к направлению потока у обтекаемой поверхности.

Экспериментальная проверка предлагаемого способа на модели аэродинамического профиля при околозвуковых скоростях показала возможность большего снижения аэродинамического сопротивления крыльев, увеличения тяги воздушно-реактивных двигателей по сравнению с прототипом.

Способ ослабления волнового отрыва при взаимодействии скачка уплотнения с пограничным слоем на обтекаемой поверхности, включающий выполнение выдува струй округлой поперечной формы из обтекаемой поверхности перед скачком уплотнения под углом 30°-60° к обтекаемой поверхности, отличающийся тем, что выдув струй воздуха перед скачком уплотнения выполняют под углом 30°-60° к направлению потока у обтекаемой поверхности.



 

Похожие патенты:

Летательный аппарат содержит аэродинамический элемент, источник сжатого воздуха, исполнительное устройство для струйного выдува воздуха и управляющее устройство.

Изобретение относится к области авиации. Способ создания подъемной силы крыла самолета основан на использовании множества сопел на нижней поверхности крыла для создания дополнительной силы.

Изобретение относится к маневрирующим в атмосфере сверхзвуковым летательным аппаратам (ЛА). Способ управления обтеканием включает изменение направления воздушного потока со встречного на радиальное истечение относительно ЛА.

Изобретение относится к области авиации. .

Изобретение относится к области авиации. .

Изобретение относится к аэродинамическому закрылку летательного аппарата и, прежде всего, к создающему значительный прирост подъемной силы закрылку (высокоэффективному закрылку) летательного аппарата с влияющим на срыв потока устройством или с турбулизатором, а также такое же влияющее на срыв потока устройство.

Изобретение относится к авиационной технике и позволяет повысить подъемную силу несущих плоскостей летательных аппаратов. .

Изобретение относится к авиационно-космической технике и позволяет, в частности, повысить подъемную силу несущих плоскостей летательных аппаратов в диапазоне от дозвуковых до гиперзвуковых скоростей, а также повысить их маневренность до интервала, ограниченного только пределом прочности конструкции.

Изобретение относится к области транспортной техники, а именно к способам создания тяги и аппаратам с крылом аэродинамического сечения, и может найти применение в качестве аппаратов для перемещения в текучей среде: воздушной и водной.

Изобретение относится к области авиации. .

Изобретение относится к области авиации, в частности к конструкциям несущих винтов винтокрылых летательных аппаратов. Несущий винт вертолета состоит из втулки и лопастей, каждая из которых содержит лонжерон, хвостовые отсеки, наконечник и законцовку. Концевая часть каждой лопасти в поперечном сечении имеет сверхзвуковой профиль и состоит из пустотелого корпуса, закрепленного к лонжерону с возможностью отстыковки, и хвостовых отсеков. В передней части корпуса имеются круглые отверстия для забора воздуха. За отверстиями выполнены ресиверные полости забора воздуха, за корпусом выполнены ресиверные полости сдува пограничного слоя. Ресиверная полость сдува пограничного слоя снабжена отверстиями выхода воздуха. Ресиверные полости забора воздуха и ресиверные полости сдува пограничного слоя каждой пары диаметрально расположенных лопастей соединены воздухопроводами. Достигается увеличение тяги несущего винта, диапазона скоростей и высот полета за счет повышения КПД винта без дополнительных затрат энергии. 3 ил.
Наверх