Способ получения нанокапсул розувостатина в альгинате натрия

Изобретение относится к области нанотехнологии, медицины и фармацевтике. Способ получения нанокапсул розувостатина осуществляют следующим образом. Розувостатин медленно добавляют в суспензию альгината натрия в гексане в присутствии 0,005 г препарата Е472с при перемешивании 1000 об/сек. Далее приливают 3 мл бутилхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре. Соотношение розувостатин : альгинат натрия составляет 1:3 или 5:1. Способ по изобретению обеспечивает упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. 1 ил., 3 пр.

.

 

Изобретение относится к области нанотехнологии, медицины и фармацевтике.

Ранее были известны способы получения микрокапсул.

В пат. РФ 2173140, МПК А61К 009/50, А61К 009/127, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.

В пат. РФ 2359662, МПК А61К 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).

Наиболее близким методом является способ, предложенный в пат. РФ 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999. В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4: 1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул розувостатина, отличающимся тем, что в качестве оболочки нанокапсул используется альгинат натрия, а в качестве ядра - розувостатин при получении нанокапсул методом осаждения нерастворителем с применением бутилхлорида в качестве осадителя, процесс получения нанокапсул осуществляется без специального оборудования.

Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием бутилхлорида в качестве осадителя, а также использование альгината натрия в качестве оболочки частиц и розувостатина - в качестве ядра.

Результатом предлагаемого метода является получение нанокапсул розувостатина.

Пример 1. Получение нанокапсул розувостатина в альгинате натрия соотношение оболочка:ядро 3:1

0,3 г розувостатина медленно добавляют в суспензию альгината натрия в гексане, содержащую указанного 0,9 г полимера в присутствии 0,005 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 1000 об/сек. Далее приливают 3 мл бутилхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 1,2 г порошка нанокапсул. Выход составил 100%.

Пример 2. Получение нанокапсул розувостатина в альгинате натрия соотношение ядро:оболочка 1:5

0,5 г розувостатина медленно добавляют в суспензию альгината натрия в гексане, содержащую указанного 0,1 г полимера в присутствии 0,005 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/сек. Далее приливают 3 мл бутилхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,6 г порошка нанокапсул. Выход составил 100%.

Пример 3. Определение размеров нанокапсул методом NTA

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834 (рис. 1).

Оптимальным разведением для разведения было выбрано 1: 100. Для измерения были выбраны параметры прибора: Camera Level=16, Detection Threshold=10 (multi), Min Track Length:Auto, Min Expected Size: Аut., длительность единичного измерения 215s, использование шприцевого насоса.

Способ получения нанокапсул розувостатина, характеризующийся тем, что розувостатин медленно добавляют в суспензию альгината натрия в гексане в присутствии 0,005 г препарата Е472с при перемешивании 1000 об/сек, далее приливают 3 мл бутилхлорида, полученную суспензию отфильтровывают и сушат при комнатной температуре, при этом соотношение розувостатин : альгинат натрия составляет 1:3 или 5:1.



 

Похожие патенты:

Изобретение относится к физике, химии, биофизике, медицине, биологии, электронике, оптоэлектронике. В смесителе-газоформирователе 8 готовят смесь путём подачи в него углерода и/или углеродсодержащих веществ из блока 15, порошка катализатора из блока 16, инертного газа из системы 6 через расходомер 7 и подогретого в устройстве 17 водорода из источника 18.

Изобретение относится к области разработки способа получения фотокатализатора на основе диоксида титана, модифицированного частицами платины, проявляющего активность под действием ультрафиолетового излучения в реакции фотокаталитического окисления монооксида углерода при комнатной температуре.

Изобретение относится к способу получения нанокапсул розувастатина, характеризующемуся тем, что розувастатин медленно добавляют в суспензию каррагинана в гексане, в присутствии 0,005 г препарата Е472с при перемешивании 1000 об/мин, при массовом соотношении оболочка:ядро 3:1 или 1:5, затем приливают 5 мл 1,2-дихлорэтана, полученную суспензию отфильтровывают и сушат при комнатной температуре.

Изобретение может быть использовано для получения наноразмерных порошков элементов и их неорганических соединений методом «испарения - конденсации» в потоке газа.

Изобретение относится к катализаторам и к способу синтеза Фишера-Тропша. Катализатор на основе комплексных солей кобальта для синтеза Фишера-Тропша содержит частицы кобальта, при этом в качестве комплексной соли кобальта выбирают фталоцианиновый комплекс кобальта (C32H16N8Co), а в качестве диспергатора частиц кобальта выбирают ионные жидкости 1-бутил-3-метилимидазол тетрафторборат или 1-бутил-3-метилимидазолий бис(трифторборатсульфонил)имид.

Изобретение относится к медицине, в частности к средству, обладающему противоопухолевой активностью, а также к способу получения средства и его применению. Способ получения средства включает взаимодействие арабиногалактанового сырья и диоксида селена или солей селенистой кислоты в растворителе с последующим осаждением в этиловый спирт, или ацетон, или другой смешивающийся с водой органический растворитель.
Изобретение относится к области теплопроводящих диэлектрических материалов и может найти применение при изготовлении теплоотводящих прокладок, лент, герметиков, заливочных компаундов для чипов компьютерной памяти, изделий силовой электронике, портативных устройств, блоков электропитания и силовых преобразователей, в которых необходимо обеспечить теплоотвод от теплонагруженных элементов и узлов.

Изобретение относится к технологиям получения износостойких, прочностных тонких алмазных пленок методом вакуумной лазерной абляции и может быть использовано в различных областях промышленности и науки для получения тонкопленочных упрочняющих покрытий и создания наноструктурных материалов.
Изобретение относится к машиностроению и может быть использовано при изготовлении деталей с повышенной жаростойкостью. В жаростойком металлокерамическом покрытии, состоящем из чередующихся слоев тугоплавких окислов металлов, разделенных компенсационными слоями пластичного металла, слои тугоплавких окислов дополнительно содержат не более 40% пластичного металла, а компенсационные слои дополнительно содержат не более 20% тугоплавких окислов.

Изобретение относится к способам получения стабильных электрохромных покрытий на основе берлинской лазури и проводящего полимерного компонента и может быть использовано при получении электрохромных слоев на поверхности оптически прозрачных электродов для применения в архитектурно-строительной и автомобильной промышленностях.
Изобретение относится к химической промышленности и может применяться при изготовлении пигментов для лаков и красок. Пигмент состоит из оболочки и ядра.
Изобретение относится к химической промышленности и может применяться при изготовлении пигментов для лаков и красок. Пигмент содержит оболочку и ядро.
Изобретение относится к химической промышленности и может применяться при изготовлении пигментов для лаков и красок. Пигмент белого цвета содержит оболочку и ядро.

Изобретение относится к области нанотехнологии и медицины. Описан способ получения нанокапсул аминогликозидного антибиотика в оболочке из альгината натрия.

Изобретение относится к способу получения нанокапсул ароматизатора «тропик» в альгинате натрия. Указанный способ характеризуется тем, что ароматизатор «тропик» растворяют в бутаноле, диспергируют полученную смесь в раствор альгината натрия в метаноле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты при перемешивании 1300 об/мин, далее приливают бутанол и воду, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре.

Изобретение относится к области нанотехнологии и медицины. Описан способ получения нанокапсул ципрофлоксацина гидрохлорида в оболочке из альгината натрия.

Изобретение относится в области нанотехнологии и ветеринарной медицине. Технической задачей изобретения является упрощение процесса получения микрокапсул и увеличение выхода по массе.
Группа изобретений относится к способу изготовления мягкой гелевой капсулы, содержащей микроинкапсулированные пробиотические бактерии, предусматривающему стадии: (a) обеспечения микроинкапсулированных пробиотических бактерий по меньшей мере с одним покрытием, содержащим по меньшей мере один растительный липид, имеющий температуру плавления от 35°С до 75°С; (b) суспендирования этих микроинкапсулированных пробиотических бактерий в суспендирующем препарате с получением заполнителя; (c) смешивания этого заполнителя при интенсивности, меньшей чем приблизительно 3000 об/мин, и температуре приблизительно 15-32°C с получением смешанного заполнителя; (d) уменьшения агломератов микроинкапсулированных пробиотических бактерий в этом смешанном заполнителе с получением деагломерированного заполнителя; и (e) инкапсулирования деагломерированного заполнителя в мягкой гелевой капсуле, где поддерживается целостность покрытия микроинкапсулированных пробиотических бактерий, а также к пробиотической мягкой гелевой капсуле, изготовленной в соответствии с этим способом.

Изобретение относится к области инкапсуляции. Описан способ получения нанокапсул серы.

Способ получения нанокапсул креатина в альгинате натрия, которые можно использовать в спортивном питании и животноводстве, относится к области нанотехнологии. Способ включает осаждение нанокапсул креатина петролейным эфиром из раствора альгината натрия в бутаноле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты при перемешивании со скоростью 1000 об/мин.

Изобретение относится к способу получения нанокапсул розувастатина, характеризующемуся тем, что розувастатин медленно добавляют в суспензию каррагинана в гексане, в присутствии 0,005 г препарата Е472с при перемешивании 1000 об/мин, при массовом соотношении оболочка:ядро 3:1 или 1:5, затем приливают 5 мл 1,2-дихлорэтана, полученную суспензию отфильтровывают и сушат при комнатной температуре.
Наверх