Способ контроля фонового уровня радиации вокруг аэс

Изобретение относится к способам контроля радиационной обстановки и может быть использовано для контроля фонового уровня радиации вокруг АЭС. Сущность: осуществляют зондирование территорий АЭС, содержащих эталонные площадки с известным уровнем радиации. Причем для зондирования используют космические средства на теневом участке орбиты в ультрафиолетовом и ближнем инфракрасном диапазонах. Формируют синтезированную матрицу из попиксельных отношений ультрафиолетового изображения к инфракрасному изображению. Нормируют функцию сигнала синтезированной матрицы в стандартной шкале 0…255 уровней квантования. Посредством программы выделяют контуры на синтезированном изображении. Рассчитывают площади контуров и фрактальную размерность изображения внутри выделенных контуров. Определяют эквивалентную площадь радиационного загрязнения вокруг АЭС. Оценивают динамику изменения радиационного фона. Технический результат: повышение достоверности и оперативности контроля. 5 ил.

 

Изобретение относится к ядерной физике и может быть использовано для дистанционного измерения и анализа динамики радиационного загрязнения вокруг АЭС.

Аварии с повреждением ядерного реактора в США (Три-Майл Айленд, 1979 г.), в СССР (Чернобыль, 1986 г.), Японии (Фукусима, 2011 г.) поставили вопрос о необходимости оперативного, объективного и независимого контроля радиационного загрязнения с возможностью достоверного прогнозирования событий.

До настоящего времени радиационный контроль осуществляется штатными средствами посредством радиометров либо дозиметров. Известно «Устройство для регистрации гамма-нейтронного излучения», [Патент RU №2264674, H.01.J, G.01.T, 1/185, 2003 г.] - аналог.

Устройство для регистрации гамма-нейтронного излучения включает цилиндрическую ионизационную камеру с экранирующей сеткой, источник высоковольтного питания, зарядочувствительный усилитель, в качестве рабочего вещества использован сверхчистый ксенон при давлении 40…50 атм и соответственно с плотностью 0,3…0,6 г/см3 с добавлением водорода в количестве 0,2…0,3% от общего содержания ксенона, кроме того, металлическая сетка, находящаяся внутри ионизационной камеры, имеет степень изоэффективности σ~(3…5)%.

Недостатком перечисленных аналогов является локальность измерений наземными средствами в отдельных точках, не дающая объективной картины интегрального пространственного радиоактивного загрязнения территории или объема аварийного выброса.

Ближайшим аналогом к заявленному техническому решению является

«Способ определения загрязнения окружающей среды при аварийных выбросах на АЭС», Патент Ru №2.497.151, G.01.T, G.01.V, 2013 г.

Способ ближайшего аналога включает дистанционное получение изображений, в виде функции яркости I (x, y), подстилающей поверхности, содержащей контрольные площадки с известным уровнем радиации на них, радиометром, установленным на космическом носителе в длинноволновой части инфракрасного диапазона (8…12 мкм), выделение методами пространственного дифференцирования функции яркости изображения I (x, y) градиентного контура тепловых аномалий, относительно яркости фонового уровня, отождествление выделенного контура с зоной загрязнения, расчет площади зоны по количеству пикселей в контуре и пространственному разрешению одного пикселя радиометра, построение гистограммы яркости пикселей внутри выделенного контура, калибровку гистограммы в значениях радиационного уровня контрольных площадок в обратно пропорциональной, по яркости, зависимости из соотношения:

;

где: Рплощади [Зв] - уровень радиации контрольной площадки;

Рточки - определяемый уровень загрязнения в точке;

Iплощадки - яркость пикселей изображения над контрольной площадкой;

Iточки - яркость пикселей изображения над определяемой точкой.

К недостаткам ближайшего аналога следует отнести:

- невозможность непосредственного использования из-за различия состава средств и технологии обработки сигнала;

- тепловое ИК-изображение подстилающей поверхности аналога содержит информацию о состоявшейся аварии, но не содержит диагностических признаков увеличения гамма-нейтронного потока.

Задача, решаемая заявленным способом, состоит в объективной, достоверно-документальной дистанционной количественной оценке фонового уровня радиации вокруг АЭС.

Поставленная задача решается тем, что способ контроля фонового уровня радиации вокруг АЭС включает зондирование территорий их расположения, содержащих эталонные контрольные площади с известным уровнем радиации на них, космическими средствами, на теневом участке орбиты в ультрафиолетовом (50…300) нм и ближнем инфракрасном диапазоне (670-1200) нм, с получением изображений в каждом диапазоне, формирование синтезированной матрицы из попиксельных отношений ультрафиолетового к ИК-изображению, программное выделение контуров на синтезированном изображении, расчет площади Si контуров и фрактальной размерности изображения Ωi внутри выделенных контуров, определение эквивалентной площади радиационного загрязнения вокруг АЭС как суммы SэквiSi⋅σi площадей контуров Si, домноженных на коэффициенты σi фрактальной напряженности фонового уравнения радиации внутри выделяемых контуров, оценку динамики изменения радиационного фона в процентах через отношение: разности между эквивалентными площадями текущего и эталонного измерений, отнесенной к эквивалентной площади эталонного участка, где .

Изобретение поясняется чертежами, где:

фиг. 1 - полосы переизлучения молекул воздуха при радиоактивном облучении;

фиг. 2 - выделенные контуры фоновых уровней радиации вокруг АЭС на синтезированном изображении;

фиг. 3 - фрактальная размерность изображений (а, б, в) внутри выделенных контуров;

фиг. 4 - коэффициент фрактальной напряженности σ-радиационного поля в зависимости от мощности гамма-нейтронного потока;

фиг. 5 - функциональная схема устройства, реализующая способ.

Техническая сущность изобретения состоит в следующем.

Известно «Явление свечения атмосферы над зоной подготавливаемого землетрясения», научное открытие №407, 2010 г. [см., например, В.В. Потоцкий, «Научные открытия и гипотезы», Информационно-аналитический обзор, Из-во Международная академия научных открытий и изобретений, 2012 г.].

Вследствие гамма-нейтронного потока от радиоактивного распада радона, выделяемого из земной коры в областях сейсмических напряжений, наблюдается свечение атмосферных газов в серии полос переизлучения: Лаймана (100…300 нм), Бальмера (400…650 нм), Пашена (670…1200 нм). Полосы переизлучения атмосферных газов при их радиоактивном облучении иллюстрируются фиг. 1. Мощность сигналов-откликов в полосах переизлучений пропорциональна мощности гамма-нейтронного потока [см., например, Патент RU №2.395.103, G.01.T, 1/20 «Измеритель спектров сигналов-откликов атомных элементов на проникающее облучение», 2010 г.].

Поскольку фоновый уровень радиации вокруг АЭС, при их штатной эксплуатации, незначителен, то возникающее слабое переизлученное свечение полностью маскируется мощным дневным солнечным потоком.

Исходя из этого светосбор следует осуществлять только в ночное время, т.е. на теневом участке орбиты и с большой площади. Поле зрения космических средств зондирования должно быть широким.

Сам факт регистрации ультрафиолетового и инфракрасного (Бик) излучения на теневом участке орбиты свидетельствует о наличие источника гамма-нейтронного потока на подстилающей поверхности.

Поскольку энергия квантов ультрафиолетового диапазона существенно больше энергии квантов инфракрасного, то для подчеркивания контраста синтезированную матрицу формируют из попиксельных отношений ультрафиолетового изображения к красному (большего к меньшему).

Данная операция входит в комплект специализированного программного обеспечения [см. MATH CAD 7.0 PLUS, издание 3-е, стереотипное, М., Информационно-издательский дом «Филинъ», 1998 г., Векторизация элементов матрицы, стр.211].

Психологически, восприятие образа объекта человеком-оператором происходит на уровне контуров. Последнее достигается путем выделения контуров (контурного рисунка) на изображениях, осуществляемого методами пространственного дифференцирования [см., например, Дуда P.O., Харт П.Е. «Распознавание образов и анализ сцен», перевод с англ., изд. Мир, М., 1976 г. «Пространственное дифференцирование», стр. 287-288]. Существует несколько стандартных операторов (Робертса, Лапласа, Собела), позволяющих вычислить контуры на двумерных изображениях. В частности, например, перекрестный оператор Робертса рассчитывают в окне (маске) 2×2 элемента для каждой дискретной точки изображения I (x, y) из соотношения:

;

Вычисленное значение оператора сравнивают с установленным порогом R(i, j)>Π, выводят на экран точки, для которых R(i, j) превышает порог. Выделение контуров на изображении с использованием масок различных операторов представляется стандартной математической операцией [см., например, П.А. Минько, «Обработка графики Photoshop CS2», изд-во Эксмо, 2007 г., стр. 47-56, Глава 3. Методы выделения областей].

Результат выделения областей на синтезированном изображении иллюстрируется фиг. 2.

Одновременно установлено, что наибольший объем информации об объекте содержит его форма. Элементом формы объекта по Мандельброту является его фрактал [см., например, Mandelbrot В. Fractals, Forms, Chance and Dimensions, Freeman, San Francisco, 1977].

Фрактальная размерность является числовым параметром, характеризующим структуру природных образований, в частности, для изображения, этот параметр заключается в интервале [2…3]. Для вычисления фрактальной размерности используют метод осцилляций.

Пусть (x1, y1) и (x2, y2) - двумерные координаты точек, а третья координата, яркость, задана в виде функции координат I (x, y).

Тогда ε - осцилляцией значений (I) будет разность наибольшего и наименьшего значения (I) в (ε) окрестности (x, y).

;

После этого ε - вариацию значения I вычисляют как:

;

где a, b - пределы, в которых изменяется переменная x;

с, d - пределы, в которых изменяется переменная y.

Фрактальная размерность матрицы вычисляется как размерность Хаусдорфа:

;

Вычисление фрактальной размерности изображений объектов осуществляют по специализированной программе.

Текст программы вычисления фрактальной размерности изображений.

Расчетные значения фрактальной размерности изображений внутри выделенных контуров иллюстрируются графиком фиг. 3, а, б, в. Чем больше мощность гамма-нейтронного потока, тем больше интервал разброса яркости пикселей синтезированного изображения, а фрактальная размерность изображения меньше. Причем интервал изменения фрактальной размерности 2…3. Для увеличения чувствительности заявленного способа введен показатель фрактальной напряженности радиационного фона (σ), рассчитываемый по обратно пропорциональной зависимости как:

;

График зависимости фрактальной напряженности σ от мощности гамма-нейтронного потока иллюстрируется фиг. 4. Поскольку существенное влияние на переизлученную светимость атмосферных газов, регистрируемую космическими средства, оказывают климатические условия, в заявленном способе, при оценке динамики изменения фонового уровня, используют относительный показатель:

Пример реализации способа.

Рассмотренный способ может быть реализован по схеме фиг. 5. Функциональная схема устройства фиг. 5 содержит космический носитель 1 типа «Ресурс» с установленными на его борту цифровой ультрафиолетовой видеокамерой 2 (типа «Фиалка МВ-Космос») и микроволновым радиометром 3 (типа «МСУ-СК»), осуществляющими съемку подстилающей поверхности в полосе сканирования 4 путем включения над заданным районом по программам, закладываемым в бортовой комплекс управления 5, посредством командной радиолинии 6 из центра управления КА 7.

Последовательность отснятых кадров изображений подстилающей поверхности (вокруг АЭС и контрольных участков) записывают в бортовое запоминающее устройство (БЗУ) 8 и в зонах радиовидимости КА с наземных пунктов сбрасывают по каналу передачи данных 9 на пункты приема информации 10.

После предварительной обработки информации по служебным признакам (номер витка, время сеанса связи) информацию помещают на сайт 11, откуда по запросу потребителей перегоняют в Центр тематической обработки 12. Программную обработку изображений осуществляют на персональной ЭВМ 13 в стандартном наборе элементов: устройство ввода 14, процессор 15, оперативное ЗУ 16, винчестер 17, дисплей 18, принтер 19, клавиатура 20. Обработанную информацию состояния фонового уровня радиации вокруг АЭС помещают на сайт сети «Internet» 21 для передачи по паролю доступа заинтересованным организациям.

Процедуру реализации заявленной последовательности операций способа осуществляют в следующей последовательности.

Предварительно в оперативное запоминающее устройство 16 записывают программу специализированного программного обеспечения MATH CAD. Затем формируют кадры синтезированных матриц из попиксельных отношений ультрафиолетового изображения (большей яркости пикселей) к ИК-изображению (меньшей яркости пикселей). После этого осуществляют нормирование функции сигнала синтезированной матрицы в стандартной шкале 0…255 уровней квантования.

За счет контрастирования достигается подчеркивание краев, что обеспечивает достоверное выделение контуров на синтезированном изображении программным способом.

Текст программы выделения контуров на изображении.

Результат работы программы иллюстрируются фиг. 2.

Исходя из масштаба изображения определяют разрешение одного пикселя, подсчитывают количество пикселей внутри каждого контура и определяют площади. В частности, для изображения фиг. 2 площади контуров составили S1=540 км2, S2=300 км2, S3=150 км2, S4=26 км2.

Затем программным методом рассчитывают фрактальную размерность изображений внутри контуров. В частности, расчетные значения ее для графиков фиг. 3, а, б, в составили: 2,86; 2,7; 2,34.

Коэффициенты σi фрактальной напряженности радиационного поля внутри контуров, рассчитываемые по обратно пропорциональной зависимости:

;

соответственно составили σ1=1,12; σ2=1,43; σ3=2,94; σ4=5. Эквивалентная площадь радиационного загрязнения текущего измерения вокруг АЭС Sэкв=ΣSiσi=1585 км2.

Эквивалентная площадь загрязнения вокруг эталонной площадки [см., например, сайт www.ros'energoatom.ru, Ленинградская АЭС]. Зона наблюдения, радиус 17 км, площадь 900 км2.

Динамика изменения радиоактивного фона вокруг оцениваемой АЭС составила Δ1582-900=682; ;

Заявленный способ может быть реализован на существующей технической базе. Осуществляя ежедневное обновление информации со спутников и ее автоматизированную обработку, по операциям заявленного способа представляется возможным оперативно, достоверно, документально с точной координатной привязкой отслеживать состояние радиационного заражения в обширной зоне, прилегающей к АЭС.

Способ контроля фонового уровня радиации вокруг АЭС, включающий зондирование территорий их расположения, содержащих эталонные контрольные площади с известным уровнем радиации на них, космическими средствами на теневом участке орбиты в ультрафиолетовом (50-300) нм и ближнем инфракрасном (670-1200) нм диапазонах с получением изображений в каждом диапазоне, формирование синтезированной матрицы из попиксельных отношений ультрафиолетового изображения к инфракрасному, программное выделение контуров на синтезированном изображении, расчет площади Si контуров и фрактальной размерности Ωi изображения внутри выделенных контуров, определение эквивалентной площади Sэкв радиационного загрязнения вокруг АЭС как суммы площадей Si контуров, домноженных на коэффициенты σi фрактальной напряженности фонового уравнения радиации внутри выделяемых контуров: SэквiSi⋅σi, оценку динамики изменения радиационного фона в процентах как разности между эквивалентными площадями текущего и эталонного измерений, отнесенной к эквивалентной площади эталонного участка: , где



 

Похожие патенты:

Изобретение относится к области выявления радиационной обстановки в окрестностях объектов атомной энергетики после аварийного выброса в атмосферу радиоактивных веществ.

Изобретение относится к области радиационной экологии. Устройство содержит два идентичных газоразрядных детектора, открытых на воздух: измерительный и калибровочный.
Изобретение относится к области аналитической радиохимии и может использоваться для контроля содержания плутония в технологических средах ядерных энергетических установок (ЯЭУ).

Изобретение относится к области метрологического обеспечения дозиметрического контроля облучения личного состава, действующего в условиях воздействия смешанного нейтронного и гамма-излучения, и может быть использовано для испытаний и поверки индивидуальных дозиметров.
Изобретение относится к области радиационных технологий, а именно к способам контроля герметичности капсулы с источником ионизирующего излучения (ИИИ). Технический результат - упрощение технологии контроля герметичности капсулы с источником ионизирующего излучения.

Изобретение относится к радиационному контролю помещений и промплощадки, а именно к измерению объемной активности радиоактивных аэрозолей. Способ основан на отборе проб аэрозолей путем прокачки воздуха с контролируемыми аэрозолями через фильтрующую ленту с заданной постоянной скоростью, установке над зоной фильтрации полупроводникового детектора и формировании с его помощью импульсов напряжения, амплитуды которых пропорциональны энергиям α- и β-частиц, испускаемых осевшими на фильтре частицами радиоактивного аэрозоля.

Использование: для точной идентификации по меньшей мере одного источника, в частности по меньшей мере одного нуклида, заключенного в теле человека и/или контейнере.

Изобретение относится к ядерной технике, а именно к области радиационного мониторинга, и может быть использовано в машиностроении, медицине и других отраслях для контроля несанкционированного перемещения ядерных материалов и других радиоактивных веществ.

Изобретение относится к области контроля окружающей среды, а именно к способам обнаружения и выделения горячих частиц (ГЧ) с различных поверхностей и из воздушной среды, загрязненных радиоактивными веществами.

Изобретение относится к области радиационной экологии. Сущность изобретения заключается в том, что устройство для дистанционного обнаружения источников альфа-излучения содержит измерительный открытый на воздух детектор аэроионов, сопряженный с блоком переноса аэроионов и подключенный к источнику рабочего напряжения и к измерительному счетчику импульсов соответственно, калибровочный альфа-источник, калибровочный детектор аэроионов, аналогичный измерительному детектору, выполненному газоразрядным, подключенный к источнику рабочего напряжения, и компаратор, причем калибровочный детектор соединен с калибровочным счетчиком импульсов, выход которого соединен с первым входом компаратора, второй вход которого соединен с шиной наперед заданного числа, при этом дополнительно содержит двухпозиционный переключатель режима работы устройства, сумматор, причем управляющий вход двухпозиционного переключателя является входом выбора режима устройства, первый информационный вход соединен с шиной нулевого потенциала, а второй - с дополнительной шиной наперед заданного числа, первый вход сумматора подключен к выходу компаратора, второй - к выходу двухпозиционного переключателя режима работы, а выход сумматора подключен к управляющему входу источника рабочего напряжения.

Изобретение относится к способу измерения уровня безопасности содержащего радионуклиды сыпучего материала. Сыпучий материал засыпается на ленточный транспортер и подается на приемное устройство, причем сыпучий материал во время транспортировки проводится мимо первых датчиков, которые по ширине ленточного транспортера спектрометрически измеряют гамма-излучение. Для того чтобы при высокой пропускной способности иметь возможность выполнять точное определение радиоактивности, предусмотрены следующие шаги способа: определение соотношения радионуклидов в сыпучем материале перед засыпкой на ленточный конвейер, учитывая по меньшей мере один эталонный нуклид, вычисление радиоактивности сыпучего материала на основе измеренных при помощи первых датчиков гамма-лучей и их интенсивностей, учитывая один или несколько эталонных нуклидов, имеющихся в радионуклидах, проверка определенного ранее соотношения радионуклидов и/или измеренной радиоактивности при помощи измеряющих α- и/или β-излучение вторых датчиков, которые расположены над ленточным транспортером. 16 з.п. ф-лы, 6 ил.

Изобретение относится к области радиоэкологического мониторинга районов мирных подземных ядерных взрывов в пределах нефтегазоносных бассейнов, в частности к малогабаритным устройствам пробоподготовки горючих природных газовых проб в полевых условиях и перевода опасных для транспортировки горючих природных газовых проб в безопасные водные образцы для дальнейшего определения в них содержания трития в лабораторных условиях методом жидкостно-сцинтилляционной спектрометрии. Устройство включает последовательно установленные в едином корпусе и взаимосвязанные компрессор подачи горючего природного газа или попутного нефтяного газа в инжекционную горелку, водоохлаждаемый конденсатор и контейнер для сбора конденсата водяного пара - конденсированных продуктов горения, при этом инжекционная горелка установлена таким образом, что сопло ее направлено вертикально вниз для подачи продуктов горения во входное отверстие установленного ниже по ее оси водоохлаждаемого конденсатора, а держатель горелки прикреплен к конденсатору с возможностью изменения расстояния между выходом горелки и входом продуктов горения в конденсатор от 4,7 до 5,0 см в зависимости от состава горючего газа. Водоохлаждаемый конденсатор выполнен в виде дугообразно изогнутой под прямым углом трубки с внутренним диаметром не более 15 мм, переходящей в вертикальную трубку, высотой не более 20 см и внутренним диаметром не более 40 мм, закрытую воронкообразным днищем с отверстиями для слива конденсированных продуктов горения в нижеустановленный контейнер. Внутри вертикальной трубки конденсатора соосно установлена охлаждаемая трубка, на которой также соосно установлены по крайней мере три конуса с коаксиальным зазором не менее 2 мм между внутренней поверхностью конденсатора и внешними краями конусов. Техническим результатом является получение конденсата водяного пара в полевых условиях, безопасного для перевозки любым видом транспорта, в стационарную лабораторию, исключая необходимость транспортировки газовой пробы в стальных баллонах. 3 ил.
Наверх