Способ контроля роста усталостной трещины в магистральном трубопроводе

Использование: для неразрушающего контроля эхо-импульсным методом магистрального трубопровода. Сущность изобретения заключается в том, что контроль роста усталостной трещины производят путем одновременной передачи не менее двух сигналов в виде импульсных ультразвуковых колебаний от источников, размещенных в одной плоскости на одной общей платформе, причем сигналы формируют разной частоты и они направлены под разными углами к исследуемому объекту, а прием сигналов производят посредствам устройств, смонтированных на второй платформе в той же плоскости, что и источники импульсных ультразвуковых колебаний, при этом платформы располагают в одной плоскости на внешней стороне магистрального трубопровода, измеряют время распространения ультразвуковых колебаний в исследуемом образце и рассчитывают геометрические характеристики усталостных трещин магистральных трубопроводов. Технический результат: обеспечение измерения геометрических характеристик усталостной трещины и глубины ее залегания от поверхности исследуемого образца магистрального трубопровода без остановки технологического процесса. 1 ил.

 

Способ относится к неразрушающему контролю эхо-импульсным методом и может быть использован для выявления дефектов магистрального трубопровода.

Известен способ контроля роста усталостных трещин магистрального трубопровода, включающий проведение контроля роста усталостных трещин акустическим блоком посредством периодического излучения импульсных ультразвуковых колебаний в объект с последующим приемом этих колебаний приемником для определения дефектов в строительных конструкциях и/или трубопроводах (см. патент РФ №2278377 С2, МПК9, G01N 29/04, опубл. 20.06.2006 г.).

Недостатками известного технического решения является сложность исполнения и осуществления способа контроля, низкая точность получаемых результатов, отсутствие возможности производить измерения без остановки технологического процесса, например транспортировки продукта в трубопроводе, поскольку существует необходимость расположения одного датчика на внешней стороне конструкции, а второго - на внутренней, что не может быть реализовано в исследовании магистральных трубопроводов, т.к. возникают трудности для дальнейшей перестановки его в процессе исследования.

В основу изобретения поставлена задача усовершенствования способа для обеспечения измерения геометрических характеристик усталостной трещины и глубины залегания от поверхности исследуемого образца магистрального трубопровода без остановки технологического процесса.

Поставленная задача решается тем, что в известном способе контроля роста усталостных трещин магистрального трубопровода, включающем периодические излучения импульсных ультразвуковых колебаний в исследуемый объект с последующим приемом этих колебаний приемником, согласно заявляемому изобретению контроль производят путем одновременной передачи не менее двух сигналов в виде импульсных ультразвуковых колебаний от источников, размещенных в одной плоскости на одной общей платформе, причем сигналы формируют разной частоты и направлены под разными углами к исследуемому объекту, а прием сигналов производят посредствам устройств, смонтированных на второй платформе в той же плоскости, что и источники импульсных ультразвуковых колебаний, при этом платформы располагают в одной плоскости на внешней стороне магистрального трубопровода, измеряют время распространения ультразвуковых колебаний в исследуемом образце и рассчитывают геометрические характеристики усталостных трещин магистральных трубопроводов.

Поскольку контроль производят путем одновременной передачи не менее двух сигналов в виде импульсных ультразвуковых колебаний от источников, размещенных в одной плоскости на одной общей платформе, причем сигналы формируются разной частоты и направлены под разными углами к исследуемому объекту, а прием сигналов производят посредствам устройств, смонтированных на второй платформе в той же плоскости, что и источники импульсных ультразвуковых колебаний, при этом платформы располагают в одной плоскости на фронтальной стороне магистрального трубопровода, обеспечивается измерение геометрических характеристик усталостной трещины и глубины залегания от поверхности исследуемого образца магистрального трубопровода без остановки технологического процесса.

На чертеже изображена установка для осуществления способа контроля роста усталостной трещины в магистральном трубопроводе.

Данный способ позволит контролировать рост усталостной трещины на всем протяжении испытаний, уменьшит время и точность получаемых результатов, исключит вероятность слепых зон.

Способ поясняется чертежом, где изображена установка для осуществления способа контроля роста усталостной трещины в магистральном трубопроводе.

Установка для контроля состоит из исследуемого фрагмента магистрального трубопровода 1, на который устанавливают платформу 2 с ультразвуковыми датчиками 3, 4 и платформу 5 с ультразвуковыми датчиками 7, 6. Ультразвуковые датчики 3, 4, расположенные на платформе 2, имеют разную частоту и угол излучения, соответственно, и датчики 7, 6, расположенные на платформе 5, имеют разные частоты и углы излучения. Платформы 2 и 5 обладают магнитными свойствами, которые обеспечивают фиксированное положение ультразвуковых датчиков на протяжении всего исследования и располагаются по обе стороны исследуемого дефекта 8.

Способ контроля роста усталостной трещины магистрального трубопровода осуществляют следующим образом.

Ультразвуковые датчики 3, 4 и 7, 6 соответственно работают попарно. Датчик 3 генерирует ультразвуковые лучи под углом α=65±2°, датчик 7 принимает их под тем же углом, соответственно датчик 4 генерирует ультразвуковые лучи под углом α=45±2°, ультразвуковой датчик 6 принимает их под тем же углом. Ультразвуковые датчики 3 и 7 имеют одинаковые характеристики частоты и угла излучения, располагаются на разных платформах и работают совместно, соответственно датчики 4 и 6 работают совместно и имеют одинаковые характеристики. Ультразвуковые датчики 3, 7 и 4, 6 работают одновременно.

Выбранные углы α=65±2° для датчиков 4, 6 и углы α=45±2° для датчиков 3, 7 являются рекомендованными для контроля образца ∅1020-1420 мм трубы магистрального трубопровода. Ультразвуковые датчики первой пары - 3 и 7 имеют рабочую частоту, равную 3 МГц, датчики второй пары - 4 и 6, - равную 1,25 МГц.

Геометрические характеристики h и L дефекта 8 вычисляют по известным значениям времени t распространения ультразвуковых колебаний в исследуемой металлической конструкции, а также угла ввода α:

h=0.5⋅ct⋅t⋅cosα=k1⋅t;

L=0.5⋅ct⋅t⋅sinα=k2⋅t.

где k1, k2 - коэффициенты, учитывающие скорость ct и угол ввода луча α поперечной волны.

Поверхностная трещина определяется по формуле:

где h - глубина дефекта от поверхности;

L - длина дефекта;

V - скорость продольной ультразвуковой волны;

a - расстояние между ультразвуковыми датчиками;

th - время распространения волны.

Для обеспечения плотного прилегания датчика к исследуемой поверхности и обеспечения стабильного ультразвукового сигнала необходимо использовать смазочный материал. Плотное прилегание датчика снижает угол преломления УЗ-волн и обеспечивает более точное измерение.

Преимуществом данного способа является:

все датчики расположены в одной плоскости на внешней стороне исследуемого образца магистрального трубопровода, что значительно облегчает процесс измерения и сокращает время подготовительных работ;

возможность снятия показаний с датчиков, зафиксировав координаты дефектов, непрерывно на протяжении всего испытания, не снимая устройства, не останавливая протекание технологического процесса по всей длине магистрального трубопровода;

универсальность контроля образцов основного металла труб толщиной 6-24 мм;

расстояние между платформами позволяет установить коррозионную ячейку 9 для проведения испытаний роста усталостной трещины в коррозионной среде под действием циклических нагружений;

выбор разных частот работы датчиков исключает возможность наложения волн друг на друга в процессе приема и тем самым обеспечивает более точное исследование дефекта по всей толщине фрагмента;

различные углы ввода волн обеспечивают более широкий захват ширины и глубины сканирования исследуемого фрагмента;

различные углы и частоты излучения волн обеспечивают послойное сканирование всей толщины исследуемого фрагмента;

ультразвуковые волны с меньшей частотой излучения обеспечивают большую глубину проникновения фрагмента.

Использование предлагаемого технического решения позволит по сравнению с прототипом усовершенствовать качество контроля роста усталостных трещин в магистральных трубопроводах, значительно облегчить процесс измерения, а также сократить время подготовительных работ.

Данный вариант способа, приведенный как пример в описании, предназначен для контроля трубы магистрального трубопровода ∅1020-1420 мм. Для магистральных трубопроводов других диаметров необходимо экспериментально-опытным путем подобрать характеристики ультразвуковых датчиков.

Способ контроля роста усталостных трещин магистрального трубопровода, включающий периодические излучения импульсных ультразвуковых колебаний в исследуемый объект с последующим приемом этих колебаний приемником, отличающийся тем, что контроль производят путем одновременной передачи не менее двух сигналов в виде импульсных ультразвуковых колебаний от источников, размещенных в одной плоскости на одной общей платформе, причем сигналы формируют разной частоты и направлены под разными углами к исследуемому объекту, а прием сигналов производят посредствам устройств, смонтированных на второй платформе в той же плоскости, что и источники импульсных ультразвуковых колебаний, при этом платформы располагают в одной плоскости на внешней стороне магистрального трубопровода, измеряют время распространения ультразвуковых колебаний в исследуемом образце и рассчитывают геометрические характеристики усталостных трещин магистральных трубопроводов.



 

Похожие патенты:

Использование: для оценки величин дефектов в тестируемом объекте при ультразвуковом тестировании. Сущность изобретения заключается в том, что выполняют оценку величин дефектов в тестируемом объекте, реализуя следующие этапы: определение (S1) набора данных измерений тестируемого объекта; выполнение (S2) обработки способом фокусировки синтезированной апертуры (SAFT-обработки) определенного набора данных измерений; вычисление (S3) ультразвуковых эхо-сигналов для множества величин дефектов в тестируемом объекте посредством моделирования эхо-сигналов для сценария тестирования; выполнение (S4) SAFT-обработки для вычисленных ультразвуковых эхо-сигналов каждой из множества величин дефектов; оценка (S5) величины дефекта в SAFT-обработке определенного набора данных измерений посредством сопоставления SAFT-обработок вычисленных ультразвуковых эхо-сигналов.

Использование: для неразрушающего контроля степени поврежденности металлов контейнеров с отработавшим ядерным топливом. Сущность изобретения заключается в том, что на поверхность контейнера устанавливают ультразвуковые излучатели и приемники сигналов в равном количестве, которые формируют прямоугольные импульсы с соответствующей шириной, длительностью частотой.

Использование: для обнаружения дефектов ультразвуковыми методами. Сущность изобретения заключается в том, что предварительно в процессе калибровки ультразвукового дефектоскопа на эталонном образце - металлической пластине, имеющей одинаковую с водоводом толщину, геометрию и химический состав и акустически нагруженную на воду, пьезопреобразователем излучают в эталонный образец зондирующий УЗ (ультразвуковой) импульс, пьезопреобразователем принимают отраженный опорный эталонный реверберационный УЗ эхо-сигнал, который регистрируют и фиксируют, далее пьезопреобразователь устанавливают в точку контроля на поверхности металлического водовода, в контролируемый водовод пьезопреобразователем излучают зондирующий УЗ импульс, пьезопреобразователем принимают рабочий УЗ эхо-сигнал, который регистрируют и фиксируют, далее из зарегистрированного рабочего эхо-сигнала вычитают зарегистрированный ранее опорный эталонный реверберационный УЗ эхо-сигнал, полученный в результате вычитания разностный измерительный эхо-сигнал запоминают, а о глубине водяного кармана судят по измеренному времени запаздывания первого импульса разностного измерительного эхо-сигнала относительно зондирующего УЗ импульса.

Использование: для ультразвукового обнаружения микротрещин на рабочей выкружке головки рельса. Сущность изобретения заключается в том, что на поверхности катания рельса устанавливают два электроакустических преобразователя, направленных зеркально относительно плоскости поперечного сечения так, чтобы ультразвуковой зондирующий сигнал каждого из них после отражения от нижней выкружки попадал на верхнюю выкружку головки рельса, зондируют головку рельса, для чего, перемещая электроакустические преобразователи вдоль рельса, излучают каждым из них зондирующие и принимают отраженные от верхней выкружки головки рельса ультразвуковые сигналы в соответствующем временном окне, дополнительно принимают ультразвуковые сигналы, отраженные от нижних выкружек головки рельса в соответствующих временных окнах приема, чувствительность приема каждого электроакустического преобразователя во всех временных окнах приема постоянно выбирают так, чтобы получать сигналы от металлургических неровностей на нижней выкружке головки рельса, заключение о наличии и ориентации микротрещин на верхней выкружке головки рельса производят на основе совместного анализа сигналов, полученных электроакустическими преобразователями.

Использование: для ультразвуковой дефектоскопии. Сущность изобретения заключается в том, что на первом этапе опорный эхо-сигнал электроакустической наводки регистрируется и запоминается в блоке накопителя, при этом для формирования опорного сигнала из материала, идентичного материалу контролируемого образца, изготавливается бездефектный эталонный стандартный образец (СО), бездефектность которого гарантируется применением других методов испытаний, размер контролируемой толщины этого бездефектного эталонного образца выбирается большим, чем максимальная толщина контролируемого объекта, что гарантирует отсутствие каких-либо донных сигналов в пределах контролируемого интервала глубин; далее на втором этапе пьезопреобразователь устанавливается на поверхность контролируемого изделия, регистрируется рабочий эхо-сигнал, который подается на первый вход блока вычитания, на второй вход которого подается сигнал из блока накопителя, а сигнал с выхода блока вычитания подается на индикатор.

Использование: для оценки качества конструкций замкнутого контура с внутренней полостью, изготовленных из полимерных композиционных материалов, например углепластика или стеклоуглепластика.

Изобретение относится к области исследования материалов с помощью ультразвуковых волн акустическими контрольно-измерительными приборами и может быть использовано при неразрушающем контроле материалов и изделий в различных областях промышленности.

Использование: для выявления поперечно ориентированных дефектов при ультразвуковом сканировании изделия с отражающим дном. Сущность изобретения заключается в том, что два многоэлементных ультразвуковых преобразователя размещают на поверхности контролируемого изделия в заранее рассчитанном положении, излучают и фиксируют ультразвуковые эхо-импульсы, восстанавливают множество парциальных изображений, получают изображение дефектов, используя несколько путей от излучающего до приемного преобразователя с отражением от дна и поверхности, суммируют восстановленные парциальные изображения для каждого положения преобразователей.

Использование: для определения точного объема вынесенного металла коррозионных дефектов. Сущность изобретения заключается в том, что способ определения точного объема вынесенного металла коррозионных дефектов состоит из следующих этапов: предварительная загрузка данных о потерях металла; разбиение на зоны в каждой области потери металла с вычислением объема каждой зоны; подсчет объемов во всех зонах областей потерь металла и вычисление общего объема для всего анализируемого участка трубопровода.

Использование: для контроля дефектов. Сущность изобретения заключается в том, что способ контроля дефектов включает в себя: первый процесс формирования ультразвуковых колебаний в поверхности стального листа; второй процесс обнаружения эхо-сигнала F и эхо-сигнала B в ультразвуковых колебаниях; третий процесс корректировки значения обнаружения эхо-сигнала B, обнаруженного на конце стального листа, на основе значения обнаружения эхо-сигнала B, обнаруженного в области общей оценки, причем область общей оценки является областью иной, чем конец стального листа; и четвертый процесс оценивания внутреннего дефекта стального листа на основе значения обнаружения эхо-сигнала F, полученного во втором процессе, и значения обнаружения эхо-сигнала B, скорректированного в третьем процессе на конце стального листа.

Изобретение относится к области исследования механических свойств проводящих и диэлектрических материалов при их обработке и может быть использовано при получении информации в процессе различных работ, связанных с токарной обработкой, сверлением, фрезерованием, шлифованием, прокаткой и другими технологическими операциями. Сущность: осуществляют деформацию материала под воздействием, превышающим уровень его разрушения, прием возникающего при этом электромагнитного излучения антенной в радиодиапазоне и регистрацию принятого сигнала. Скорость деформации определяют по форме нарастания сигналов, по их амплитуде судят о величине разрушения, а по спектру сигналов судят о наличии микронеровностей на обрабатываемой поверхности материала в каждый момент времени. Технический результат: возможность бесконтактно получать дополнительную информацию в электромагнитном диапазоне, корректировать процесс обработки материала без отключения режимов работы всей системы, что увеличивает эффективность технологических операций. 5 ил.

Изобретение относится к неразрушающим методам и средствам дефектоскопии технически сложных элементов конструкции. Сущность: элемент конструкции, к которому есть доступ, нагружают переменной механической нагрузкой и вызывают его перемещения. Измеряют параметры процесса перемещения элемента конструкции, к которому есть доступ. Затем сравнивают с такими же параметрами элемента конструкции, уровень дефектов которой принимают за допустимый. Причем перед нагружением элемента конструкции, к которому есть доступ, устанавливают жесткую связь, обеспечивающую общий резонанс, с элементом конструкции, к которому нет доступа. Устройство содержит возбудитель и приемник свободных колебаний, каждый из которых имеет пьезоэлемент, подключенный к генератору колебаний или индикатору измерений. Возбудитель и приемник свободных колебаний состоят из расчлененных по длине стальных стержней и имеют комплект съемных элементов, которые имеют широкий диапазон рабочих частот. Технический результат: проведение неразрушающей дефектоскопии технически сложных элементов конструкции и осуществление неразрушающей дефектоскопии технически сложных элементов конструкции, находящихся в сборке, к которым нет доступа. 2 н.п. ф-лы, 1 ил.

Использование: для неразрушающего ультразвукового контроля изделий. Сущность изобретения заключается в том, что осуществляют ввод излучающим преобразователем ультразвуковых колебаний в изделие, прозвучивание свода изделия импульсами ультразвуковых колебаний и прием прошедших свод изделия ультразвуковых колебаний в воздушной среде канала изделия устройством с приемным преобразователем, при этом проводят предварительный ультразвуковой контроль изделия известным способом для определения участков, на которых фиксируется прохождение ультразвуковых колебаний через свод изделия, после чего на один из таких участков устанавливают неподвижно излучающий ультразвуковой преобразователь, выбирают акустически непрозрачный участок изделия для определения на нем сплошности скрепления полимерного материала с прилегающей к нему поверхностью корпуса, а также участок изделия, симметричный ему относительно излучающего преобразователя и образующей поверхности изделия, проходящей через место контакта излучающего преобразователя с поверхностью изделия, ориентируют устройство с приемным преобразователем путем поворота и продольного перемещения относительно оси изделия на участок поверхности канала, радиально противоположный выбранному акустически непрозрачному участку, устанавливают уровень сигнала в пределах экрана без ограничения сверху, и при неподвижно установленном излучающем преобразователе сканируют ультразвуковым приемным преобразователем участки поверхности канала изделия, радиально-противоположные выбранному акустически непрозрачному участку и симметричному ему участку, и последовательно сравнивают сигналы на данных участках, выявляя участки, на которых имеет место относительное уменьшение уровня сигнала, после чего аналогичным образом проверяют другие акустически непрозрачные участки. Технический результат: обеспечение возможности, качества, надежности и полноты ультразвукового контроля изделий. 1 ил.

Изобретение относится к области испытания конструкции на воздействие подводной ударной волны и может быть использовано для регистрации сотрясений на элементах подводного аппарата при воздействии подводной ударной волны. Сущность: емкость наполняют водой, размещают в ней подводный аппарат с регистратором и подрывают заряд взрывчатого вещества. Заряд взрывчатого вещества располагают в воздухе над поверхностью воды, взрывают его, создавая воздушную ударную волну, которая при взаимодействии с поверхностью воды генерирует подводную ударную волну, покрывающую поверхность корпуса подводного аппарата. Поверхность емкости выстилают водонепроницаемой прослойкой, акустическое сопротивление которой меньше акустического сопротивления воды, а информацию о сотрясениях на элементах насыщения подводного аппарата фиксируют регистратором в режиме реального времени. Технический результат: расширение функциональных возможностей за счет создания в лабораторных условиях возможности для изучения сотрясений на элементах внутреннего насыщения полномасштабного подводного аппарата во время воздействия подводной ударной волны при использовании емкости с водой малых размеров, соизмеримых с ПА. 1 ил.

Использование: для контроля технического состояния магистральных нефтепроводов в процессе их эксплуатации. Сущность изобретения заключается в том, что для стопроцентного контроля всего сечения трубы на дефектоскопе устанавливают большое количество ультразвуковых преобразователей. Ультразвуковые преобразователи сдвигают относительно друг друга вдоль оси дефектоскопа, при этом сдвиг может составить до 700 мм. Для того чтобы иметь возможность анализировать информацию, зарегистрированную ими в одном сечении трубы, в буферной памяти должна храниться вся информация, зарегистрированная всеми ультразвуковыми преобразователями при перемещении дефектоскопа на расстояние не менее двойного расстояния между первым по ходу движения ультразвуковым преобразователем и последним. В заявляемом способе предлагается записывать в бортовой накопитель информацию, зарегистрированную на заданном расстоянии до появления признака выявления продольного сварного шва и после его окончания. Размер зоны записи должен быть не меньше 150 мм. Технический результат: повышение достоверности выявления сварных швов в процессе внутритрубного ультразвукового контроля. 5 з.п. ф-лы, 4 ил.

Использование: для дефектоскопии листов, плит и других изделий двухсторонним доступом в металлургической, машиностроительной областях промышленности. Сущность изобретения заключается в том, что излучают с одной стороны контролируемого изделия импульсы ультразвуковых колебаний, принимают с противоположной стороны изделия первый сквозной и двукратно отраженный сквозной импульсы, а также эхо-импульсы ультразвуковых колебаний, отраженных от дефекта, сканируют изделие по всей площади, обеспечивая соосность излучающего и приемного электроакустических преобразователей, анализируют огибающие амплитуд ультразвуковых колебаний первого прошедшего (сквозного) импульса и эхо-сигналы от дефекта во временном интервале между первым и вторым сквозными импульсами, дополнительно считывают координаты уменьшения прошедших через изделие сквозных импульсов, повышают чувствительность приема сигналов во временном интервале между первым и вторым сквозными импульсами, измеряют временной интервал между первым сквозным импульсом и первым эхо-сигналом от дефекта, по измеренным значениям определяют местоположение и глубину залегания дефекта. Технический результат: повышение достоверности ультразвукового контроля изделий. 5 ил.

Использование: для автоматизированного неразрушающего контроля резервуаров для хранения нефти и нефтепродуктов. Сущность изобретения заключается в том, что предложено устройство для автоматизированного неразрушающего контроля металлической конструкции, содержащее ультразвуковой блок неразрушающего контроля, блок неразрушающего контроля на основе метода утечки магнитного поля, вихретоковый блок неразрушающего контроля, управляющий блок, соединенный с указанными ультразвуковым блоком неразрушающего контроля, блоком неразрушающего контроля на основе метода утечки магнитного поля и вихретоковым блоком неразрушающего контроля для отправки управляющих сигналов для осуществления контроля металлической конструкции, и блок навигации, соединенный с управляющим блоком управления и выполненный с возможностью определения положения указанного устройства для автоматизированного неразрушающего контроля относительно металлической конструкции и состояния поверхности контролируемой металлической конструкции и направления сигналов с информацией о положении указанного устройства для автоматизированного неразрушающего контроля и состоянии поверхности контролируемой металлической конструкции в управляющий блок, причем все указанные блоки установлены во взрывозащищенном корпусе, имеющем средства перемещения по поверхности контролируемой металлической конструкции, управляющий блок выполнен с возможностью направления управляющих сигналов одновременно на по меньшей мере один блок из числа указанных ультразвукового блока неразрушающего контроля, блока неразрушающего контроля на основе метода утечки магнитного поля и вихретокового блока неразрушающего контроля на основе сигналов, полученных от блока навигации, а блок неразрушающего контроля на основе метода утечки магнитного поля выполнен с возможностью изменения индукции магнитного поля, создаваемого этим блоком, от минимального значения, близкого к нулю, до заданного максимального значения. Технический результат: обеспечение возможности создания устройства для автоматизированного неразрушающего контроля металлических конструкций, которое может осуществлять точный контроль различных видов металлических конструкций, включая металлические конструкции, имеющие препятствия на своей поверхности, например, в виде стыков составляющих их пластин, а также которое может работать в автоматическом или полуавтоматическом режиме. 3 н. и 11 з.п. ф-лы, 7 ил.

Использование: для локального ультразвукового неразрушающего контроля качества труб. Сущность изобретения заключается в том, что акустический блок содержит сканирующий узел с основанием с опорными роликами, которое связано штоками с корпусом, в котором размещены демпфер, ультразвуковой эхо-пьезопреобразователь, локальная ванна для иммерсионной жидкости (воды). На внешней нижней поверхности корпуса выполнена локальная ванна. Сверху каждого выступа выполнены глухие отверстия, сопряженные с шаровыми опорами штоков, связанных с основанием. Ультразвуковой эхо-пьзопреобразователь подключен к ультразвуковому дефектоскопу, включающему в себя генератор импульсов возбуждения, синхронизатор, генератор развертки, электроннолучевую трубку, усилитель, автоматический сигнализатор дефектов. Пьезоэлемент эхо-преобразователя соединен с электронно-лучевой трубкой посредством: первой электроцепи через генератор импульсов возбуждения - синхронизатор - генератор развертки и второй электроцепи через усилитель - автоматический сигнализатор дефектов. Указанное основание выполнено в виде листового упругого элемента, установленного передним концом на ось переднего ролика, а задним концом на ось двух разнесенных задних роликов меньшего диаметра, чем передний ролик. Передний шток выполнен в виде маятникового рычага, верхняя его шаровая опора присоединена к кронштейну на основании, а нижняя - размещена в переднем выступе на корпусе. Задний шток является телескопической пружинной стойкой, верхний конец которой соединен поперечной осью с упругим элементом, а нижний конец - с выступом на корпусе. Ось пружинной стойки перпендикулярна оси листового упругого элемента в исходном положении акустического блока. Передний шток снабжен выступом с возможностью упора в листовой упругий элемент, а на основании установлена накладка для провода к пьезоэлементу и патрубка питания эхо-преобразователя иммерсионной жидкостью. Задний конец листового упругого элемента (основания) выступает консольно за пределы оси задних роликов и жестко соединен с одним концом рукоятки. Технический результат: повышение точности исследований труб разного диаметра. 1 з.п. ф-лы, 4 ил.

Использование: для определения характеристик небольших объектов, имеющих поверхность, которая искривлена в плоскости сечения. Сущность изобретения заключается в том, что выполняют по меньшей мере одно наблюдение ультразвука, проходящего через объект, причем каждое наблюдение выполняют на оси, перпендикулярной плоскости симметрии, причем каждое наблюдение получают в результате излучения ультразвука, формируемого вдоль соответствующей одной из упомянутых осей и падающего на объект вдоль упомянутой оси под углом падения, отличным от нормального, причем ультразвук падает на объект таким образом, чтобы следовать по пути, который является симметричным относительно плоскости симметрии, причем время пролета ультразвуковой волны и/или положение оси, на которой выполняются излучение и наблюдение, анализируют для описания характеристик объекта. Технический результат: обеспечение возможности определять характеристики маленького объекта. 8 з.п. ф-лы, 10 ил.

Использование: для ультразвукового контроля профиля внутренней поверхности изделия в зоне сварного соединения. Сущность изобретения заключается в том, что две антенные решетки размещают на поверхности контролируемого изделия на оптимальном расстоянии между собой с двух сторон от сварного соединения, регистрируют отраженные от донной поверхности ультразвуковые эхо-импульсы, восстанавливают множество парциальных изображений, получают изображение профиля донной поверхности, по которому находят таблицу значений толщины контролируемого изделия в каждой точке области восстановления. Технический результат: повышение точности определения профиля внутренней поверхности изделия. 3 ил.
Наверх