Стенд для диагностирования сайлентблоков подвески автотранспортных средств

Изобретение относится к испытательной технике и может быть использовано для технического осмотра автотранспортных средств. Стенд для диагностирования сайлентблоков подвески автотранспортных средств включает электродвигатель, соединенный с гидронасосом, гидробак, рычаг с испытуемым сайлентблоком и устройство для перемещения рычага. Устройство для перемещения рычага выполнено в виде кривошипно-шатунного механизма, установленного с возможностью изменения радиуса кривошипа и длины шатуна. Шатун закреплен к платформе, установленной с возможностью перемещения по вертикали по направляющим. Платформа снабжена датчиком перемещения и согласующим устройством, установленным с возможностью перемещения по горизонтали. На согласующем устройстве жестко закреплен датчик силы, соединенный через шаровой шарнир с рычагом. Датчики силы и перемещения соединены с аналого-цифровым преобразователем, подключенным к электронно-вычислительной машине. Кривошипно-шатунный механизм через редуктор и гидромотор соединен с гидронасосом. Достигается повышение точности и оперативности диагностирования и снижение вероятности постановки ложных диагнозов. 1 ил.

 

Предлагаемое изобретение относится к испытательной технике и может быть использовано в автотранспортных и авторемонтных предприятиях, фирменных и сервисных центрах, на предприятиях, осуществляющих технический осмотр автотранспортных средств.

Известен стенд для испытания элементов подвески автотранспортных средств, содержащий станину со стойками, испытуемые узлы и детали подвески, механизм нагружения элементов подвески автотранспортного средства (см. RU 2366919 C1, G01M 17/04, опубл. 10.09.2009).

Недостатком данного стенда является отсутствие возможности диагностирования сайлентблоков подвески автотранспортных средств.

Известен стенд для испытания подвески транспортного средства, который производит силовое воздействие через кривошипно-шатунный механизм на амортизатор. По декременту затухающих амплитуд рассчитывается параметр сопротивления амортизатора (см. RU 37215 U1, G01M 17/04, опубл. 10.04.2004).

Недостатком данного стенда является то, что в процессе диагностирования он не позволяет получать силовые характеристики сайлентблоков и не в полной мере позволяет имитировать нагрузки, характерные для реальных условий эксплуатации.

Известен стенд для испытания элементов подвески автотранспортных средств, предусматривающий имитацию эксплуатационных условий работы деталей подвески и активной демпфирующей системы автотранспортных средств (RU 115910 U1, G01M 17/04, опубл. 10.05.2012).

Недостатком является отсутствие возможности диагностирования сайлентблоков подвески автотранспортных средств.

Наиболее близким по технической сущности и достигаемому техническому результату к предлагаемому изобретению является стенд для испытания элементов передней подвески легковых автомобилей, содержащий станину, электродвигатель, блок управления, поворотный кулак, поперечный рычаг, пружину, гидравлический привод с горизонтальным гидроцилиндром, направляющий элемент с возможностью поворота цилиндра относительно штока, клапан регулирования потока и вертикальный гидроцилиндр (см. RU 2483287 C2, G01M 17/04, опубл. 27.05.2013).

Недостатком данного стенда является то, что он не позволяет определить динамические свойства сайлентблоков, что снижает точность и оперативность диагностирования.

Заявленное изобретение направлено на решение технической задачи, заключающейся в определении неисправности сайлентблоков подвески автотранспортных средств.

Технический результат предлагаемого изобретения - повышение точности и оперативности диагностирования, снижение вероятности постановки ложных диагнозов, которые во многом зависят от квалификации оператора, установка неисправностей, возникающих в сайлентблоках, не имеющих ярко выраженных проявлений (разрывы, отслоения и т.п.), но влияющих на их выходные характеристики (снижение жесткости).

Для достижения указанного технического результата в стенде для диагностирования сайлентблоков подвески автотранспортных средств, включающем электродвигатель, соединенный с гидронасосом, гидробак, рычаг с испытуемым сайлентблоком, устройство для перемещения рычага, согласно изобретению устройство для перемещения рычага выполнено в виде кривошипно-шатунного механизма, установленного с возможностью изменения радиуса кривошипа и длины шатуна, последний закреплен к платформе, установленной с возможностью перемещения по вертикали по направляющим, платформа снабжена датчиком перемещения и согласующим устройством, установленным с возможностью перемещения по горизонтали, на согласующем устройстве жестко закреплен датчик силы, соединенный через шаровой шарнир с рычагом, датчик силы и датчик перемещения соединены с аналого-цифровым преобразователем, подключенным к электронно-вычислительной машине, при этом кривошипно-шатунный механизм через редуктор и гидромотор соединен с гидронасосом.

Отличительными признаками заявляемого стенда являются новое выполнение конструктивного элемента, а именно устройства для перемещения рычага в виде кривошипно-шатунного механизма, наличие нового конструктивного элемента, а именно согласующего устройства с датчиком силы.

Выполнение устройства для перемещения рычага в виде кривошипно-шатунного механизма позволяет определить величину статистического нагружения путем изменения радиуса кривошипа и длины шатуна, что обеспечивает повышение точности и оперативности диагностирования. С помощью преобразователя частоты напряжения изменяется скорость вращения кривошипно-шатунного механизма, что позволяет определить величину динамического нагружения. Это позволяет установить неисправности, возникающие в сайлентблоках, не имеющие ярко выраженных проявлений, но влияющие на их выходные характеристики. Установка согласующего устройства обеспечивает согласование кинематики возвратно-поступательно движения платформы и криволинейного движения рычага, что позволяет снять характеристики сайлентблоков, близкие к реальным условиям эксплуатации, и снизить вероятность постановки ложных диагнозов.

Сущность заявляемого изобретения поясняется чертежом, где изображена принципиальная схема заявляемого диагностического стенда.

Стенд для диагностирования сайлентблоков подвески автотранспортных средств содержит преобразователь 1 частоты напряжения, соединенный с электродвигателем 2, подключенным к гидронасосу 3. Гидронасос 3 соединен с гидробаком 4 и гидромотором 5. Гидромотор 5 через редуктор 6 соединен с кривошипно-шатунным механизмом, содержащим кривошип 7 и шатун 8. Кривошип 7 снабжен пазом 9 для изменения радиуса кривошипа. Шатун 8 содержит винтовой механизм 10 и прикреплен к платформе 11, установленной с возможностью перемещения по вертикали по направляющим 12. Платформа 11 снабжена согласующим устройством 13, установленным с возможностью перемещения по горизонтали, соединенным с датчиком перемещения 14. На согласующем устройстве 13 жестко закреплен датчик силы 15, соединенный через шаровой шарнир 16 с рычагом 17. В составе рычага 17 находится впрессованный испытуемый сайлентблок. Датчики 14 и 15 соединены с аналого-цифровым преобразователем 18, подключенным к электронно-вычислительной машине 19.

Стенд для диагностирования сайлентблоков подвески автотранспортных средств работает следующим образом.

Через преобразователь 1 частоты напряжения запускают электродвигатель 2, приводящий в действие гидронасос 3, который засасывает масло из гидробака 4. Масло из насоса 3 под давлением подается к гидромотору 5, передающему крутящий момент редуктору 6. Редуктор 6 приводит в действие кривошипно-шатунный механизм. Угол закручивания сайлентблока в составе рычага 17 регулируют изменением радиуса кривошипа 7 при помощи паза 9 и длины шатуна 8 винтовым механизмом 10, который определяет величину статистического нагружения. Преобразователь 1 частоты напряжения позволяет изменять частоту вращения электродвигателя 2, следовательно, частоту динамического нагружения. Для согласования кинематики возвратно-поступательного движения платформы 11 и криволинейного движения рычага 17 и снятия характеристик сайлентблоков используют согласующее устройство 13 с датчиком силы 15. Датчик силы 15 измеряет усилие, развиваемое в сайлентблоке в зависимости от перемещения. Перемещение измеряется датчиком перемещения 14. Сигналы с датчиков 14 и 15 поступают в аналого-цифровой преобразователь 18, где поступившие сигналы кодируются и передаются в электронно-вычислительную машину 19. Электронно-вычислительная машина 19 строит график зависимостей усилия в сайлентблоке от угла поворота рычага 17. Полученные характеристики сохраняют на электронно-вычислительной машине 19 в виде файлов и сравнивают с исправными сайлентблоками. Также возможно диагностирование сайлентблоков непосредственно на самом автомобиле.

Работа данного стенда позволит:

- получать характеристики сайлентблоков в зависимости от усилия и от величины закручивания сайлентблоков для определения технического состояния сайлентблоков в процессе эксплуатации;

- создать возвратно-поступательное движение рычага, обеспечивая тем самым закручивание и циклические нагружения сайлентблоков, адекватно реальным условиям нагружения;

- увеличить диапазон величин и частоты приложения динамических нагрузок при помощи плавного изменения частоты вращения кривошипно-шатунного механизма;

- изменять статическую нагрузку при помощи изменения радиуса кривошипа и длины шатуна.

Стенд для диагностирования сайлентблоков подвески автотранспортных средств, включающий электродвигатель, соединенный с гидронасосом, гидробак, рычаг с испытуемым сайлентблоком и устройство для перемещения рычага, отличающийся тем, что устройство для перемещения рычага выполнено в виде кривошипно-шатунного механизма, установленного с возможностью изменения радиуса кривошипа и длины шатуна, последний закреплен к платформе, установленной с возможностью перемещения по вертикали по направляющим, платформа снабжена датчиком перемещения и согласующим устройством, установленным с возможностью перемещения по горизонтали, на согласующем устройстве жестко закреплен датчик силы, соединенный через шаровой шарнир с рычагом, датчик силы и датчик перемещения соединены с аналого-цифровым преобразователем, подключенным к электронно-вычислительной машине, при этом кривошипно-шатунный механизм через редуктор и гидромотор соединен с гидронасосом.



 

Похожие патенты:

Группа изобретений относится к области испытаний автотранспортных средств, а именно к испытаниям на статическую поперечную устойчивость транспортного средства. Способ испытания транспортного средства включает размещение транспортного средства на опорной горизонтальной поверхности и приложение к нему усилия.

Изобретение относится к области испытательной техники, в частности к способам проведения однонаправленных испытаний на износ динамическим способом для определения механического ресурса шаровых шарниров передней подвески легкового автомобиля.

Стенд содержит основание, направляющие, привод, устанавливаемые с возможностью замены друг на друга кривошипно-ползунный механизм или сменные эксцентрики различных форм и размеров, предназначенные для имитации условий эксплуатации и контактирующие с роликом, устройство регулировки амплитуды колебаний, верхнюю и нижнюю плиты с фиксаторами и опорами для крепления гасителя, съемные упругие элементы, пластину с грузом, силоизмерительное устройство, П-образный корпус крепления верхней головки шатуна или ролика, контактирующего с эксцентриком.

Изобретение относится к области технической диагностики и контроля технического состояния транспортных средств и предназначено, в частности, для контроля за состоянием сочленений элементов подвески транспортного средства.

Изобретение относится к испытательной технике. .

Изобретение относится к средствам диагностики колеса воздушного судна. .

Изобретение относится к способам определения эффективности амортизаторов транспортных средств. .

Изобретение относится к устройствам для испытания амортизаторов. .

Изобретение относится к устройствам для испытания транспортных средств, в частности к устройствам для испытания подвески транспортного средства с пневматическими шинами.

Изобретение относится к области испытаний амортизаторов и может быть использовано при проектировании вибрационной защиты различных технических систем и устройств.

Изобретение относится к стендам с беговыми барабанами для моделирования работы шины и подвески. Малогабаритный стенд для исследования подвесок автомобилей содержит раму, закрепленную на бетонном основании с помощью амортизаторов и фундаментных болтов. Параллелограммный механизм с верхней опорной поворотной рамой с грузами закреплен на вертикальной стенке стенда. Гидронасосная станция, пневмогидравлический аккумулятор и гидрораспределитель установлены на основании стенда. Нижняя опорная поворотная рама с установленными на ней барабанами шарнирно закреплена на основании стенда. Гидроцилиндр нижним концом шарнирно закреплен на вертикальной стойке. Барабаны выполнены со сменными имитаторами неровностей с соответствующими параметрами - высотой hпр и шириной lпр - в количестве от 1 и более штук. Усилие предварительного нагружения на колеса создается с помощью гидроцилиндров и необходимых по массе грузов, закрепленных с помощью шпилек на верхней поворотной опорной раме. Имитация поперечного и продольного уклонов дороги осуществляется установкой нижней и верхней опорной поворотной рамы на углы соответственно α и β. Достигается обеспечение мобильности, универсальности, приближение исследования к реальным условиям эксплуатации, снижение стоимости и упрощение конструкции стенда. 2 ил.

Изобретение относится к испытательной технике. Стенд содержит станину со стойками, силовой гидроцилиндр и пульт управления. На стойках в элементах крепления установлены нижняя балка, имитирующая неподрессоренную массу, и верхняя балка, имитирующая подрессоренную массу. Обе балки установлены с возможностью вращения относительно своего центра. На верхней балке с обеих сторон установлены грузы с возможностью их перемещения относительно центра балки. На верхней балке установлен датчик угловых и линейных скоростей и ускорений, соединенный с входом токового ключа. С обеих сторон на концах балок установлены кронштейны, между которыми расположены демпфирующие элементы в виде резинокордной оболочки, соединенные через электромагнитный клапан с установленным на станине компрессором. К нижней балке шарнирно присоединен шток силового гидроцилиндра, соединенный с пультом управления. На верхней балке в местах крепления подвески закреплены датчики, измеряющие вибрацию подрессоренной массы. Между станиной и неподрессоренной массой закреплены датчики относительных перемещений ее относительно станины. Сигналы с датчиков поступают на усилитель сигналов, а с него на анализатор спектров входного и выходного воздействий на систему подвески и затем на пульт управления. Достигается расширение функциональных возможностей стенда. 1 ил.
Наверх