Устройство для рассеивания тумана

Изобретение относится к области техники, предназначенной для рассеивания тумана на контролируемой территории (аэродромы, скоростные автодороги, открытые площадки для проведения различных спортивных и зрелищных мероприятий и т.д.), где необходимо выполнение требований по прозрачности атмосферы и обеспечению дальности видимости. Устройство содержит установленный с зазором относительно заземленной поверхности и соединенный с источником электропитания (7) электрод (6), выполненный в виде гладкой, с положительной кривизной поверхности оболочки. Заземленная поверхность выполнена в виде окружающей электрод (6) сетчатой оболочки (4). Обеспечивается повышение эффективности рассеивания тумана. 3 ил.

 

Изобретение относится к области техники, предназначенной для рассеивания тумана на контролируемой территории (аэродромы, скоростные автодороги, открытые площадки для проведения различных спортивных и зрелищных мероприятий и т.д.), где необходимо выполнение требований по прозрачности атмосферы и обеспечению выполнения требований по обеспечению дальности видимости.

В патентах на изобретения: RU №2357404, опубл. 10.06.2009 г., RU №2175185, опубл. 27.10.2001 г., RU №2061358, опубл. 10.06.1996 г., предлагаются способы рассеивания туманов, основанные на искусственной конденсации паров воды путем использования специальных веществ (реагентов). Доставку реагентов и их распространение в тумане или облачности предлагается осуществлять различными способами, например с самолетов (см., например, патент США №2815928, МПК A01G 15/00, опубл. 10.12.1957 г.), с помощью ракет (см., например, авторское свидетельство СССР №576839, МПК A01G 15/00), снарядов (см., например, Российская Федерация, патент №2034444, МПК 6 A01G 15/00, опубл. 10.05.1995 г.). Известные методы предполагаются для использования по рассеиванию переохлажденных туманов (туманов, образуемых в условиях отрицательных температур окружающего воздуха). Теплые же туманы являются устойчивыми, и данных по их применению для рассеивания теплых туманов в литературных источниках не обнаружено.

Известны способы электрического воздействия, основанные на генерации в аэрозольном облаке коронного разряда (см., например, авторское свидетельство СССР №71260, МПК A01G 15/00, опубл. 31.07.1948 г., патент США №3456880, МПК A01G 15/00, опубл. 22.07.1969 г. Л.Г. Качурин "Физические основы воздействия на атмосферные образования", Гидрометеоиздат, Ленинград, 1978 г., стр. 287-293). Как следует из приведенных источников информации, определяющим фактором рассеивания тумана в известном способе является пространственный заряд, воздействующий на атмосферные образования.

В патенте РФ на изобретение RU №2422584 описан способ рассеивания тумана, который предусматривает определение направления распространения тумана относительно защищаемого объекта. Генерацией коронного разряда с наветренной относительно защищаемого объекта стороны формируют поток заряженных частиц, ориентированный в сторону, направленную на защищаемый объект. Генерация коронного разряда осуществляется путем формирования неоднородного электрического поля на острых кромках поверхности коронирующего электрода. Реализация данного способа может быть осуществлена с помощью устройства, представленного в патенте РФ на изобретение RU №2124288 С1, кл. Е01Н 13/00, 19.12.1997 г., опубл. 10.01.1999 г., бюл. №1. Устройство содержит подсоединенные к источнику тока провода с малым радиусом кривизны поверхности, закрепленные на изоляторах опор параллельно электропроводной сетке, смонтированной в вертикальной плоскости, проходящей через оси симметрии смежных опор. Генерируемый коронирующими проводами коронный разряд создает ионный ветер, который направлен от коронирующих проводов к заземленной сетке. Облако тумана, проходя через область коронного разряда, получает электрический заряд и ионным ветром, а также внешним ветровым потоком направляется на заземленную сетку. Проходя через ячейки заземленной сетки, электрически заряженные капли тумана сепарируются от ветрового потока и очищенный от тумана ветровой поток направляется в область защищаемого от тумана пространства. Известное техническое решение обеспечивает сепарацию капель тумана из набегающего на защищаемый объект воздушного потока. Очищенный от капель тумана воздушный поток обладает хорошей оптической прозрачностью и обеспечивает необходимую дальность видимости. Сепарация капель тумана в известном техническом решении осуществляется в два этапа: на первом этапе в области горения коронного разряда производят электрическое заряжание капель тумана; на втором этапе электрически заряженные капли сепарируются на заземленной поверхности. Эффективность сепарации капель в известном техническом решении определяется устойчивостью горения коронного разряда, которая может быть обеспечена в условиях высокой точности зазора разрядного промежутка по всей площади устройства, что является сложной технологической задачей. Кроме того, генерация коронного разряда - достаточно энергоемкий энергетический процесс и требует значительных эксплуатационных затрат.

Наиболее близким техническим решением к заявляемому является устройство для рассеивания тумана, представленное в патенте РФ на изобретение RU №2534568 С1, МПК A01G 15/00.

Известное устройство для рассеивания тумана содержит установленный с зазором относительно заземленной поверхности, соединенный с источником электропитания ивыполненный в виде оболочки с гладкой поверхностью, радиус кривизны которой не менее нуля, электрод с зазором относительно внутренней поверхности которого, через диэлектрическую обкладку установлена заземленная обкладка.

В известном устройстве энергия формируемого устройством электрического поля используется напрямую для удаления капель тумана из контролируемого пространства. Энергия не тратится на генерацию коронного разряда и формирование в окружающем пространстве электрически заряженных частиц. Энергия электрического поля обеспечивает в окружающем пространстве поляризацию капель тумана, и вследствие его неоднородности осуществляет движение поляризованных капель в сторону увеличения градиента электрического поля. Эффективность рассеивания тумана, определяемая энергией электрического поля, формируемого электрически заряженным электродом в тумане, в известном устройстве ограничена значением подаваемого на электрод напряжения.

Целью предлагаемого изобретения является повышение эффективности рассеивания тумана.

Для достижения заявленной цели в известном устройстве, содержащем установленный с зазором относительно заземленной поверхности и соединенный с источником электропитания электрод, выполненный в виде гладкой, с положительной кривизной поверхности оболочки, заземленная поверхность выполнена в виде окружающей электрод сетчатой оболочки.

Технический результат достигается за счет того, что выполнение заземленной поверхности в виде окружающей электрод сетчатой оболочки не препятствует прохождению тумана в зазоре между электрически заряженным электродом и заземленной поверхностью и, с другой стороны, обеспечивает повышение электрической емкости электрода. Значение электрического заряда, накапливаемого на обращенной к туману поверхности электрода, вследствие повышения его электрической емкости повышается и, как следствие, повышается значение электрической энергии электрического поля, формируемого электрически заряженным электродом в тумане. Повышается мощность воздействия устройства на туман и повышается эффективность его рассеивания.

На рис.1а и рис.1b представлена принципиальная схема предлагаемого устройства. Устройство включает в себя смонтированные на опорах 1 соединенные между собой тросами 2 кольца 3. Тросы 2, натянутые между кольцами 3, выполняют роль каркаса, поверх которого закреплена электропроводная заземленная сетчатая оболочка 4. Внутри колец 3 через электрические изоляторы 5 смонтирован электрод 6, соединенный с источником электрического питания 7. Количество натянутых тросов 2 определяется жесткостью электропроводной сетчатой оболочки и выбирается из условия обеспечения равномерности зазора между электропроводной заземленной сетчатой оболочкой 4 и электродом 6. Между электродом 6 и натянутыми тросами 2 или непосредственно между электродом 6 и заземленной электропроводной сетчатой оболочкой 4 для обеспечения устойчивости заземленной электропроводной сетчатой оболочки 4 могут быть установлены дополнительные электрические изоляторы 5. Для свободного прохождения тумана через электропроводную сетчатую оболочку 4 площадь каждой ячейки сетки должна быть не менее 20 мм2. Конструкция заземленной электропроводной сетчатой оболочки 4 должна быть выполнена из гладких элементов с минимальным радиусом их внешней поверхности не менее 1 мм. Например, она может быть выполнена в виде сетки из проволоки диаметром не менее 2 мм с ячейкой порядка 5 мм × 5 мм, без каких-либо повреждений в виде неровностей или царапин с радиусом выступающих поверхностей менее 1 мм.

На рис.2 представлен вариант схемы предлагаемого устройства, выполненного в виде аэростата, подвешиваемого над поверхностью земли. Для удобства представления описания позиции составных элементов конструкции, выполняющих одинаковые функции с устройством по схеме, представленной на рис.1а и рис.1b, обозначены одними и теми же цифрами.

Устройство представляет собой электрод 6, выполненный в виде накачанной избыточным давлением легче воздуха и покрытой электропроводным материалом оболочки. Оболочка 6 выполнена в виде гладкой регулярной поверхности с положительным радиусом кривизны поверхности. Гладкость и регулярность поверхности оболочки 6 с положительным радиусом кривизны поверхности может быть обеспечена за счет соответствующей выкройки материала, изготовления оболочки из упругих деформируемых тканей (типа прорезиненных материалов) и поддержания ее формы внутренним избыточным давлением газа легче воздуха. Электрически изолированно, например, на изоляторах 5 с зазором 5 относительно поверхности электрода 6 смонтирована электропроводная заземленная сетчатая оболочка 4, заземление которой может быть осуществлено через удерживающие тросы 8. Высоковольтный источник питания 7 соединен с электродом 6 и может быть смонтирован в зазоре между электродом 6 и электропроводной заземленной сетчатой оболочкой 4.

Предлагаемое устройство работает следующим образом.

При подаче от источника питания 7 на электрод 6 высокого напряжения на его поверхности накопится электрически заряд. Величина накопленного электрического заряда будет определяться напряжением источника питания 7 и электрической емкостью электрода 6. Электрод 6, соединенный с высоковольтным источником питания 7, в предлагаемой конструкции окружен заземленной электропроводной сетчатой оболочкой 4 и является одним из электродов цилиндрического конденсатора. Электрическая емкость образованного конденсатора может быть увеличена путем уменьшения зазора между электродом 6 и заземленной электропроводной сетчатой оболочкой 4. Конструкция заземленной электропроводной сетчатой оболочки 4 выполнена из гладких элементов, поверхность электрода 6 выполнена в виде в виде гладкой оболочки. Исключается вероятность образования коронных разрядов. Уменьшение зазора может быть выполнено до минимальных значений, определяемых электрической прочностью влажного воздуха, что обеспечивает накопление на поверхности электрода 6 значительного электрического заряда. Электрический заряд в окружающем его пространстве формирует неоднородное электрическое поле, значение которого пропорционально величине заряда. Так как поверхность электрода гладкая, в окружающем электрод пространстве силовые линии, а, следовательно, и энергии формируемого электрического поля, будут распределены по всему окружающему электрод пространству между электродом и заземленной поверхностью. Капли тумана, находящиеся в электрическом поле, поляризуются и вследствие неоднородности электрического поля втягиваются в сторону увеличения его градиента. Таким образом, электрически нейтральные капли тумана притягиваются к электрически заряженному электроду. При соприкосновении с электрически заряженным электродом капли тумана получают электрический заряд того же знака, что и электрод, и электрическим полем выносятся по силовым линиям электрического поля в направлении к заземленной поверхности. Электрически заряженный электрод формирует направленное движение капель через ячейки в заземленной электропроводной сетчатой оболочке 4 в окружающее пространство. Таким образом, капли тумана вытесняются из окружающего заземленную электропроводную сетчатую оболочку 4 и на пути своего движения сталкиваются с другими каплями, сливаются с ними, укрупняются и под действием силы тяжести падают вниз, обеспечивая рассеивание тумана в проходящем в окрестности предлагаемого устройства рассеивания тумана воздушном потоке.

Таким образом, предложенное решение благодаря новым, ранее неизвестным признакам, позволяет решить задачу повышения электрической емкости электрода, объема накапливаемого на его поверхности электрического заряда, без увеличения напряжения на источнике питания. Повышается мощность действующего на туман электрического поля, что обеспечивает повышение эффективности рассеивания тумана и позволяет достичь цели предлагаемого изобретения.

Изобретение создано при поддержке РФФИ. Проекты NN14-08-00835, 15-08-04724.

Устройство для рассеивания тумана, содержащее установленный с зазором относительно заземленной поверхности и соединенный с источником электропитания электрод, выполненный в виде гладкой, с положительной кривизной поверхности оболочки, отличающееся тем, что заземленная поверхность выполнена в виде окружающей электрод сетчатой оболочки.



 

Похожие патенты:

Группа изобретений предназначена для жизнеобеспечения пилотируемых космических полетов на Марс. Физико-химическая секция предназначена для получения кислорода, воды, оксида углерода, аммиака и удобрений на основе азота.

Способ воздействия на облака относится к метеорологии. Охлаждают пары воды путем их пересечения в атмосфере с потоком паров жидкого азота (2), выпускаемых с воздушного аппарата (1).

Изобретение относится к твердым ракетным топливам, используемым в изделиях для активного воздействия на облака при борьбе с градом и грозами, стимулирования и интенсификации осадков, рассеивания облаков и туманов.

Изобретение относится к области экологии и, в частности, к способам борьбы с парниковым эффектом, образующимся в результате влияния промышленных выбросов в атмосферу при сжигании углеводородного топлива.

Изобретение может быть использовано для активного воздействия на атмосферу с целью рассеивания туманов и облаков на контролируемой территории (аэродромы, скоростные автодороги, открытые площадки для проведения различных спортивных и зрелищных мероприятий и т.д.) и вызывания дополнительных осадков.

Изобретение относится к области воздействия на атмосферу. Устройство инициирования осадков в атмосфере выполнено из двух разнородных источников ионизации молекул воздуха в охватываемом рабочем объеме.

Изобретение относится к технологии создания зеленых городских лесозащитных зон. Создают технологические парки (2) и технологические скверы (3), расположенные рядом с открытыми автомобильными стоянками и над закрытыми подземными гаражами-стоянками.
Изобретение относится к сфере космических исследований. Осуществляют распыление водяного пара в атмосфере Марса.
Изобретение относится к сфере космических исследований и технологий и может быть использовано для изучения вулканического состояния Марса. На Марсе осуществляют вскрытие бурением закупоренных фумарол.

Изобретение относится к пиротехническим составам для изменения атмосферных условий путем искусственного регулирования осадков в результате генерирования искусственных ионов термоионизационным способом из пиротехнической смеси.

Изобретение относится к области техники, предназначенной для рассеивания тумана на контролируемой территории (аэродромы, скоростные автодороги, открытые площадки для проведения различных спортивных и зрелищных мероприятий и т.д.), где необходимо выполнение требований по прозрачности атмосферы и обеспечению дальности видимости. Устройство содержит соединенные с источником электрического питания (5) цилиндрические электроды (4). В промежутках между электродами, с зазором относительно их поверхности, установлены заземленные элементы (7), покрытые пористым с открытыми порами материалом. Обеспечивается повышение эффективности рассеивания тумана. 1 з.п. ф-лы, 2 ил.
Изобретение относится к модификации параметров космической среды, а также предназначено для экспериментальной наземной отработки в искусственной среде. Для прогрева атмосферы Марса локально нагревают марсианскую залежь природных карбонатов путем концентрирования солнечных лучей на ее поверхности. При нагреве природных карбонатов концентрированием солнечных лучей в марсианскую атмосферу выделяется углекислый газ. Солнечные лучи концентрируют с помощью зеркал и оптических приспособлений. Обеспечивается повышение технологической доступности прогрева в марсианских условиях.

Изобретение относится к способам искусственного инициирования молниевых разрядов, используемых при защите объектов от грозового электричества и при воздействии на облачные процессы для регулирования их электрической активности. Способ включает в себя использование бескорпусного ракетного двигателя (РДБК), гальванически соединенного с металлическим или металлизированным проводником. РДБК запускают в направлении облака. При инициировании наземных искусственных молний (ИМ) используют электропроводник протяженностью около 300 м с заземленным концом, а при инициировании внутриоблачных ИМ – электропроводник со свободным концом. Обеспечивается исключение разрушения факелом пламени электропроводящей проволоки при ее развертывании в полете ракеты и максимальная безопасность работ с ракетными двигателями. 1 з.п. ф-лы.

Изобретение относится к мобильным установкам, генерирующим функциональный аэрозоль для активного воздействия на облака, локально изменяя состояние погоды. Установка содержит связанную с баллоном сжатого воздуха (3) емкость (4) смеси функционального реагента, подключенную к форсунке (9) в камере сгорания (13). Камера сгорания (13) оснащена коаксиальным воздухозаборником (18) и совмещена с вытяжной трубой (5). По периметру камеры сгорания (13) распределены инжекционные окна. Упомянутые структурные элементы размещены внутри каркасного кожуха (2). Каркасный кожух (2) оснащен откидной полкой (10) для опоры вытяжной трубы (5). Вытяжная труба (5) закрепляется на каркасе (1) съемным бандажом (6). В откидной полке выполнено гнездо монтажа форсунки, над которой закреплен центральный кольцевой диффузор, а на инжекционных окнах тангенциально расположены жалюзи. Обеспечивается стабильная автоматическая работа мобильной установки. 1 з.п. ф-лы, 4 ил.

Изобретение относится к сельскому хозяйству и может найти применение при орошении различных культур с локальным регулированием влажности почвы. Оросительная сеть включает водоисточник, энергетическую установку, насос, распределительный трубопровод и подключенные к нему поливные трубопроводы с дождевальными установками, оборудованными системой дистанционного управления с управляющими контроллерами, объединенными беспроводной связью с центральным компьютером, получающим информацию от автоматизированного измерительного комплекса. В зоне действия каждой дождевальной установки оросительная сеть снабжена испарителем влаги, выполненным в виде емкости, заполненной пористым материалом, например уплотненным среднезернистым песком. В верхней части емкости закреплен разматывающийся с уклоном к ее поверхности влагонепроницаемый экран. Для определения в зоне действия каждой дождевальной установки времени очередного полива сеть оборудована дистанционным измерителем температуры поверхности поля, имеющим беспроводную связь с центральным компьютером и установленным на малом управляемом беспилотном аппарате, например, типа коптер. Обеспечивается поддержание равномерного увлажнения поля, сокращение потерь урожая орошаемой культуры. 3 ил.

Изобретение относится к устройствам для изменения атмосферных условий и может быть использовано для рассеивания в облаках аэрозоля, генерируемого пиротехническим топливом, для предотвращения градобитий или искусственного вызывания осадков. Технический результат - увеличение выхода льдообразующих ядер с одного грамма пиротехнического топлива и дальности полета ракеты. Ракета включает последовательно смонтированные стартовый и маршевый двигатели. В сопловом блоке стартового двигателя с аэродинамическими лопастями стабилизатора закреплен электровоспламенитель, связанный с пусковой установкой. В корпусе стартового двигателя последовательно установлены канальный пороховой заряд, пиротехнический замедлитель корректировки угла полета ракеты и коллектор воспламенения маршевого двигателя с замедлителями инициирования ленточного заряда самоликвидации стартового двигателя. Посредством адаптера стыковки стартовый двигатель соединен с маршевым двигателем, имеющим в своей конструкции собственный сопловой блок и собственный стабилизатор. Заряд пиротехнического топлива торцевого горения маршевого двигателя одновременно является льдообразующей шашкой активного дыма. Решетка-рассекатель, расположенная в корпусе маршевого двигателя между сопловым блоком и пиротехническим зарядом льдообразующего пиротехнического топлива торцевого горения, позволяет собрать на себе шлаки продуктов сгорания топлива и несгоревшие частицы, предотвращая зашлаковку соплового блока. Последовательно расположенный кумулятивный центральный заряд ликвидации маршевого двигателя с помощью капсюля-детонатора обеспечивает возможность инициирования подрыва и самоликвидации маршевого двигателя. Обтекатель ракеты заполнен инертным составом. 2 з.п. ф-лы, 1 ил.

Изобретение относится к сельскому хозяйству, а именно к системе регулирования микроклимата сельскохозяйственных полей. Система состоит из расположенного вдоль границы водоема, на берегах которого установлены пластины с жалюзи с возможностью поворота вокруг вертикальной оси и наклонной вертикальной плоскости. Система содержит водопроводную трубу с мелкодисперсными распылителями и насос, сообщенный с гелиатором, имеющим накопитель заряда. Система имеет дополнительный гелиатор, выполненный в виде многоярусной системы из привязанных друг с другом зачерненных баллонов, расположенных в виде нескольких установленных один над другим ярусов, на которых расположена система заземленных проводов-эмиттеров, коронирующих в электрическом поле земли. Каждый баллон имеет воздухопровод, сообщенный через штуцер с манометром с насосом, работающим в гидрорежиме и в режиме компрессора, а эмиттеры электронов сообщены с накопителем заряда. Достигаемый технический результат заключается в повышении эффективности регулирования микроклимата сельскохозяйственных полей в период длительной засухи. 2 ил.

Изобретение относится к области метеорологии. Устройство выполнено в виде спиральной антенны (1) с осевой диаграммой направленности (2), ориентированной в верхнюю полусферу для вертикального зондирования слоя F2 ионосферы (5) в диапазоне волн 25…30 м. Длина витка (8) спирали ~30 м, число витков 7, шаг витка 4,5 м. Антенна подвешена на телескопических мачтах (6) из композитного материала высотой 32 м, расчаленных растяжками (7). Витки (8) спирали закреплены на мачтах (6) и изолированы от них силиконовыми изоляторами (9). Антенна запитана от СВЧ передатчика (3) с регулируемой частотой излучения. При этом один из полюсов источника питания (4) передатчика подключен к заземлителю (10) антенны, выполненному из винтовых труб (11), заглубленных в грунт, по радиально-кольцевой параллельной схеме в режиме зеркального противовеса. Обеспечивается создание теплового луча с энергией, достаточной для обеспечения испарения облачного покрова зависшего циклона и обеспечивающей возникновение струйных течений и восстановление естественной циркуляции воздушных масс. 5 ил.

Изобретение относится к области гидрометеорологии, в частности к способу и системе активного воздействия на атмосферные явления и управления ими, предупреждения и предотвращения града, и может быть использовано для осуществления широкомасштабной автоматической противоградовой защиты обрабатываемых сельскохозяйственных земель, садов и различных народнохозяйственных объектов. Автоматический способ широкомасштабной противоградовой защиты включает генерацию и направление вертикально вверх сверхзвуковых ударных волн необходимой мощности вследствие проведения в соответствии с командными сигналами, поступающими извне, последовательных взрывов смеси взрывного газа и воздуха в камере взрыва каждого из акустических генераторов предотвращения града, установленных в М участках пространства, находящегося под противоградовой защитой. Способ включает также прием сигналов собственного радиотеплового излучения неба, соответствующего каждому участку, возведение в квадрат принятых сигналов, интегрирование возведенных в квадрат сигналов, сравнение интегрированного сигнала с N порогами. Затем проводят формирование по результату сравнения кода-сигнала "оповещение" и формирование вышеуказанных командных сигналов, соответствующих коду-сигналу "оповещение", установление режимов работы акустического генератора предотвращения града, таких как "включение", "дежурство", "функционирование, "отключение" и "прекращение взрывов". Осуществляют запуск акустического генератора предотвращения града данного участка в соответствии с установленным режимом работы. При этом с установлением режима работы акустического генератора "включение" генерируют и передают в эфир код-сигнал "тревога", принятый в любой точке код-сигнал "тревога" сравнивают с собственными кодами-сигналами и при совпадении с одним из них сравнивают интегрированный сигнал с порогом "тревога", при превышении которого устанавливают для акустического генератора данного участка режим работы "тревога". Автоматическая сеть противоградовой защиты включает M акустических генераторов предотвращения града, установленных в М участках пространства, находящегося под противоградовой защитой. Каждый генератор имеет цилиндрическую камеру взрыва, коническое направляющее дуло, соединительную трубку, окошки с крышками для притока воздуха, впрыскиватель газа и запальник, систему подачи газа, щит управления, систему электропитания, систему дистанционного управления, а также устройство обнаружения-оповещения, включающее антенну, радиометрический приемник, управляемое компенсирующее устройство, управляемое многоканальное пороговое устройство, устройство оповещения, передатчик, приемник, управляемое устройство сравнения кода-сигнала, первый управляемый выключатель, управляемое однопороговое устройство и второй управляемый выключатель. Технический результат, обеспечиваемый группой изобретений, заключается в повышении эффективности работы сети и автоматизации ее эксплуатации. 2 н. и 15 з.п. ф-лы, 9 ил.

Изобретение относится к экологии, а именно биомониторингу и биоиндикации качества состояния окружающей среды (воздуха) с использованием индекса экотопической приуроченности. Способ включает констатацию наличия видов растений в экотопах растительных сообществ на различных по степени антропогенной преобразованности территориях, установление баллов их встречаемости и проективного покрытия и расчет индекса экотопической приуроченности (S), выражающегося отношением произведения баллов встречаемости и квадратного корня суммы проективных покрытий конкретного вида в массиве геоботанических описаний к общему числу описаний, по формуле: где S - индекс экотопической приуроченности; В - встречаемость в промежутке значений проективного покрытия (Р) согласно 5-балльной квадратично-трансформированной шкале процентов покрытия в диапазоне 0-100%: 0-4% - 1 балл, 4-16% - 2 балла, 16-36% - 3 балла, 36-64% - 4 балла, 64-100% - 5 баллов; Р - сумма проективных покрытий конкретного вида в массиве геоботанических описаний; N - число геоботанических описаний сообществ, при этом наибольшее абсолютное значение индекса экотопической приуроченности свидетельствует о высокой информативности (активности) вида, а наименьшее - о низкой информативности (активности). Использование индекса экотопической приуроченности приводит к упрощению способа, повышению точности, надежности, значимости количественных характеристик видов, которые показывают антропогенную преобразованность среды, сокращению трудозатрат, применению доступных для математической обработки признаков видов. 2 табл., 1 пр.
Наверх