Способ улучшения структуры пахотного слоя

Изобретение относится к области подготовки почвенных покровов для выращивания различных сельскохозяйственных культур и может быть использовано в сельском хозяйстве. Способ включает предварительное нанесение на поверхность пахотного слоя структуроформирующей добавки, вспашку, боронование и культивацию, в качестве указанной добавки используют нановермикулит, который наносят на поверхность пахотного слоя в количестве (20.0-25.0) кг на 1 га посевной площади. Изобретение обеспечивает возрастание плодородия почвы на 15-20%, коэффициента структурности - на 30-40%, водопрочности - на 25-30%. 1 табл., 12 прим.

 

Изобретение относится к области подготовки почвенных покровов для выращивания различных сельскохозяйственных культур и может быть использовано в сельском хозяйстве.

Известен способ улучшения структуры пахотного слоя (почвы) посредством предварительного нанесения на ее поверхность структуроформирующей добавки - оксиэтилированного полиоксиэтиленгликоля, вспашки, боронования и культивации [1].

Недостатком данного известного способа является относительно низкая доля тех частиц пахотного слоя, которые вносят решающий вклад в его плодородие, а именно с размером (0.25-10.0) мм, а также относительно низкий коэффициент структурности. Кроме того, указанный органический препарат может не полностью перерабатываться со временем в пахотном слое и накапливаться в нем, создавая при этом нежелательные для выращивания сельскохозяйственных культур последствия.

Наиболее близким к заявляемому нами объекту по совокупности признаков и достигаемому техническому эффекту является способ улучшения пахотного слоя посредством предварительного нанесения на ее поверхность структуроформирующей добавки - вермикулита, вспашки, боронования и культивации [2].

Недостатком данного способа, взятого нами за прототип, также является относительно низкая доля тех частиц пахотного слоя, которые вносят решающий вклад в его плодородие, а именно с размером (0.25-10.0) мм, а также сравнительно низкие коэффициент структурности и коэффициент водостойкости.

Целью данного изобретения является увеличение доли тех частиц пахотного слоя (почвы), которые вносят решающий вклад в его плодородие, а именно с размером (0.25-10.0) мм, а также повышение коэффициентов структурности и водостойкости.

Достигается указанная цель тем, что в известном способе улучшения структуры пахотного слоя посредством предварительного нанесения на его поверхность структуроформирующей добавки, вспашки, боронования и культивации [2] в качестве структуроформирующей добавки используют нановермикулит, который вносят в количестве (20.0-25.0) кг из расчета на 1 га посевной площади. В результате использования заявляемого нами способа доля частиц, обеспечивающих плодородие почвы, возрастает на 15-20%, коэффициент структурности - на 30-40%, коэффициент водопрочности - на 25-30% по сравнению с таковыми для способа-прототипа [2].

До настоящего времени в литературе не был описан какой-либо способ улучшения структуры пахотного слоя, где в качестве структуроформирующей добавки использовался бы нановермикулит или иной природный минерал с наноструктурным уровнем организации вещества. Отмеченное обстоятельство позволяет нам сделать заключение о том, что заявляемому объекту присущ первый из установленных законодательством РФ критериальных признаков изобретения - новизна.

Сопоставление известных признаков способа-прототипа [2] и отличительных признаков, характеризующих заявляемый нами объект (а именно - замена используемой в прототипе [2] структуроформирующей добавки - природного вермикулита, содержащего микро- и макрочастицы с размерами порядка 1 мкм и более на нановермикулит, содержащий наночастицы с размерами менее 100 нм) не позволяет предсказать априори появления новых по сравнению со способом-прототипом характеристик, а именно увеличения доли частиц, обеспечивающих плодородие почвы, коэффициентов структурности и водопрочности. Данное обстоятельство дает нам все основания для заключения о том, что заявляемый объект явным образом не следует из известного в данной отрасли техники уровня и, следовательно, ему присущ второй критериальный признак изобретения - изобретательский уровень. При этом фигурирующая в заявляемом нами способе структуроформирующая добавка весьма проста по своему составу, приготовление ее самой и используемого в ней нановермикулита достаточно легко реализуемо в промышленном масштабе и, следовательно, практическое использование ее также осуществимо без каких бы то ни было проблем; следовательно, заявляемому объекту присущ также третий критериальный признак изобретения - промышленная применимость.

Заявляемый нами способ улучшения структуры пахотного слоя может быть продемонстрирован на нижеследующих примерах.

Пример 1 (приготовление структуроформирующей добавки)

Природный вермикулит, добытый из Татарского месторождения (Красноярский край, РФ), измельчают в муку и смешивают с дистиллированной или деионизированной (обессоленной) водой из расчета 20 г вермикулита на 100 мл воды. Полученную смесь обрабатывают ультразвуком в ультразвуковом диспергаторе УЗУ-0,25 мощностью 80 Вт при частоте 18.5 кГц с амплитудой колебаний ультразвукового волновода 5 мкм в течение (5-20) мин при комнатной температуре, в результате чего получается водно-вермикулитовая суспензия с размерами частиц вермикулита от 5 до 100 нм. Приготовленную таким образом суспензию нановермикулита далее используют для использования в качестве добавки в почву.

Пример 2

На поверхность почвы наносят указанную в Примере 1 структуроформирующую добавку - нановермикулит в виде суспензии из расчета 100 л (т.е. 20 кг нановермикулита) на 1 га посевной площади, после чего традиционным приемом осуществляют ее вспашку, боронование и культивацию. Затем производят определение содержание агрегатов определенного размера методом т.н. «сухого» агрегатного анализа, а водопрочных агрегатов - методом т.н. «мокрого» агрегатного анализа в соответствии с методикой [3]. В рамках первого из этих методов из образца приготовленной выше воздушно-сухого пахотного слоя (почвы) отбирают пробу в количестве 1 кг, просеивают ее порциями через колонку сит диаметром 10, 7, 5, 3, 2, 1, 0,5 и 0,25 мм, избегая при этом сильных встряхиваний. В результате этой процедуры почва разделяется на фракции с размером частиц >10, 10-7, 7-5, 5-3, 3-2, 2-1, 1-0,5, 0,5-0,25 и <0,25 мм. Каждую фракцию взвешивают на технохимических весах и рассчитывают ее массовую долю в процентах от массы взятой для анализа навески почвы. В рамках второго метода составляют среднюю навеску весом 50 г из отдельных фракций агрегатов, полученных при сухом просеивании, для чего из каждой фракции на технохимических весах берут навеску в г, численно равную половине процентного содержания данной фракции в почве. При этом фракцию с размером частиц <0,25 мм не включают в среднюю пробу, чтобы не забивать нижние сита при просеивании. Далее составляют набор из 6 сит с отверстиями диаметром от верхнего сита к нижнему 5, 3, 2, 1, 0,5 и 0,25 мм, скрепляют их и устанавливают в бак с водой так, чтобы над бортом верхнего сита находился слой воды высотой 5-6 см. Цилиндр с навеской почвы заполняют водой на 2/3 объема и оставляют стоять на 10 мин, после чего доливают водой доверху. После этого его прикрывают часовым стеклом, наклоняют до горизонтального положения и ставят вертикально. Затем цилиндр закрывают пробкой и выдерживают в таком положении до тех пор, пока основная масса почвенных агрегатов не упадет вниз, после чего его переворачивают и ждут, пока почва не достигнет дна. Описанный процесс повторяют 10 раз до разрушения непрочных агрегатов. Затем дном к верху цилиндр переносят к набору сит и открывают пробку цилиндра под водой. Почву, перешедшую на сито, просеивают под водой: набор сит поднимают под водой, не обнажая комков почвы на верхнем сите, и быстрым движением опускают вниз. Через 2-3 сек движения повторяют. После 10 встряхиваний снимают верхние два сита и продолжают встряхивать нижние три сита еще пять раз. Оставшиеся на ситах агрегаты смывают струей воды из промывалки в большие фарфоровые чашки. После оседания почвенных агрегатов на дно чашек осторожно сливают из чашек избыток воды и переносят агрегаты почвы в заранее взвешенные небольшие фарфоровые чашки для сушки на водяной бане до воздушно-сухого состояния, а затем взвешивают на технических весах. Массу каждой фракции агрегатов в граммах умножают на 2 (поскольку расчет производится на 100 г почвы, а для анализа взято 50) и получают процентное содержание водопрочных агрегатов в почве. Содержание фракции менее 0,25 мм определяют по разности: 100% - Σ всех фракций > 0,25 мм, в %. Результаты по определению доли частиц, обеспечивающих плодородие почвы, а именно с размерами в диапазоне (0.25-10.0 мм), а также коэффициентов структурности и водопрочности для данного случая представлены в Таблице 1.

Пример 3

Выполняют как и Пример 2, но с введением указанной в Примере 1 суспензии из расчета 22.0 кг нановермикулита (т.е. 110 л этой суспензии) на 1 га посевной площади. Данные по определению доли частиц, обеспечивающих плодородие почвы, коэффициентов структурности и водопрочности для этого случая также приведены в Таблице 1.

Пример 4

Проводят как и Пример 2, но с введением указанной в Примере 1 суспензии из расчета 25.0 кг нановермикулита (т.е. 125 л этой суспензии) на 1 га посевной площади. Сведения о доле частиц, обеспечивающих плодородие почвы, коэффициентах структурности и водопрочности для рассматриваемого случая показаны в Таблице 1.

Пример 5 (сравнительный)

Осуществляют как и Пример 2, но с введением указанной в Примере 1 суспензии из расчета 12.0 кг нановермикулита (т.е. 60 л этой суспензии) на 1 га посевной площади. Показатели доли частиц, обеспечивающих плодородие почвы, коэффициентов структурности и водопрочности для указанного случая см. в Таблице 1.

Пример 6 (сравнительный)

Реализуют как и Пример 2, но с введением указанной в Примере 1 суспензии из расчета 30.0 кг нановермикулита (т.е. 150 л этой суспензии) на 1 га посевной площади. Результаты определения доли частиц, обеспечивающих плодородие почвы, коэффициента структурности и водопрочности для подобного случая также приведены в Таблице 1.

Пример 7 (по прототипу [2])

Выполняют по общей технологии Примера 2, но с введением в пахотный слой вермикулита из расчета 10 т на 1 га посевной площади (в виде водной суспензии). Сведения о доле частиц, обеспечивающих плодородие почвы, коэффициентах структурности и водопрочности для такого случая представлены в Таблице 1.

Пример 8 (по прототипу [2])

Проводят по общей технологии Примера 2, но с введением в пахотный слой вермикулита из расчета 15 т на 1 га посевной площади (в виде водной суспензии). Данные по определению доли частиц, обеспечивающих плодородие почвы, коэффициентов структурности и водопрочности для такого случая представлены в Таблице 1.

Пример 9 (сравнительный, по прототипу [2])

Осуществляют по общей технологии Примера 2, но с введением в пахотный слой вермикулита из расчета 25 кг на 1 га посевной площади (в виде водной суспензии). Результаты определения доли частиц, обеспечивающих плодородие почвы, коэффициента структурности и водопрочности для такого случая также представлены в Таблице 1.

Пример 10 (по аналогу [1])

Осуществляют по общей технологии Примера 2, но с введением в пахотный слой оксиэтилированного полиоксиэтиленгликоля из расчета 12 кг на 1 га посевной площади (в виде водной суспензии). Значения доли частиц, обеспечивающих плодородие почвы, коэффициентов структурности и водопрочности для такого случая также представлены в Таблице 1.

Пример 11 (сравнительный, по аналогу [1])

Осуществляют по общей технологии Примера 2, но с введением в пахотный слой оксиэтилированного полиоксиэтиленгликоля из расчета 20 кг на 1 га посевной площади (в виде водной суспензии). Результаты определения доли частиц, обеспечивающих плодородие почвы, коэффициентов структурности и водопрочности для такого случая также представлены в Таблице 1.

Пример 12 (контрольный)

Проводят по общей технологии Примера 2, но какой-либо добавки в пахотный слой не вводят. Данные по определению доли частиц, обеспечивающих плодородие почвы, коэффициентов структурности и водопрочности для такого случая также представлены в Таблице 1.

Как можно видеть из данных, приведенных в Таблице 1, при использовании заявляемого нами способа имеет место существенное улучшение показателей, определяющих степень структурированности почвы, а именно значительное увеличение доли частиц с размерами в диапазоне (0.25-10.0) мм, а также коэффициента структурности и водопрочности по сравнению с таковыми для способа-прототипа [2]. Заметим в связи с этим, что заявляемый диапазон количеств нановермикулита из расчета на 1 га посевной площади, а именно (20.0-25.0) кг, является существенным и при выходе за его нижнюю границу имеет место снижение вышеуказанного технического эффекта, при выходе же за верхнюю - по существу излишний расход нановермикулита, т.к. дальнейший прирост указанных в Таблице 1 показателей при этом прекращается (см. данные Примеров 2-4 и 5-6).

ЛИТЕРАТУРА

1. Патент РФ №2430951 (аналог).

2. Патент РФ №2521171 (прототип).

3. В.В. Медведев. Структура почвы (методы, генезис, классификация). Харьков: Изд. «13 типография», 2008. С. 402-405.

Способ улучшения структуры пахотного слоя посредством предварительного нанесения на его поверхность структуроформирующей добавки, вспашки, боронования и культивации, отличающийся тем, что в качестве указанной добавки используют нановермикулит, который наносят на поверхность пахотного слоя в количестве (20.0-25.0) кг на 1 га посевной площади.



 

Похожие патенты:

Изобретение относится к области подготовки почвенных покровов для выращивания различных сельскохозяйственных культур и может быть использовано в сельском хозяйстве.

Изобретение относится к области подготовки почвенных покровов для выращивания различных сельскохозяйственных культур и может быть использовано в сельском хозяйстве.

Изобретение относится к области подготовки почвенных покровов для выращивания различных сельскохозяйственных культур и может быть использовано в сельском хозяйстве.

Изобретение относится к области охраны окружающей среды. Материал для рекультивации нарушенных земель содержит природный грунт и промышленные отходы.
Изобретение относится к сельскому хозяйству. Удобрение-мелиорант включает природный цеолитсодержащий глинистый минерал с карбонатами кальция CaCO3, кремнеземом SiO2, при наличии микроэлементов, причем в качестве удобрения-мелиоранта используются хвалынские глины Прикаспийской низменности с содержанием глинистых минералов, включающих гумус (1,5-2,5%), органический углерод (0,5-1,0%), CaCO3 (до 10%), SiO2 (до 60%), Al2O3 (20-30%), магниевые элементы MgO, обменные катионы Na+, Ca2+, Mg2+, изотопы калия 40K, при среднем значении относительного набухания 0,46.
Группа изобретений относится к области органической химии и может быть использована для очистки почвы от масел, в том числе от нефти, мазута, топлив, углеводородов, жидкого топлива, а также для обработки и сбора нефти, масел, мазута, топлив, углеводородов и других нефтепродуктов с твердых поверхностей, например с внутренних поверхностей цистерн для хранения нефти или нефтепродуктов, оборудования, применяемого при добыче, переработке, транспортировке нефти, оборудования, применяемого для получения нефтепродуктов, бурового шлама, гравия, песка в хранилищах или с других твердых поверхностей.
Изобретение относится к сельскому хозяйству, носит природоохранное направление и может быть использовано при рекультивации техногенно-нарушенных земель, а также при благоустройстве откосов автомобильных дорог.
Изобретение относится к области сельского и лесного хозяйств и может быть использовано при решении проблем защиты литосферы. Способ включает приготовление активного угля, внесение его в почву и выращивание культурных растений.

Изобретение относится к области сельского хозяйства, в частности к способам повышения почвенного плодородия солонцовых почв методом биологической мелиорации. Способ включает внесение мелиоранта с последующей заделкой его в почву и посевом многолетних бобовых трав.

Изобретение относится к области очистки грунтов от нефтепродуктов. При осуществлении способа очистки нефтезагрязненного грунта сооружают сетку нагнетательных скважин.

Изобретение относится к области подготовки почвенных покровов для выращивания различных сельскохозяйственных культур и может быть использовано в сельском хозяйстве.

Изобретение относится к области подготовки почвенных покровов для выращивания различных сельскохозяйственных культур и может быть использовано в сельском хозяйстве.

Изобретение относится к области подготовки почвенных покровов для выращивания различных сельскохозяйственных культур и может быть использовано в сельском хозяйстве.
Изобретение относится к области нанотехнологии, ветеринарии и пищевой промышленности. Способ получения нанокапсул унаби в конжаковой камеди, в котором порошок ягод унаби диспергируют в суспензию конжаковой камеди в этаноле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, затем приливают бутилхлорид, полученную суспензию отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:1 или 1:3.

Изобретение относится к способу хранения природного газа метана при помощи адсорбции в общепромышленных газовых баллонах, в микропористом материале с эффективной шириной пор меньше 3 нм, высокой насыпной плотности, формованного в блоки в виде специальных шестигранных призм, у которых диаметр описанной окружности основания не менее чем на 15% меньше, чем отверстие в горловине баллона, упакованных таким образом, что внутренний объем баллона заполняется адсорбционным материалом не менее чем на 95%, может быть использовано в системах хранения, распределения и транспортировки газового топлива.

Изобретение относится к полимерным композициям на основе полипропилена и может быть использовано в производстве изделий медицинского назначения. Композиция содержит полипропилен с показателем текучести расплава 25-35 г/10 мин, дивинилстирольный термоэластопласт с показателем текучести расплава не более 1 г/10 мин, поликарбонат с показателем текучести расплава 6,5±1 г/10 мин, пространственно затрудненный амин, триаллилизоцианурат и в количестве от 0,0010 до 0,0500 мас.% наноцеллюлозу в качестве стабилизатора.

Настоящее изобретение относится к электропроводящему углеродному волокну, состоящему из нитей углеродного волокна. Описано электропроводящее углеродное волокно, состоящее из нитей углеродного волокна, которые включают в себя металлическое покрытие, в котором нити углеродного волокна включают в себя присутствующий на металлическом покрытии состав на основе по меньшей мере одного полимерного связующего, которое содержит электропроводящие наночастицы, и концентрация металлического покрытия составляет 8-25 мас.%, а концентрация электропроводящих наночастиц - 0,1-1 мас.%, в каждом случае считая на массу углеродного волокна, снабженного металлическим покрытием и составом.

Группа изобретений относится к неорганической химии. Оксид титана представлен в форме однородных сферических частиц с размером от 20 нм до 100 нм.

Группа изобретений относится к медицине. Описана фармацевтическая композиция, содержащая кристаллическую β-модификацию 2,3-бис-(гидроксиметил)хиноксалин-N,N'-диоксида, характеризующуюся определенным набором дифракционных максимумов и их интенсивностью (Iотн., %), и наночастицы серебра.
Изобретение относится к области нанотехнологии, сельского хозяйства и пищевой промышленности. Способ получения нанокапсул бетулина, при этом 100 мг порошка бетулина диспергируют в суспензию 300 мг конжаковой камеди в этаноле, в присутствии 0,01 г препарата Е472с при перемешивании 1300 об/мин, далее приливают 3 мл бутилхлорид, полученную суспензию отфильтровывают и сушат при комнатной температуре.

Изобретение относится к области нанотехнологий, в частности к способу маскировки тел с помощью эффекта огибания светом границы среды с квазинулевым показателем преломления. Способ получения маскировочного покрытия на поверхности маскируемого объекта пневматическим распылением включает нанесение на поверхность маскируемого объекта зеркального покрытия из серебра или алюминия, затем слоя с квазинулевым показателем преломления, содержащего диэлектрическую матрицу из полиметилметакрилата или силикатного стекла с 3 ± 5% равномерно распределенных в ней наночастиц серебра с радиусом 2,5 - 5 нм, на поверхность которых нанесена стабилизирующая оболочка, показатель преломления которой совпадает с показателем преломления диэлектрической матрицы, а затем осуществляют сушку нанесенного покрытия при 60°С в течение суток. Техническим результатом этого способа является получение покрытия, обладающего способностью формирования в нем поверхностных оптических волн, огибающих поверхность маскируемого тела в широком диапазоне длин волн от 450 до 1200 нанометров. 6 ил.
Наверх