Змеевиковый теплообменник

Изобретение относится к теплотехнике и может быть использовано в теплообменниках для обработки жидкого продукта. Змеевиковый теплообменник, содержащий закрытую емкость (20), имеющую впуск (21) для приема теплопередающей среды и выпуск (22) для выпуска теплопередающей среды, трубчатый трубопровод (30), продолжающийся по спирали внутри указанной емкости (20) от нижней части (23) к верхней части (24) указанной емкости (20) для перемещения жидких продуктов, нагреваемых указанной теплопередающей средой, и внутренний корпус (40), заключенный между витками (32) указанного трубчатого трубопровода (30) и уплотненный относительно теплопередающей среды, причем указанный внутренний корпус (40) содержит открытый канал (42) в окружающую среду снаружи указанного змеевикового теплообменника (10). 5 н. и 10 з.п. ф-лы, 1 ил.

 

Область техники, к которой относится изобретение

Настоящее изобретение относится к змеевиковому теплообменнику. Конкретнее настоящее изобретение относится к усовершенствованному змеевиковому теплообменнику для передачи тепла между теплопередающей средой и жидким продуктом в системе обработки жидкого продукта.

Уровень техники

Змеевиковые теплообменники, как известно, обеспечивают передачу тепла между теплопередающей средой, заключенной внутри контейнера, и жидкими продуктами, текущими через трубчатый змеевик, продолжающийся внутри контейнера теплопередающей среды. Такие змеевиковые теплообменники оказались особенно эффективными для определенных типов жидких продуктов, имеющих относительно высокую вязкость. Например, змеевиковые теплообменники обычно используются в обработке жидких пищевых продуктов высоковязких текучих сред, например пюре, десертного пудинга, супов и т.д. Эти виды текучих сред текут через трубчатый змеевик, пока передача тепла между теплопередающей средой и жидким продуктом обеспечена.

Таким образом, контейнер хранит и перемещает очень большое количество теплопередающей среды, которая течет вокруг трубчатого змеевика для того, чтобы обеспечивать требуемую передачу тепла. Поток теплопередающей среды через контейнер обеспечивает повышенное давление внутри контейнера, поэтому контейнер закрыт на его верхнем конце плоской головкой, которая плотно навинчена на контейнер.

Для повышения эффективности теплообмена внутренний контейнер может быть обеспечен так, что витки трубчатого змеевика заключают внутренний корпус. В результате, объем контейнера, теплопередающая среда которого течет, значительно уменьшен так, что текущая теплопередающая среда циркулирует в области между внутренним корпусом и контейнером.

В известном змеевиковом теплообменнике внутренний корпус соединен по текучей среде с контейнером так, что теплопередающая среда будет заполнять внутреннюю емкость. Такое решение увеличивает эффективность передачи тепла, но обеспечивает очень длительное время предстерилизации из-за необходимости нагревания постоянной величины теплопередачи внутри внутреннего корпуса, что является главным недостатком.

Дополнительно, змеевиковые теплообменники, используемые в системе обработки жидкости, должны позволять ремонт и обслуживание, тогда как внутренняя область змеевикового теплообменника должна быть доступна. В связи с этим верхний конец контейнера уплотнен цилиндрической головкой, плотно навинченной на открытый верхний конец контейнера.

Так как описанные змеевиковые теплообменники используются в крупномасштабных системах обработки, всегда имеются высокие требования к полу, поддерживающему их. Имея змеевиковые теплообменники, составляющие несколько метров в высоту, поддерживающий пол должен быть тщательно сконструирован для того, чтобы обеспечивать необходимую безопасность средствам обработки.

Последние улучшения включают обеспечение решения, при котором внутренний корпус образует закрытое пространство, заполненное воздухом. Главное преимущество такого решения заключается в том, что общий вес змеевикового теплообменника уменьшен.

Однако любое просачивание теплопередающей среды во внутренний корпус уменьшит эффективность змеевикового теплообменника, а также увеличит общий вес. Это может возникать из-за высокого давления внутри контейнера, обычно около 10 бар. В результате, имеется большой риск у такого решения.

В связи с этим имеется необходимость в змеевиковом теплообменнике, где риск сбоя уменьшен. Дополнительно, имеется необходимость в змеевиковом теплообменнике, который позволяет исключать работу в режиме отказа.

Сущность изобретения

В связи с этим задачей настоящего изобретения является преодоление или устранение вышеописанных проблем.

Основная идея заключается в обеспечении змеевикового теплообменника, позволяющего облегченное обнаружение неисправности.

Дополнительная идея заключается в обеспечении змеевикового теплообменника с уменьшенным весом во время работы.

Еще одна дополнительная идея заключается в обеспечении змеевикового теплообменника, который имеет уменьшенные материальные затраты.

Согласно первому аспекту обеспечен змеевиковый теплообменник. Змеевиковый теплообменник содержит закрытую емкость, имеющую впуск для приема теплопередающей среды и выпуск для выпуска теплопередающей среды, трубчатый трубопровод, продолжающийся по спирали внутри указанной емкости от нижней части к верхней части указанной емкости для перемещения жидких продуктов, нагреваемых указанной теплопередающей средой, и внутренний корпус, заключенный между витками указанного трубчатого трубопровода и уплотненный относительно теплопередающей среды, причем указанный внутренний корпус содержит открытый канал в окружающую среду снаружи указанного змеевикового теплообменника.

Открытый канал может при использовании быть размещенным на нижнем конце указанного внутреннего корпуса, посредством чего небольшие величины просачивания легко обнаруживаются за счет того, что сила тяжести будет гнать такую просачивающуюся текучую среду из внутреннего корпуса на уровень земли.

Указанная емкость и указанный внутренний корпус могут продолжаться вверх, при использовании, от опорной пластины, что является предпочтительным потому, что указанная емкость и указанный внутренний корпус могут быть демонтированы для позволения ремонта и обслуживания указанного теплообменника.

Указанная емкость может быть уплотнена относительно указанной опорной пластины посредством уплотнительного кольца. В результате, эффективное уплотнение обеспечено простым и экономичным образом.

Указанная опорная пластина может иметь сквозное отверстие, соединяющее внутренний корпус с окружающей средой снаружи указанного змеевикового теплообменника. Это является предпочтительным потому, что любое просачивание будет перемещаться непосредственно к полу под опорной пластиной, что делает указанное просачивание очень простым для обнаружения.

Указанная емкость и/или указанный внутренний корпус могут(жет) иметь цилиндрическую форму, что делает их очень надежными и простыми в изготовлении.

Емкость может содержать трубчатый корпус и закрытый верхний конец, причем указанный закрытый верхний конец может иметь изогнутую форму. В результате, общий вес змеевикового теплообменника уменьшен без уменьшения сопротивления давлению и безопасности змеевикового теплообменника. Указанный закрытый верхний конец емкости может дополнительно быть приварен на указанный трубчатый корпус, что исключает необходимость в болтах или других крепежных средствах.

Внутренний корпус может содержать трубчатый корпус и закрытый верхний конец, причем указанный закрытый верхний конец имеет изогнутую форму. Также в этом случае общий вес змеевикового теплообменника уменьшен без уменьшения сопротивления давлению и безопасности змеевикового теплообменника.

Указанный закрытый верхний конец внутреннего корпуса может быть приварен на указанный трубчатый корпус.

Согласно второму аспекту обеспечена система обработки жидкого продукта, содержащая по меньшей мере один змеевиковый теплообменник согласно первому аспекту.

Согласно третьему аспекту обеспечен блок обработки жидкого продукта, содержащий систему обработки жидкости согласно второму аспекту.

Согласно четвертому аспекту обеспечен способ обеспечения змеевикового теплообменника. Способ содержит этапы, на которых обеспечивают закрытую емкость, имеющую впуск для приема теплопередающей среды и выпуск для выпуска теплопередающей среды, обеспечивают трубчатый трубопровод, продолжающийся по спирали от нижней части к верхней части указанной емкости для перемещения жидких продуктов, нагреваемых указанной теплопередающей средой, и обеспечивают внутренний корпус, заключенный между витками указанного трубчатого трубопровода и уплотненный относительно теплопередающей среды, причем указанный внутренний корпус содержит открытый канал в окружающую среду снаружи указанного змеевикового теплообменника.

Согласно пятому аспекту обеспечен способ обмена теплом между теплопередающей средой и жидким продуктом. Способ содержит этапы, на которых обеспечивают змеевиковый теплообменник согласно четвертому аспекту, вводят теплопередающую среду в указанную закрытую емкость и заставляют течь жидкий продукт через указанный трубчатый трубопровод.

Согласно шестому аспекту настоящего изобретения обеспечен змеевиковый теплообменник. Змеевиковый теплообменник содержит закрытую емкость, имеющую впуск для приема теплопередающей среды и выпуск для выпуска среды нагрева, трубчатый трубопровод, продолжающийся по спирали внутри указанной емкости от нижней части к верхней части указанной емкости для перемещения жидких продуктов, нагреваемых указанной средой нагрева, и внутренний корпус, заключенный между витками указанного трубчатого трубопровода и уплотненный относительно среды нагрева, причем емкость содержит трубчатый корпус и закрытый верхний конец, причем указанный закрытый верхний конец имеет изогнутую форму. В результате, общий вес змеевикового теплообменника уменьшен без уменьшения сопротивления давлению и безопасности змеевикового теплообменника.

Указанный закрытый верхний конец емкости может быть приварен на указанный трубчатый корпус, что исключает необходимость в болтах или других крепежных средствах.

Указанный внутренний корпус может содержать открытый канал в окружающую среду снаружи указанного змеевикового теплообменника. Это является предпочтительным потому, что риск сбоя уменьшен, и потому, что работа в режиме отказа змеевикового теплообменника может быть исключена.

Такой канал может предпочтительно быть обеспечен на нижнем конце внутреннего корпуса, посредством чего просачивание может быть легко обнаружено за счет того, что сила тяжести будет гнать просочившуюся текучую среду из внутреннего корпуса на уровень земли.

Указанная емкость и указанный внутренний корпус могут продолжаться вверх от опорной пластины, что является предпочтительным потому, что указанная емкость и указанный внутренний корпус могут быть демонтированы для позволения ремонта и обслуживания указанного теплообменника.

Указанная емкость может быть уплотнена относительно указанной опорной пластины посредством уплотнительного кольца. В результате, эффективное уплотнение обеспечено простым и экономичным образом.

Указанная опорная пластина может иметь сквозное отверстие, соединяющее внутренний корпус с окружающей средой снаружи указанного змеевикового теплообменника. Это является предпочтительным потому, что любое просачивание будет перемещаться непосредственно к полу под опорной пластиной, что делает указанное просачивание очень простым для обнаружения.

Указанная емкость и/или внутренний корпус могут(жет) иметь цилиндрическую форму, что делает их очень надежными и простыми в изготовлении.

Внутренний корпус может содержать трубчатый корпус и закрытый верхний конец, причем указанный закрытый верхний конец имеет изогнутую форму. В результате, общий вес змеевикового теплообменника уменьшен без уменьшения сопротивления давлению и безопасности змеевикового теплообменника.

Указанный закрытый верхний конец внутреннего корпуса может быть приварен на указанный трубчатый корпус.

Согласно седьмому аспекту обеспечена система обработки жидкого продукта, содержащая по меньшей мере один змеевиковый теплообменник согласно шестому аспекту.

Согласно восьмому аспекту обеспечен блок обработки жидкого продукта, содержащий систему обработки жидкости согласно седьмому аспекту.

Согласно девятому аспекту обеспечен способ обеспечения змеевикового теплообменника. Способ содержит этапы, на которых обеспечивают закрытую емкость, имеющую впуск для приема теплопередающей среды и выпуск для выпуска среды нагрева, обеспечивают трубчатый трубопровод, продолжающийся по спирали от нижней части к верхней части указанной емкости для перемещения жидких продуктов, нагреваемых указанной средой нагрева, и обеспечивают внутренний корпус, заключенный между витками указанного трубчатого трубопровода и уплотненный относительно среды нагрева, причем емкость содержит трубчатый корпус и закрытый верхний конец и причем указанный закрытый верхний конец имеет изогнутую форму.

Согласно десятому аспекту обеспечен способ обмена теплом между теплопередающей средой и жидким продуктом. Способ содержит этапы, на которых обеспечивают змеевиковый теплообменник согласно девятому аспекту, вводят теплопередающую среду в указанную закрытую емкость и заставляют течь жидкий продукт через указанный трубчатый трубопровод.

Краткое описание чертежей

Вышеуказанные, а также дополнительные задачи, признаки и преимущества настоящего изобретения будут лучше поняты посредством следующего иллюстративного и неограничивающего подробного описания предпочтительных вариантов выполнения настоящего изобретения со ссылкой на приложенный чертеж, на котором:

фиг. 1 представляет собой вид в поперечном сечении змеевикового теплообменника согласно варианту выполнения.

Подробное описание

На фиг. 1 показан змеевиковый теплообменник. Змеевиковый теплообменник 10 образован закрытой емкостью 20, продолжающейся от опорной пластины 50. Емкость 20 имеет цилиндрическую форму и включает трубчатый корпус 25, прикрепленный к указанной опорной пластине 50, и закрытый верхний конец 26. Емкость 20 включает впуск 21 для приема теплопередающей среды, например воды, и выпуск 22 для выпуска теплопередающей среды. Впуск 21 и выпуск 22 могут быть соединены со смежным оборудованием теплопередающей среды (не показано), например уравнительным резервуаром, нагревателем и т.д.

Емкость 20 предпочтительно прикреплена к опорной пластине 50 посредством болтов (не показаны), и уплотнительное кольцо 52 предпочтительно обеспечено для обеспечения достаточного уплотнения емкости 20 к опорной пластине 50.

Закрытый верхний конец 26 емкости 20 имеет изогнутую форму, что является предпочтительным потому, что он может выдерживать более высокое внутреннее давление по сравнению с плоским закрытым верхним концом. Дополнительно, закрытый верхний конец 26 может быть приварен к трубчатому корпусу 25 так, что не требуется никакое дополнительное уплотнение между закрытым верхним концом 26 и трубчатым корпусом 25. Сварка предпочтительно обеспечена вдоль линии 27 сварки, продолжающейся вдоль периферии емкости 20.

Изгиб закрытого верхнего конца 26 может предпочтительно быть симметричным и может, например, следовать форме полусферы. Однако другие изогнутые формы также возможны при условии, что они обеспечивают повышенное сопротивление внутреннему давлению, чем плоский верхний конец.

Закрытый верхний конец 26 может дополнительно быть обеспечен средствами подъема, например крюками или подобным, для позволения емкости 20 быть демонтированной с опорной пластины 50, как только средства крепления, например болты, соединяющие емкость 20 с опорной пластиной 50, были освобождены.

Обеспечивая изогнутый верхний конец 26, толщина материала может быть значительно уменьшена, чем, если будет использоваться плоская верхняя часть. В результате, общий вес змеевикового теплообменника уменьшен.

Трубчатый трубопровод 30 расположен внутри указанной емкости 20. Трубчатый трубопровод имеет спиральную форму, соответствующую змеевику, и продолжается от нижней части 23 емкости 20 к верхней части 24 емкости 20. За счет змеевиковой формы трубчатый трубопровод 30 образует несколько витков 32 для перемещения жидкого продукта, вводимого на впуске 33 жидкого продукта и выпускаемого на выпуске 34 жидкого продукта. Впуск 33 и выпуск 34 трубчатого трубопровода могут быть соединены с дополнительным оборудованием обработки жидкого продукта (не показано), например нагревателями, охладителями, гомогенизаторами и т.д.

Каждый виток 33 трубчатого трубопровода 30 может продолжаться вдоль перегородки 35. Каждая перегородка обеспечена в виде пластины, уплотненной относительно части внутренней периферии трубчатого корпуса 25 емкости 20, при этом оставляя пространство по направлению к противоположной стороне внутренней периферии емкости 20. Перегородки 35 предпочтительно расположены зигзагообразным образом для принуждения теплопередающей среды течь вокруг всего трубчатого трубопровода 30. В результате, перегородки 35 обеспечены для увеличения эффективности передачи тепла змеевикового теплообменника 10.

Трубчатый трубопровод 30 может образовывать множество витков 33, причем точное количество витков 33 зависит от конкретной теплопередачи. Например, количество витков может быть между 5 и 50, хотя другие альтернативы возможны для того, чтобы обеспечивать требуемую передачу тепла.

Внутренний корпус 40 дополнительно обеспечен в пространстве, заключенном между витками 33 трубчатого трубопровода 30. Внутренний корпус 40 уплотнен относительно теплопередающей среды для предотвращения теплопередающей среды от вхождения во внутренний корпус 40. Дополнительно, внутренняя область внутреннего корпуса 40 подвергается атмосферному давлению так, что внутренний корпус 40 образует камеру давления, способную выдерживать давление снаружи теплопередающей среды.

Перегородки 35 дополнительно уплотнены относительно внешней периферии внутреннего корпуса 40.

Воздух имеет возможность входить во внутреннюю область внутреннего корпуса 40 через открытый канал 42, продолжающийся через опорную пластину 50, через сквозное отверстие 54. В результате, внутренний корпус 40 предпочтительно обеспечен в виде полого корпуса, стенки которого прикреплены к опорной пластине 50. В результате, внутренний корпус 40 может опираться на опорную пластину 50 так, что вся периферия открытого конца внутреннего корпуса 40 находится в плотном контакте с опорной пластиной 50. Внешний диаметр внутреннего корпуса 40 может быть постоянным от открытого конца до закрытого верхнего конца; однако диаметр, естественно, уменьшается в случае, если обеспечен изогнутый верхний конец. Однако, внутренний корпус 40, таким образом, будет поддерживаться очень надежным образом опорной пластиной 50.

Таким образом, любое просачивание теплопередающей среды во внутренний корпус 40 будет приводить к обнаруживаемому количеству теплопередающей среды на полу, поддерживающем змеевиковый теплообменник 10, поэтому требуемая работа змеевикового теплообменника 10 может легко отслеживаться.

Внутренний корпус 40 может предпочтительно быть обеспечен в виде трубчатого корпуса 43, имеющего верхний закрытый конец 44. Закрытый верхний конец 44 внутреннего корпуса 40 может иметь изогнутую форму, которая является предпочтительной потому, что она может выдерживать более высокое внешнее давление по сравнению с плоским закрытым верхним концом. Дополнительно, закрытый верхний конец 44 может быть приварен к трубчатому корпусу 43 так, что не требуется никакое дополнительное уплотнение между закрытым верхним концом 44 и трубчатым корпусом 43.

Пример типичного змеевикового теплообменника для обработки жидких продуктов будет описан далее, змеевиковый теплообменник которого имеет трубчатый трубопровод приблизительно 100 м в длину, имеющий диаметр трубопровода приблизительно 48 мм. Трубчатый трубопровод расположен по спирали так, что он может быть заключен во внешней емкости, имеющей высоту приблизительно 4 м. Заменяя известную в уровне техники плоскую верхнюю часть на изогнутый верхний конец, привариваемый на трубчатый участок емкости, собственный вес змеевикового теплообменника уменьшается от приблизительно 1600 до 1300 кг.

С дополнительным обеспечением внутреннего корпуса, заполняемого воздухом, вместо корпуса, заполняемого теплопередающей средой, рабочий вес змеевикового теплообменника, т.е. когда емкость и трубчатый трубопровод заполнены, уменьшается от приблизительно 3170 г до приблизительно 2050 кг.

Когда змеевиковый теплообменник согласно вариантам выполнения, описанным ранее, приводится в действие, теплопередающая среда вводится в емкость 20. Теплопередающая среда, текущая между впуском 21 и выпуском 22, будет вызвать увеличение давления внутри емкости 20, обычно около 10 бар. Когда емкость 20 полностью заполнена теплопередающей средой, жидкие продукты вводятся в трубчатый трубопровод 30. Давление внутри трубчатого трубопровода обычно очень высокое, например между 100 и 320 барами. Змеевиковый трубчатый трубопровод будет вызывать так называемый эффект Дина, что означает, что поток продукта внутри трубчатого трубопровода будет подвергаться центробежной силе, создающей поток, перпендикулярный продольному направлению трубчатого трубопровода. В результате, смешивание жидкого продукта увеличивается, что приводит к увеличенной эффективности передачи тепла.

Перегородки 35 заставляют теплопередающую среду течь согласно заданной линии потока, посредством чего движущаяся теплопередающая среда находится в контакте со всем трубчатым трубопроводом. Поток теплопередающей среды обозначен стрелками на фиг. 1.

Если теплопередающая среда внезапно начинает просачиваться во внутренний корпус 40, открытый канал 42 делает очень простым для оператора запрашивать обслуживание и ремонт змеевикового теплообменника 10. Если теплопередающая среда имеет возможность заполнять внутренний корпус 40, общий вес змеевикового теплообменника 10 быстро увеличивается и в то же время время предстерилизации змеевикового теплообменника 10 увеличивается. В результате, обнаружение просачивания является важной функциональной возможностью, которая обеспечена посредством канала 42, соединяющего внутреннюю емкость с окружающей средой.

Изобретение главным образом было описано со ссылкой на несколько вариантов выполнения. Однако, как нетрудно понять специалисту в области техники, другие варианты выполнения, кроме раскрытых выше, одинаково возможны в пределах объема охраны изобретения, который определен в приложенной формуле изобретения.

1. Змеевиковый теплообменник, содержащий:

закрытую емкость (20), имеющую впуск (21) для приема теплопередающей среды и выпуск (22) для выпуска теплопередающей среды,

трубчатый трубопровод (30), продолжающийся по спирали внутри емкости (20) от нижней части (23) к верхней части (24) емкости (20) для перемещения жидких продуктов, нагреваемых или охлаждаемых теплопередающей средой, и

внутренний корпус (40), заключенный между витками (32) трубчатого трубопровода (30) и уплотненный относительно теплопередающей среды, причем внутренний корпус (40) содержит открытый канал (42) в окружающую среду снаружи змеевикового теплообменника (10).

2. Змеевиковый теплообменник по п. 1, в котором открытый канал (42) расположен на нижнем конце внутреннего корпуса (40).

3. Змеевиковый теплообменник по п. 1 или 2, в котором емкость (20) и внутренний корпус (40) продолжаются вверх от опорной пластины (50).

4. Змеевиковый теплообменник по п. 3, в котором емкость (20) уплотнена относительно опорной пластины (50) посредством уплотнительного кольца (52).

5. Змеевиковый теплообменник по п. 3, в котором опорная пластина (50) имеет сквозное отверстие (54), соединяющее внутренний корпус (40) с окружающей средой снаружи змеевикового теплообменника (10).

6. Змеевиковый теплообменник по п. 1, в котором емкость (20) имеет цилиндрическую форму.

7. Змеевиковый теплообменник по п. 1, в котором внутренний корпус (40) имеет цилиндрическую форму.

8. Змеевиковый теплообменник по п. 1, в котором емкость (20) содержит трубчатый корпус (25) и закрытый верхний конец (26), причем закрытый верхний конец (26) имеет изогнутую форму.

9. Змеевиковый теплообменник по п. 8, в котором закрытый верхний конец (26) емкости (20) приварен на трубчатый корпус (25).

10. Змеевиковый теплообменник по п. 1, в котором внутренний корпус (40) содержит трубчатый корпус (43) и закрытый верхний конец (44), причем закрытый верхний конец (44) имеет изогнутую форму.

11. Змеевиковый теплообменник по п. 10, в котором закрытый верхний конец (44) внутреннего корпуса (40) приварен на трубчатый корпус (43).

12. Система обработки жидкого продукта, содержащая по меньшей мере один змеевиковый теплообменник (10) по любому из пп. 1-11.

13. Блок обработки жидкого продукта, содержащий систему обработки жидкости по п. 12.

14. Способ изготовления змеевикового теплообменника, содержащий этапы, на которых:

обеспечивают закрытую емкость, имеющую впуск для приема теплопередающей среды и выпуск для выпуска теплопередающей среды,

обеспечивают трубчатый трубопровод, продолжающийся по спирали от нижней части к верхней части емкости для перемещения жидких продуктов, нагреваемых указанной теплопередающей средой, и

обеспечивают внутренний корпус, заключенный между витками трубчатого трубопровода и уплотненный относительно теплопередающей среды, причем внутренний корпус содержит открытый канал в окружающую среду снаружи змеевикового теплообменника.

15. Способ обмена теплом между теплопередающей средой и жидким продуктом, содержащий этапы, на которых:

обеспечивают змеевиковый теплообменник по п. 14,

вводят теплопередающую среду в закрытую емкость и

обеспечивают поток жидкого продукта через трубчатый трубопровод.



 

Похожие патенты:

Изобретение относится к системе рекуперации тепла, в частности той части энергии, которая расходуется при образовании сточной воды, например воды из ванных или кухонь, и обычно теряется при сливе воды в канализацию.

Изобретение относится к области теплоэнергетики. Испаритель содержит корпус с встроенным в него трубчатым змеевиком.

Настоящее изобретение относится к теплообменнику для охлаждения горячих газов посредством охлаждающей текучей среды, причем указанный теплообменник содержит: по меньшей мере, одну вертикально ориентированную емкость, содержащую ванну охлаждающей текучей среды и имеющую пространство для сбора паровой фазы, генерированной над указанной ванной охлаждающей текучей среды, один вертикальный трубчатый элемент, вставленный внутрь указанной емкости, открытый на концах и коаксиальный с указанной емкостью, один спиральный канал, который оборачивается вокруг оси емкости, вставленный в указанный коаксиальный трубчатый элемент, один выпуск для паровой фазы, генерированной в верхней части указанной емкости, причем, по меньшей мере, одна транспортная линия вставлена в нижнюю часть вертикальной емкости, открыта с двух концов, из которых один соединен с вертикальной емкостью и другой является свободным и находится снаружи указанной емкости, причем указанная транспортная линия является трубчатой и выступает вбок снаружи указанного теплообменника, содержит, по меньшей мере, один центральный внутренний канал, который находится в сообщении по текучей среде со спиральным каналом и проходит вертикально вдоль трубчатого элемента, вставленного в вертикальную емкость, при этом канал имеет наружную рубашку, в которой циркулирует охлаждающая текучая среда.

Изобретение относится к теплообменным аппаратам и может быть использовано в энергетике и смежных с ней отраслях промышленности. Способ заключается в интенсификации теплообмена путем выполнения периодических кольцевых выступов на внутренней поверхности теплообменного элемента.

Изобретение относится к теплотехнике и может использоваться в жидкостных теплообменниках. В жидкостно-жидкостном теплообменнике, соединяющем секции труб, закрепленных в герметичном корпусе и подключенных к раздельным коллекторам по контурам охлаждающих теплоносителей, в контуре змеевикообразного теплоносителя каждая секция труб выполнена в виде спиралеобразного конусного змеевика сходящегося и расходящегося типа, установленных попарно большими основаниями, обращенными друг к другу, и попарно меньшими основаниями, обращенными друг к другу, причем секции разделены поперечными перегородками в местах больших оснований змеевиков отверстиями кольцеобразных прорезей, в местах меньших оснований - центральными отверстиями в контуре охлаждающего теплоносителя.

Изобретение относится к теплообменным аппаратам и может быть использовано в энергетике и смежных с ней отраслях промышленности. Теплообменный элемент представляет собой спиралевидную гибкую трубу с периодически расположенными на ее внутренней поверхности турбулизаторами, предпочтительно, в виде кольцевых выступов.

Теплообменник для энергетических установок содержит винтообразные элементы из труб с двумя прямыми и двумя скругленными участками на каждом витке. При этом центры труб у прямых участков в поперечном сечении теплообменника располагаются на контуре многоугольника.

Изобретение относится к области теплоэнергетики и может быть использовано в качестве подогревателя сетевой и горячей воды. .

Изобретение относится к теплотехнике и может быть использовано в теплообменных аппаратах энергетических установок. .

Изобретение относится к области теплотехники и может быть использовано в установках для сжижения природного газа и, в частности, для изготовления змеевиковых теплообменников.

Изобретение относится к теплообменнику (1), содержащему множество входов (30-36), которые соединены каждый по меньшей мере с одной согласованной трубой (20) теплообменника (1), так что по меньшей мере один поток (S) первой среды, а также один поток (S') второй среды можно направлять по меньшей мере через один согласованный вход (30, 32, 36, 33, 35) в соответствующую согласованную по меньшей мере одну трубу (20), при этом теплообменник (1) имеет кожух (10), который окружает пространство (11) кожуха, в котором расположены указанные трубы (20), так что, в частности, проходящий в пространстве (11) кожуха поток (S''') среды вступает в косвенный теплообмен с проходящим в соответствующей трубе (20) потоком (S, S') среды, и при этом указанные трубы (20) навиты вокруг центральной трубы (12) теплообменника (1). В соответствии с изобретением предусмотрено, что каждая из согласованных с соответствующим входом (30-36) труб (20) задает нагревательную поверхность, при этом теплообменник (1) имеет по меньшей мере одно переключательное средство (100), которое предназначено для переключения туда и обратно по меньшей мере одного из входов (30) по меньшей мере между одним первым рабочим состоянием и одним вторым рабочим состоянием, так что обеспечивается возможность направления в первом рабочем состоянии потока (S) первой среды и во втором рабочем состоянии потока (S') второй среды по меньшей мере через один вход (30) по меньшей мере в одну согласованную трубу (20), с обеспечением в первом рабочем состоянии для потока (S) первой среды большей нагревательной поверхности, а для потока второй среды, соответственно, меньшей нагревательной поверхности, и с обеспечением во втором рабочем состоянии потоку (S') второй среды большей нагревательной поверхности, а потоку (S) первой среды, соответственно, меньшей нагревательной поверхности. 2 н. и 9 з.п. ф-лы, 2 ил.
Наверх