Способ получения смесевого пластичного взрывчатого вещества



Владельцы патента RU 2616729:

Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") (RU)
Федеральное государственное унитарное предприятие "Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" (ФГУП "РФЯЦ-ВНИИЭФ") (RU)

Изобретение относится к области производства взрывчатых веществ и может быть использовано для получения пластичных ВВ с уменьшенными критическими размерами детонации, применяющихся для изготовления малогабаритных взрывных устройств различного назначения. Описан способ получения смесевого пластичного взрывчатого вещества (ВВ) на основе гексогена и полимерного связующего, включающий смешение компонентов смесевого ВВ и формирование заряда ВВ, в котором предварительно порошкообразный гексоген подвергают возгонке (сублимации) в вакууме при остаточном давлении (2-5)×10-3 Па и при температуре 140-160°С, затем полученный слой сублимированного гексогена механически отделяют от подложки и механически измельчают до частиц дисперсности 250-500 мкм, после чего полученный продукт вводят в раствор связующего в растворителе, выбранном из группы инертных по отношению к гексогену - или в хлороформе, или в петролейном эфире, в качестве связующего используют полиизобутилен, затем удаляют растворитель выпариванием до достижения постоянной массы продукта, после чего окончательно формируют заряд ВВ. Технический результат: получен пластифицированный гексоген со сниженным критическим диаметром. 3 пр.

 

Изобретение относится к области взрывчатых веществ и может быть использовано для получения пластичных ВВ с уменьшенными критическими размерами детонации, применяющихся для изготовления малогабаритных взрывных устройств различного назначения, в том числе детонирующих шнуров, устройств взрывной логики и автоматики, систем распространения детонации (детонационных разводок).

Актуальность решаемой проблемы обусловлена следующими факторами. В ряде областей техники требуется применение зарядов пластичных ВВ в виде тонких слоев, имеющих толщину менее 1-2 мм, либо в виде прутков или каналов такого же сечения. Критическая толщина детонации ВВ для большинства пластичных ВВ превышает эти значения.

Известен способ получения эластичного взрывчатого вещества (патент РФ №2227132, МПК С06В 45/10, публ. 20.04.2004 г.), согласно которому подвергают смешению ВВ, полимерное связующее (термопластичный эластомер, например, бутадиен-нитрильный каучук) и другие технологические добавки, которые берут в заданных соотношениях, необходимых для изготовления зарядов разнообразной геометрической формы различного назначения, обладающих оптимальным комплексом свойств по прочности, эластичности, морозостойкости и агрессивности.

Однако в известном способе не предусмотрено получение смесевого ВВ, характеризующегося сравнительно высокими пластичными свойствами, и имеющего существенно низкие критические параметры детонации при использовании в зарядах малого размера,.

Известен в качестве прототипа заявляемого способ получения эластичного смесевого ВВ на основе гексогена (патент РФ №2433987, МПК С06В 25/34, публ. 20.11.2011 г.), содержащего 80-90% по массе гексогена и углеводородное связующее, согласно которому около 20% от общей массы гексогена должен составлять нанодисперсный продукт с размером частиц 20-80 нм. Данный технологический прием позволяет снизить критический диаметр детонации заряда до ≈2,5 мм.

К недостаткам прототипа относятся:

- технологическая сложность и взрывоопасность получения нанодисперсного порошка ВВ (работа с пылью ВВ);

- невозможность более существенного снижения критического диаметра детонации заряда путем увеличения доли нанодисперсного ВВ в общем количестве взрывчатого наполнителя. При этом изготовленное смесевое ВВ, содержащее связующее, может утрачивать свои пластичные и эластичные свойства, становится хрупким и рассыпчатым.

Задачей авторов изобретения является разработка способа получения пластифицированного гексогена, имеющего малый критический диаметр детонации.

Новый технический результат, обеспечиваемый при использовании предлагаемого способа получения пластифицированного гексогена, заключается в существенном снижении критического диаметра в 2 и более раз, по сравнению с прототипом.

Указанные задача и новый технический результат обеспечиваются тем, что в отличие от известного способа получения смесевого пластичного взрывчатого вещества (ВВ) на основе гексогена и полимерного связующего, включающего смешение компонентов смесевого ВВ и формирование заряда ВВ, согласно предлагаемому предварительно порошкообразный гексоген подвергают возгонке (сублимации) в вакууме при остаточном давлении (2-5)×10-3 Па и при температуре 140-160°С, затем полученный слой сублимированного гексогена механически отделяют от подложки и механически измельчают до частиц дисперсности 250-500 мкм, после чего полученный продукт вводят в раствор связующего в хлороформе или другом инертном по отношению к гексогену растворителе, причем в качестве связующего преимущественно используется полиизобутилен, затем удаляют растворитель выпариванием до достижения постоянной массы продукта, после чего окончательно формируют заряд ВВ.

Предлагаемый способ поясняется следующим образом.

Предварительно порошкообразный гексоген подвергают возгонке (сублимации) в вакууме при остаточном давлении (2-5)×10-3 Па и при температуре 140-160°С. Затем полученный слой сублимированного гексогена механически отделяют от подложки и механически измельчают до частиц дисперсности 250-500 мкм, после чего полученный продукт вводят в раствор связующего в хлороформе или другом инертном по отношению к гексогену растворителе, причем в качестве связующего преимущественно используется полиизобутилен, удаляют растворитель выпариванием до достижения постоянной массы продукта, после чего окончательно формируют заряд ВВ.

В качестве взрывчатого наполнителя используют гексоген, предварительно перекристаллизованный из ацетона и затем переработанный путем сублимации (возгонки) в вакууме при остаточном давлении (2-5)×10-3 Па и при температуре 140-160°С, с последующим механическим измельчением до определенной дисперсности.

Из предшествующего уровня техники известно, что снижение критических размеров детонации пластичных ВВ в некоторых случаях может быть достигнуто путем использования ВВ-наполнителя в высокодисперсном состоянии и с высокой удельной поверхностью частиц. Например, известно, что уменьшение среднего размера частиц тэна с нескольких сотен мкм до величин менее 10 мкм позволяет снизить критический диаметр детонации пластифицированного тэна примерно на порядок [Котомин А.А. Эластичные взрывчатые материалы. // Российский химический журнал, 1997, т.41, №4, с. 89-101]. Для других ВВ, например гексогена, применение высокодисперсного ВВ в качестве наполнителя имеет меньшую эффективность.

Известно, что практически для всех бризантных ВВ критические размеры детонации (диаметр, сечение, толщина) снижаются с уменьшением размера частиц. Поэтому, теоретически, снижения критических размеров детонации смесевых ВВ в несколько раз можно добиться использованием взрывчатого наполнителя в ультрадисперсном (субмикронном, нанодисперсном) состоянии, с высокой удельной поверхностью.

Однако, как это свидетельствуют экспериментальные исследования, в случае, если при использовании в составе пластичного смесевого ВВ ультрадисперсного взрывчатого наполнителя с высокой удельной поверхностью массовая доля связующего и/или пластификатора выбирается той же, что была выбрана для рецептуры смесевого ВВ на основе штатного, грубодисперсного взрывчатого наполнителя, пластичность готового смесевого ВВ в той или иной степени ухудшается. Продукт может стать хрупким, и из него становится невозможно изготовить заряды методом вальцевания или фильерирования. Для сохранения пластичности на приемлемом уровне необходимо увеличивать долю связующего, но это, в свою очередь, приводит к ухудшению детонационных свойств, росту критических размеров детонации. Данный эффект значительно выражен для смесевых ВВ на основе гексогена, поэтому ультрадисперсный гексоген может быть применен как добавка только в ограниченных количествах, что имеет место, например, в прототипе.

Снижение критических размеров детонации ВВ при одинаковых или близких значениях дисперсности или удельной поверхности, а также плотности, может быть достигнуто также за счет использования методов кристаллизации, приводящих к получению кристаллов, содержащих значительное количество микродефектов микронного и субмикронного размера (закрытых микропор, дислокаций, межзеренных границ в поли кристаллите и др.).

Наиболее эффективным, как это подтверждено экспериментально, способом получения ВВ в состоянии с высокодефектной структурой кристаллов является возгонка (сублимация) ВВ в вакууме с последующим осаждением на подложку. Критическая толщина детонации в осажденном слое сублимированного ВВ - в несколько раз меньше, чем для прессованного заряда высокодисперсного ВВ. Осажденный слой ВВ может быть отделен от подложки, механически измельчен и использован для приготовления смесевых ВВ с пониженными критическими размерами детонации.

Для механического отделения полученного возгонкой тонкослойного ВВ могут быть использованы вибрационные методы, или ручные инструменты (например, скребки, стамески).

Таким образом, как это показали эксперименты, при использовании предлагаемого способа получения смесевого пластичного взрывчатого вещества обеспечивается существенное уменьшение критических размеров ВВ (критическая толщина, критический диаметр, критическое сечение детонации) и повышение стабильности детонационных характеристик ВВ в зарядах малого размера.

Возможность промышленного применения предлагаемого изобретения подтверждается следующими примерами.

Пример 1.

Гексоген промышленного производства со средним размером кристаллов 300-400 мкм, по данным ситового анализа, помещают в термический испаритель вакуумной установки. Над испарителем на расстоянии 30-50 мм расположена подложка, изготовленная из алюминия, фторопласта или другого материала, химически инертного по отношению к гексогену. Вакуумную камеру вакуумируют до остаточного давления (2-5)×10-3 Па, затем включают нагреватель и доводят температуру испарителя до 140-160°С, продолжая поддерживать указанное выше остаточное давление. При диаметре испарителя 90 мм возгоняется около 12 г гексогена за 1 час.

Время возгонки оценивается исходя из того, что скорость возгонки может составлять 0,2-0,5 г ВВ на 1 см2 площади испарителя в час, в зависимости от температуры и конструкции испарителя, и более точно определяется опытным путем для конкретной вакуумной установки.

По окончании возгонки испаритель охлаждают, снимают подложку и скребком из цветного металла отделяют сублимированный гексоген от подложки.

Отделенный от подложки гексоген увлажняют этиловым или изопропиловым спиртом и в увлажненном состоянии продавливают через сито с диаметром ячеек 250-500 мкм. После сушки полученный продукт используют для изготовления пластичного ВВ, для чего гексоген смешивают с раствором полиизобутилена в хлороформе, петролейном эфире или другом инертном по отношению к гексогену растворителе, упаривают при постоянном перемешивании, сушат и окончательно формируют заряд ВВ.

Критический диаметр детонации заряда пластичного ВВ, полученного на основе сублимированного гексогена, составляет 1,1-1,3 мм (заряд без жесткой оболочки). Для сравнения, критический диаметр детонации заряда пластичного ВВ, полученного на исходном гексогене, составляет 2,5-3,2 мм, для различных партий гексогена.

Пример 2.

Отличается от примера 1 тем, что в качестве исходного был взят гексоген со средним размером кристаллов 100-150 мкм или менее. Возгонка гексогена такой дисперсности сопровождается спеканием и происходит неравномерно. Для того чтобы перевести гексоген в более крупнокристаллическое состояние, его растворяют в ацетоне до насыщения и упаривают при температуре 20-50°С. Далее гексоген возгоняют, измельчают и готовят пластичное ВВ аналогично описанному в примере 1. Детонационные свойства полученного ВВ также аналогичны описанному в примере 1, критический диаметр детонации составляет 1,1-1,3 мм.

Пример 3.

Восемь одинаковых цилиндрических зарядов из пластифицированного гексогена, на основе гексогена заводского производства, одновременно (±0,05 мкс) подорвали с помощью капсюлей-детонаторов, и измерили время их срабатывания. Разновременность (максимальная разница во временах срабатывания зарядов) составила 0,79 мкс.

Аналогичным образом были испытаны восемь зарядов того же размера, приготовленных на основе сублимированного (возогнанного) гексогена. Разновременность срабатывания зарядов в этом случае составила 0,27 мкс.

Данный пример показывает, как уменьшение критических размеров детонации ВВ приводит к повышению стабильности детонационных характеристик его зарядов.

Как показали экспериментальные исследования, при использовании всех условий и режимов предлагаемого способа обеспечивается существенное уменьшение критических размеров ВВ (критическая толщина, критический диаметр, критическое сечение детонации) и повышение стабильности детонационных характеристик ВВ в зарядах малого размера.

Способ получения смесевого пластичного взрывчатого вещества (ВВ) на основе гексогена и полимерного связующего, включающий смешение компонентов смесевого ВВ и формирование заряда ВВ, отличающийся тем, что предварительно порошкообразный гексоген подвергают возгонке (сублимации) в вакууме при остаточном давлении (2-5)×10-3 Па и при температуре 140-160°С, затем полученный слой сублимированного гексогена механически отделяют от подложки и механически измельчают до частиц дисперсности 250-500 мкм, после чего полученный продукт вводят в раствор связующего в растворителе, выбранном из группы инертных по отношению к гексогену - или в хлороформе, или в петролейном эфире, в качестве связующего используют полиизобутилен, затем удаляют растворитель выпариванием до достижения постоянной массы продукта, после чего окончательно формируют заряд ВВ.



 

Похожие патенты:

Изобретение относится к способу получения зарядов взрывчатых веществ и может быть использовано для получения тонкослойных зарядов из ВВ для различных целей: систем передачи детонации, устройств взрывной логики и др.

Изобретение относится к технике взрыва площадных зарядов из листовых взрывчатых веществ (ВВ) и может быть использовано в практике динамических испытаний преград (материалов и конструкций), а также в ряде импульсных технологических операций (штамповка и сварка взрывом).

Изобретение относится к области разрушения взрывным способом конструкций и может быть использовано при утилизации резинотехнических изделий, например изношенных шин.

Изобретение относится к производству подрывных зарядов, в частности плоской или ленточной формы. .

Изобретение относится к зарядам для взрывных работ, а именно для взрывной резки металлических и железобетонных конструкций различной конфигурации и формы. .

Изобретение относится к производству патронов предохранительных взрывчатых веществ. Способ изготовления патрона взрывчатого вещества с герметичным устройством ввода капсюля-детонатора заключается в герметизации одного из торцов трубчатой оболочки из полимерного материала, заполнении ее полости со стороны открытого торца эмульсионным или водногелевым промышленным взрывчатым веществом с последующей герметизацией открытого торца, а затем закрепляют капсюль-детонатор.

Изобретение относится к области военной техники, а именно к устройствам удлиненных зарядов разминирования большой длины, состоящих из набора отдельных секций. Секции удлиненного заряда разминирования выполнены из звеньев, корпуса которых заполнены взрывчатым веществом методом заливки.

Изобретение относится к взрывным патронам и способам заполнения взрывного патрона взрывчатым веществом. Взрывной патрон содержит загрузочную часть, имеющую загрузочный канал, позволяющий подавать взрывчатое вещество извне скважины, и гибкую трубу, надетую на наружную поверхность загрузочной части в сложенном в продольном направлении состоянии.

Изобретение относится к области буровзрывных работ и может быть использовано в различных областях, применяющих взрывные работы в скальных массивах горных пород, в частности при открытом способе разработки месторождений полезных ископаемых.

Изобретение относится к удлиненным кумулятивным зарядам для системы коллективного спасения. .

Изобретение относится к производству взрывных работ с использованием зарядов на основе аммиачно-селитренных взрывчатых веществ на открытых и подземных горнодобывающих предприятиях.

Изобретение относится к области изготовления удлиненных зарядов для разделения объектов взрывом, при ведении сейсморазведки, для дробления горных пород и т.д. .

Изобретение относится к обработке металлов давлением, в частности к взрывной резке, и может быть использовано для резки корпусных конструкций сложной конфигурации с толщиной стенки до 23 мм на фрагменты, удобные для транспортировки и переплавки.

Изобретения относятся к области экспериментальной физики и могут быть использованы при исследовании высокоскоростного взаимодействия тел. Способ включает инициирование осесимметричного трубчатого заряда взрывчатого вещества (ВВ), формирование под воздействием маховской ударной волны кумулятивной струи с последующим выделением из нее компактного элемента.

Изобретение относится к области экспериментальной физики и может использоваться совместно с метающими устройствами кумулятивного типа (КМУ) при исследовании высокоскоростного взаимодействия тел, например, при моделировании воздействия метеоритно-техногенных частиц на защиту космических аппаратов.

Группа изобретений относится к области экспериментальном физики. Способ гиперскоростного метания металлического элемента, закрепленного со стороны свободного торца осесимметричного трубчатого заряда взрывчатого вещества (ВВ), противоположного устройству инициирования заряда, включает инициирование заряда ВВ, формирование маховской ударной волны.

Изобретение относится к технологии изготовления кумулятивных облицовок, которые могут быть использованы в перфорационной технике при прострелочно-взрывных работах в нефтедобыче или боевых частях снарядов или ракет.
Наверх