Способ защиты радиолокационной станции от воздействия пассивных помех, обусловленных магнитно-ориентированными неоднородностями электронной концентрации ионосферы

Изобретение относится к области радиолокации, в частности к области защиты радиолокационных станций (РЛС) от пассивных помех ионосферного происхождения, и может быть использовано для обеспечения работы РЛС в условиях воздействия естественных пассивных помех ионосферного происхождения. Достигаемый ехнический результат - уменьшение бланкируемой области зоны обзора РЛС в условиях воздействия пассивных помех, обусловленных магнитно-ориентированными неоднородностями электронной концентрации ионосферы и уменьшение вследствие этого вероятности пропуска сигнала от цели. Сущность изобретения заключается следующем: в РЛС для сокращения области возможного воздействия пассивных помех, обусловленных магнитно-ориентированными неоднородностями электронной концентрации ионосферы, рассчитывается ракурсный угол ψ, по каждой завязанной цели в диапазоне высот возможного существования ионосферных неоднородностей и находящейся в области малых ракурсных углов до |ψ|=10°, осуществляется накопление сгруппированных по определенным правилам отметок, по окончании накопления производится оценка высотных характеристик сформированной группы отметок и оценка скорости изменения высоты геометрического центра группы отметок, решение о том, что обнаружено воздействие пассивной помехи, обусловленное ионосферными неоднородностями, принимается при одновременном выполнении следующих условий: для N>K отметок группы оценка ракурсного угла i-й отметки меньше, чем пороговая величина ракурсного угла, и высота i-й отметки лежит в пределах минимальной и максимальной высот области возникновения ионосферных неоднородностей, при этом величину К получают экспериментально, далее оценивается толщина полученного слоя группы отметок, которая должна быть меньше порогового значения, рассчитанного с учетом ошибки измерения высоты, и скорость изменения высоты геометрического центра группы отметок, скорость должна быть меньше скорости изменения высоты возможных целей в диапазоне высот воздействия пассивных помех, обусловленных магнитно-ориентированными неоднородностями электронной концентрации ионосферы, при выполнении условий сравнения рассчитываются границы области помехи по дальности, азимуту, высоте и пороговая величина по мощности отметок, отметки, попадающие в эту область, не обрабатываются (бланкируются). 4 ил.

 

Изобретение относится к области радиолокации, в частности к области защиты радиолокационных станций (РЛС) от пассивных помех ионосферного происхождения, и может быть использовано для обеспечения работы РЛС в условиях воздействия естественных пассивных помех, ионосферного происхождения.

Под пассивными помехами понимают сигналы, образующиеся на входе РЛС в результате рассеяния электромагнитных волн объектами, преднамеренно применяемыми в массовых количествах, например дипольными отражателями, а также в результате рассеяния электромагнитных волн метеообразованиями, подстилающей поверхностью и ионосферой [1].

Пассивные помехи бывают естественные и искусственные.

Естественные пассивные помехи бывают тропосферного или ионосферного происхождения.

Естественные пассивные помехи тропосферного происхождения обусловлены радиосигналами, отраженными от гор и поверхности земли в условиях явления повышенной тропосферной рефракции или сверхрефракции радиоволн.

Естественные пассивные помехи ионосферного происхождения обусловлены

- некогерентным рассеянием радиоволн регулярными слоями ионосферы;

- радиоотражениями радиоволн от авроральных образований;

- радиоотражениями радиоволн от магнитно-ориентированных неоднородностей электронных концентраций среднеширотной ионосферы;

- радиоотражениями радиоволн от метеорных следов.

Наиболее эффективными средствами защиты от естественных пассивных помех являются методы скоростной селекции, основанные на различии радиальной скорости цели и объектов-источников естественных пассивных помех. В этих средствах защиты применяется череспериодная компенсация (ЧПК) помех, при которой путем череспериодного вычитания подавляются принятые сигналы с неизменной (мало изменяющейся) амплитудой и выделяются сигналы, амплитуда которых изменяется (изменяется более значительно) от периода к периоду [2].

Известный способ защиты от пассивных помех, включающий предварительное (до начала работы РЛС) назначение в зоне обзора РЛС границ области, в пределах которых наличие пассивных помех предполагается наиболее вероятным (это, как правило, нижняя часть зоны обзора), и применение в пределах назначенных границ средств защиты от пассивных помех (например, ЧПК) [3].

Недостаток известного способа состоит в том, что требуется предварительное знание границ области, в пределах которых наличие пассивных помех предполагается наиболее вероятным, границы области бланкирования устанавливаются весьма приблизительно, в результате часть зоны обзора оказывается не защищенной от пассивных помех и повышается вероятность пропуска сигналов от целей в условиях воздействия пассивных помех, обусловленных магнитно-ориентированными неоднородностями электронной концентрации ионосферы.

Известный способ защиты радиолокационной станции от пассивных помех [4] основан на анализе принятого сигнала в каждом направлении зоны обзора РЛС и определении, является ли он отражением от пассивных отражателей или представляет собой активный шумовой сигнал, по автокорреляционной функции (АКФ) принятого сигнала, нормированной к его мощности, сравнении ширины нормированной АКФ по фиксированному уровню с порогом, который выбирают равным ширине нормированной АКФ, вероятность превышения которой в случае, когда принятый сигнал является активным шумовым сигналом, не превосходит заданного достаточно малого значения, при превышении указанного порога принимают решение о том, что принятый сигнал является отражением от пассивных отражателей, и применяют в данном направлении известные средства защиты от пассивных помех.

Недостаток известного способа состоит в том, что он основан на отличительных особенностях пассивных помех от активных помех и полезного сигнала (радиальная скорость, высота и дальность воздействия, различия автокорреляционных функций). Компенсация пассивных помех основана на выделении сигналов, амплитуда которых изменяется (изменяется более значительно) от периода к периоду, что недопустимо для пассивных помех ионосферного происхождения ввиду малой корреляции сигналов отражений от одного и того же участка области рассеивания.

Известным средством защиты от пассивных помех в виде отражений от земной поверхности является метод селекции движущейся цели (СДЦ), основанный на различии радиальной скорости цели и источников пассивных помех. В этом методе подавляются принятые сигналы, мало изменяющиеся от периода к периоду (отраженные от неподвижных и медленно движущихся объектов), и выделяются сигналы, изменяющиеся более значительно (отраженные от движущихся целей) [2].

Недостаток известного метода состоит в том, что в каждом направлении луча требуется несколько зондирующих сигналов. Поскольку времени (количества зондирований) для защиты таким способом всей зоны обзора в РЛС нет, то СДЦ применяют, как правило, только в нижней части зоны обзора до высоты облаков 5-8 км и на дальности не более 200 км. Так как отражения при воздействии пассивных помех, обусловленных магнитно-ориентированными неоднородностями электронной концентрации ионосферы могут наблюдаться и на высотах 95-125 км, то применение СДЦ для защиты от них в указанных РЛС оказывается невозможным.

Известный способ защиты обзорной РЛС от пассивных помех в виде отражений от земной поверхности [5], включающий последовательное дискретное перемещение луча в зоне обзора по угломестным столбцам с одновременным его перемещением по азимуту, излучение зондирующих сигналов в направлениях зоны обзора, анализ обнаруженных сигналов оператором РЛС и исключение их скоплений из дальнейшей обработки (бланкирование).

Недостаток известного способа состоит в том, что области бланкирования устанавливаются оператором РЛС визуально, а значит весьма приблизительно, и области бланкирования, охватывающие обнаруженные скопления отражений при воздействии пассивных помех, обусловленных магнитно-ориентированными неоднородностями электронной концентрации ионосферы, как правило, оказываются значительных размеров, очень похожи на отметки от цели. Это приводит к высокой вероятности пропуска сигналов от целей в условиях воздействии пассивных помех, обусловленных магнитно-ориентированными неоднородностями электронной концентрации ионосферы.

Наиболее близким к заявляемому является способ защиты обзорной радиолокационной станции от пассивных помех в виде отражений от земной поверхности и радиолокационная станция для его реализации [6], выбранный в качестве прототипа, включающий принятие решения о том, что сигналы, обнаруженные в положениях луча выше заданного значения угла места ε0, являются отражениями от земной поверхности при сверхрефракции и их исключение из дальнейшей обработки, если они расположены не менее чем в Nε положениях луча одного угломестного столбца, в одном интервале по дальности, не менее чем в К из N последовательных обзоров зоны, при этом величину Nε задают исходя из заранее определенного количества положений луча в угломестном столбце с обнаруженными сигналами, которое с заданной вероятностью соответствует условиям сверхрефракции, величину интервала по дальности задают исходя из количества дискрет по дальности, которые занимает зондирующий сигнал, величины K и N при нефлюктуирующих сигналах задают из условия N=1, при флюктуирующих - из условия N≥2.

Недостаток известного способа состоит в том, что качестве основного условия бланкирования в зоне обзора РЛС используется условие, основанное на свойстве отражений при сверхрефракции: отраженные сигналы при сверхрефракции обнаруживаются в одном интервале по дальности в разных положениях луча одного угломестного столбца зоны обзора РЛС. Интервал по дальности включает одни и те же дискреты по дальности для каждого положения луча столбца. При этом обнаружение сигналов в разных положениях луча столбца может происходить в различных дискретах указанного интервала, что не выполнимо при воздействии пассивных помех, обусловленных магнитно-ориентированными неоднородностями электронной концентрации ионосферы, так как они наблюдаются на высотах 95-125 км, не обнаруживаются в одном интервале по дальности в разных положениях луча одного угломестного столбца и не включают одни и те же дискреты по дальности для каждого положения луча столбца, это приводит к высокой вероятности пропуска сигналов от целей в условиях воздействии пассивных помех, обусловленных магнитно-ориентированными неоднородностями электронной концентрации ионосферы.

Таким образом, недостатком наиболее близких технических решений является высокая вероятность пропуска сигналов от целей в условиях воздействия пассивных помех, обусловленных магнитно-ориентированными неоднородностями электронной концентрации ионосферы.

Решаемой задачей, таким образом, является уменьшение бланкируемой области зоны обзора РЛС в условиях воздействия пассивных помех, обусловленных магнитно-ориентированными неоднородностями электронной концентрации ионосферы и уменьшение вследствие этого вероятности пропуска сигнала от цели.

Указанный результат достигается тем, что в способе защиты радиолокационной станции от воздействия пассивных помех, обусловленных магнитно-ориентированными неоднородностями электронной концентрации ионосферы для сокращения области возможного воздействия пассивных помех, обусловленных магнитно-ориентированными неоднородностями электронной концентрации ионосферы рассчитывается ракурсный угол ψ, по каждой завязанной цели в диапазоне высот возможного существования ионосферных неоднородностей и находящейся в области малых ракурсных углов до |ψ|=10°, осуществляется накопление сгруппированных по определенным правилам отметок, по окончании накопления производится оценка высотных характеристик сформированной группы отметок и оценка скорости изменения высоты геометрического центра группы отметок, решение о том, что обнаружено воздействие пассивной помехи, обусловленное ионосферными неоднородностями, принимается при одновременном выполнении следующих условий: для N>K отметок группы оценка ракурсного угла i-й отметки меньше, чем пороговая величина ракурсного угла и высота i-й отметки лежит в пределах минимальной и максимальной высоты области возникновения ионосферных неоднородностей, при этом величину К получают экспериментально, далее оценивается толщина полученного слоя группы отметок, которая должна быть меньше порогового значения рассчитанного с учетом ошибки измерения высоты, и скорость изменения высоты геометрического центра группы отметок, которая должна быть меньше скорости изменения высоты возможных целей в диапазоне высот воздействия пассивных помех, обусловленных магнитно-ориентированными неоднородностями электронной концентрации ионосферы, при выполнении условий сравнения рассчитываются границы области помехи по дальности, азимуту, высоте и пороговая величина по мощности отметок, отметки попадающие в эту область не обрабатываются (бланкируются).

Указанный технический результат достигается также тем, что группирование отметок осуществляется по следующему правилу.

Отметка относится к группе, если в группе есть отметка, для которой выполняется неравенство

Δr≤rпор,

где Δr - расстояние между парой отметок в трехмерном пространстве, км;

rпор - мера связи (пороговое расстояние между парой отметок), км.

величина rпор определяется исходя из характеристик радиолокационной станции (РЛС) и особенностей алгоритмов формирования целевых отметок. Целесообразно величину порога выбирать по результатам обработки экспериментальных данных.

Решение о том, что обнаружено воздействие пассивной помехи, обусловленное ионосферными неоднородностями, принимается при одновременном выполнении следующих условий.

1. Для N>K отметок группы выполняется условие

iпор)&(hmin<hi<hmax),

где N - процент отметок, которые удовлетворяют условию;

K - пороговая величина процента отметок, которые удовлетворяют условию (получают экспериментально).

ψi - оценка ракурсного угла i-й отметки;

ψпор - пороговая величина ракурсного угла;

hi - оценка высоты i-й отметки;

hmin, hmax - минимальная и максимальная высота области возникновения ионосферных неоднородностей (вычисляются с учетом возможной ошибки оценки высоты).

Ракурсный угол ψi определяется по соотношению

,

где Нх, Ну, Hz - составляющие геомагнитного поля в точке отражения соответственно по осям х, y, z, направленным на север, восток и к центру Земли. Значения Нх, Ну, Hz вычисляются в соответствии с выбранной моделью геомагнитного поля Земли, например IGRF (международное геомагнитное аналитическое поле);

;

rx, ry, rz - соответствующие составляющие волнового вектора (рассчитываются исходя из координат дислокации РЛС);

Пороговые значения для ракурсных углов определяются исходя из особенностей дислокации и ориентации зон действия РЛС.

2. Полученные оценки толщины и скорости изменения высоты группы имеют значения менее пороговых величин:

(s<sпop)&(Vh<Vпop),

где s - оценка толщины слоя;

Vh - оценка скорости изменения высоты геометрического центра группы отметок;

sпор, Vпор - пороговые значения.

Для вычисления оценок толщины и скорости изменения высоты связанных отметок предлагается следующий порядок.

Полученные отметки группируются по временным интервалам. В качестве интервала выбирается цикл полного обзора барьерных зон, где возможно появление ионосферных неоднородностей. Так как в каждом цикле обзора просматриваются одинаковые угловые направления, то от обзора к обзору создаются равные условия для формирования отметок от неоднородностей ионосферы. Учитывая то, что длительность цикла полного обзора барьерных зон РЛС время достаточно малое, характеристики ионосферных неоднородностей от интервала к интервалу не должны существенно изменяться.

По сгруппированным в одном интервале отметкам могут быть получены оценки, характеризующие пространственное положение и размеры области радиоотражений. Для описания интервала используется следующий набор характеристик: время формирования (время, соответствующее окончанию интервала); минимальная и максимальная высоты (hmin, hmax) отметок, входящих в интервал, а также геометрический центр группы отметок по высоте (hc)

.

По сформированным таким образом интервалам Ii={ti, hmini, hmaxi, hci}, производится оценка «толщины» слоя Δh и скорости изменения hc.

Вычисление высоты отметок осуществляется по формуле

,

где R3 - радиус Земли,

R - дальность отметки;

α - угол места отметки.

Так как число наблюдений, характеризующих толщину слоя, получаемых в течение интервала накопления, достаточно мало, то в качестве ее оценки целесообразно использовать верхнюю границу доверительного интервала, соответствующего заданной доверительной вероятности, для математического ожидания толщины слоя.

Полагается, что разброс hmin, hmax в течение времени наблюдения описывается нормальным законом распределения. Порядок построения доверительных интервалов изложен в [10]. Применительно к решаемой задаче порядок вычислений следующий.

Вычисляется оценка математического ожидания толщины слоя

,

где Δhi=hmахi-hmini - толщина слоя в i-м интервале обзора;

n - количество накопленных интервалов.

Несмещенная оценка дисперсии

.

Доверительный интервал

,

где tβ=1,96 (для вероятности Р=0,95).

В качестве оценки толщины отражающего слоя используется верхняя граница доверительного интервала.

Пороговое значение для оценки толщины отражающего слоя определяется максимально возможной толщиной слоя и ошибками оценки высоты единичных отметок

Sпор=Δhmax+2Δh,

где Δhmax - максимальная толщина слоя;

Δh - максимальная ошибка оценки высоты.

Ошибка оценки высоты зависит от ошибок измерения R, α и методической ошибки, вносимой при расчете R3.

Оценка скорости изменения геометрического центра по высоте производится методом наименьших квадратов в предположении, что высота может изменяться по линейному закону

.

,

,

где Vh - оценка скорости изменения hc.

В случае если сгруппированные отметки классифицированы как радиоотражения от ионосферных неоднородностей, осуществляется формирование бланка. Бланк формируется на следующий интервал времени накопления информации и представляет собой набор данных, характеризующих границы области помехи по дальности, азимуту и высоте, а также пороговую величину по мощности, В={Rmin, Rmax, εmin, εmax, hmin, hmax, Ao}.

Таким образом, при применении способа защиты радиолокационной станции от воздействия пассивных помех, обусловленных магнитно-ориентированными неоднородностями электронной концентрации ионосферы, исключается из обработки (бланкируется) только та область пространства, в которой обнаруженные сигналы с заданной вероятностью отнесены к пассивным помехам, обусловленным магнитно-ориентированными неоднородностями электронной концентрации ионосферы. При этом бланкируемая область зоны обзора значительно сокращается относительно бланкируемой области прототипа и характерна для пассивных помех, обусловленных магнитно-ориентированными неоднородностями электронной концентрации ионосферы, следовательно, уменьшается вероятность пропуска сигналов от целей, т.е. достигается заявленный технический результат.

Изобретение иллюстрируется следующими чертежами:

Фиг. 1 - рассчитанные изолинии ракурсных углов для высоты 110 км, для радиолокационных станций с южной и северной ориентацией.

Фиг. 2 – схема, поясняющая возникновение радиоотражений от магнитно-ориентированных неоднородностей электронной концентрации ионосферы.

Фиг. 3 - блок-схема РЛС, наиболее близкой по технической сущности к заявляемой РЛС.

Фиг. 4 - блок-схема РЛС, на которой возможно осуществить изобретение.

Заявляемый способ может быть реализован в РЛС на фиг. 4, содержащей передатчик 1, антенный переключатель 2, антенну 3, приемник 4, синхронизатор 5, запоминающее устройство обнаруженных сигналов 6, блок автоматического бланкирования обнаруженных сигналов при воздействия пассивных помех ионосферного происхождения 7. При этом выход передатчика 1 соединен с входом антенного переключателя 2 и входом приемника 4, вход/выход антенного переключателя 2 соединен с антенной 3, выход приемника 4 соединен с первым входом запоминающего устройства обнаруженных сигналов, первый и второй выходы синхронизатора 5 соединены с синхровходами передатчика 1 и запоминающего устройства обнаруженных сигналов 6 соответственно, выход запоминающего устройства обнаруженных сигналов 6 соединен с входом блока автоматического бланкирования обнаруженных сигналов при воздействии пассивных помех ионосферного происхождения 7.

Радиолокационная станция может быть выполнена с использованием следующих функциональных элементов.

Передатчик 1 - импульсного типа [11].

Антенный переключатель 2 - выполнен на циркуляторе [12].

Антенна 3 - фазированная антенная решетка [13].

Приемник 4 - супергетеродинного типа [14].

Синхронизатор 5 - выполнен на основе задающего генератора и последовательно соединенной с ним цепочки делителей частоты [14].

Запоминающее устройство обнаруженных сигналов 6 - выполнено на стандартных микросхемах [15].

Блок автоматического бланкирования обнаруженных сигналов при воздействии пассивных помех ионосферного происхождения 7 - цифровой вычислитель, реализует вычисления ракурсных углов, группирование отметок, проверки условия бланкирования обнаруженных сигналов при воздействии пассивных помех, обусловленных магнитно-ориентированными неоднородностями электронной концентрации ионосферы. Решение о том, что обнаружено воздействие пассивной помехи, обусловленное ионосферными неоднородностями, принимают при одновременном выполнении следующих условий: для N>K отметок группы оценка ракурсного угла i-й отметки меньше, чем пороговая величина ракурсного угла и высота i-й отметки лежит в пределах минимальной и максимальной высоты области возникновения ионосферных неоднородностей, при этом величину К получают экспериментально, далее оценивается толщина полученного слоя группы отметок, которая должна быть меньше порогового значения, рассчитанного с учетом ошибки измерения высоты, и скорость изменения высоты геометрического центра группы отметок, которая должна быть меньше скорости изменения высоты возможных целей в диапазоне высот воздействия пассивных помех, обусловленных магнитно-ориентированными неоднородностями электронной концентрации ионосферы, при выполнении условий сравнения рассчитывают границы области помехи по дальности, азимуту, высоте и пороговую величину по мощности отметок, отметки, попадающие в эту область, не обрабатывают (бланкируют), остальные отметки выдаются на дальнейшую обработку.

Работа заявляемой РЛС происходит следующим образом. В передатчике 1 по командам синхронизатора 5 (импульсам синхронизации) формируются зондирующие сигналы, которые в процессе обзора пространства с помощью антенны 3 излучаются в пространство и поступают на приемник. Отраженные сигналы принимаются антенной 3, поступают в приемник 4, где сравниваются с порогом обнаружения, усиливаются и обрабатываются. Обнаруженные сигналы с выхода приемника 4 поступают на запоминающее устройство обнаруженных сигналов 6. По мере осмотра зоны обзора данные с запоминающего устройства обнаруженных сигналов 6 по командам синхронизатора 5 поступают в блок автоматического бланкирования обнаруженных сигналов при воздействия пассивных помех ионосферного происхождения 7, где производится вычисление ракурсных углов, группирование отметок, проверка условия бланкирования обнаруженных сигналов при воздействии пассивных помех, обусловленных магнитно-ориентированными неоднородностями электронной концентрации ионосферы, при выполнении которого рассчитываются границы области помехи по дальности, азимуту, высоте и пороговая величина по мощности отметок, отметки, попадающие в эту область, не обрабатывают (бланкируют), остальные отметки выдаются на дальнейшую обработку, например, для сопровождения траектории.

Таким образом достигается заявляемый технический результат.

Источники информации

1. Вакин С.А., Шустов Л.Н. Основы радиопротиводействия и радиотехнической разведки. - М., Сов. радио, 1968, с. 259.

2. Теоретические основы радиолокации. Под ред. В.Е. Дулевича. - М., Сов. радио, 1978, с. 463, 469.

3. Воздушно-космическая оборона, №4(11) 2003, с. 17, кол. 1-2.

4. Патент на изобретение RU 2370785. Способ защиты радиолокационной станции от пассивных помех.

5. Ангельский Р.Д., Шестов И.В. Отечественные зенитные ракетные комплексы: Иллюстрированный справочник / Р.Д. Ангельский. - М.: ООО «Издательство Астрель»: ООО «Издательство АСТ», 2002. - 25 6 с.: ил. - Военная техника, с. 150-151.

6. Патент на изобретение RU 2403589. Способ защиты обзорной радиолокационной станции от пассивных помех в виде отражений от земной поверхности и радиолокационная станция для его реализации.

7. Физика авроральных явлений. - Л.: Наука, 1988. - 264 с.

8. Свердлов Ю.Л. Морфология радиоавроры. - Л., "Наука", 1982. - 160 с.

9. Филлип Н.Д. Ракурсное рассеяние УКВ среднеширотной ионосферой. - Кишинев: «Штиинца», 1980 - 244 с.

10. Вентцель Е.С. Теория вероятностей: Учебник для студ. вузов / Елена Сергеевна Вентцель. - 9-е изд., стер. - М:. Издательский центр «Академия», 2003. - 576 с.

11. Справочник по основам радиолокационной техники. - М., 1967, с. 278.

12. Справочник по радиолокации. Под ред. М. Сколника, т. 2. - М.: Сов. радио, 1977, с. 132-138.

13. Справочник по основам радиолокационной техники. - М., 1967, с. 343-344.

14. Радиолокационные устройства (теория и принципы построения). Под ред. В.В. Григорина-Рябова. - М.: Сов. радио, 1970, с. 602-603

15. Интегральные микросхемы. Справочник под ред. Б.В. Тарабрина. - М.: Радио и связь, 1984.

Способ защиты радиолокационной станции от воздействия пассивных помех, обусловленных магнитно-ориентированными неоднородностями электронной концентрации ионосферы, включающий принятие решения о том, что обнаруженные сигналы являются отражениями от земной поверхности при сверхрефракции, и их исключают из дальнейшей обработки (бланкируют), в качестве основного условия бланкирования используется условие, основанное на отличительных особенностях отражений от земной поверхности при сверхрефракции, отличающийся тем, что рассчитывают ракурсный угол ψ, по каждой завязанной цели в диапазоне высот возможного существования ионосферных неоднородностей и находящейся в области малых ракурсных углов до |ψ|=10°, осуществляют накопление сгруппированных по правилам отметок, по окончании накопления оценивают высотные характеристики сформированной группы отметок и скорость изменения высоты геометрического центра группы отметок, решение о том, что обнаружено воздействие пассивной помехи, обусловленное ионосферными неоднородностями, принимают при одновременном выполнении следующих условий: для N>K отметок группы оценка ракурсного угла i-й отметки меньше, чем пороговая величина ракурсного угла, и высота i-й отметки лежит в пределах минимальной и максимальной высот области возникновения ионосферных неоднородностей, при этом величину K получают экспериментально, далее оценивают толщину полученного слоя группы отметок, которая должна быть меньше порогового значения, рассчитанного с учетом ошибки измерения высоты, и скорость изменения высоты геометрического центра группы отметок, скорость должна быть меньше скорости изменения высоты возможных целей в диапазоне высот воздействия пассивных помех, обусловленных магнитно-ориентированными неоднородностями электронной концентрации ионосферы, при выполнении условий сравнения рассчитывают границы области помехи по дальности, азимуту, высоте и пороговую величину по мощности отметок, отметки, попадающие в эту область, не обрабатывают (бланкируют).



 

Похожие патенты:

Изобретение относится к области радиолокации, в частности, к радиолокационным станциям, устанавливаемым на подвижных объектах. Достигаемый технический результат – возможность проведения анализа помеховой обстановки, повышение скрытности и надежности работы.

Изобретение предназначено для обеспечения электромагнитной совместимости отечественного средства создания преднамеренных радиопомех с отечественной радиоэлектронной аппаратурой (РЭА) при их одновременной работе на совпадающих частотах без снижения эффективности радиоподавления РЭА противника.

Изобретение относится к устройству, обеспечивающему электромагнитную совместимость отечественного средства создания преднамеренных радиопомех с отечественной радиоэлектронной аппаратурой (РЭА) при их одновременной работе на совпадающих частотах без снижения эффективности радиоподавления РЭА противника.

Изобретение относится к радиотехнике и может быть использовано в системах радиоконтроля. Достигаемый технический результат - повышение эффективности поиска источников излучения, сигналы которых имеют перекрывающиеся энергетические спектры и/или одновременно регистрируются пространственно-разнесенными приемными каналами комплекса радиоконтроля.

Изобретение относится к области радиолокации и может использоваться в обзорных радиолокационных станциях для пеленгации постановщиков активных помех (ПАП). Достигаемый технический результат - уменьшение количества ложных пеленгов ПАП.

Изобретение относится к вращающимся управляемым ракетам, снарядам и боевым элементам с пассивным инфракрасным самонаведением на воздушные, наземные и другие цели.

Изобретение относится к устройствам ближней радиолокации и предназначено главным образом для обнаружения низколетящей сосредоточенной цели или плавательных средств на фоне сигналов, отраженных от распределенной морской поверхности и образованных облучением этой поверхности радиосигналом радиолокатора.

Изобретение относится к радарным системам с защитой от активных импульсных непреднамеренных радиопомех (НРП) радиоэлектронных средств (РЭС), расположенных на одном объекте.
Изобретение относится к области океанологических измерений и преимущественно может быть использовано для контроля состояния поверхности океана. Достигаемый технический результат - повышение точности определения асимметрии распределения возвышений морской поверхности.

Изобретение относится к радиолокации, может быть использовано в радиолокационных станциях (РЛС) малой дальности дециметрового диапазона и предназначено для выделения движущихся на фоне пассивных помех целей.

Изобретение относится к области радиолокации и может быть использовано для распознавания синхронной ответной помехи (СОП). Достигаемый технический результат - распознавание сигналов синхронной ответной помехи, формирующих ложные цели. Указанный результат достигается тем, что осмотр направлений под различными углами места осуществляют зондирующими сигналами с измененными параметрами, принимают решение об обнаружении ложных целей под всеми углами места на дальностях, на которых обнаружены сигналы с прежними параметрами и с измененными, принятыми в зоне, где прием отражений от целей маловероятен или невозможен. Указанный технический результат решается также тем, что зоной, где прием сигналов, отраженных от цели, маловероятен или невозможен, считают зоны, расположенные за пределами прямой видимости и за максимальной дальностью действия РЛС, в области теней (полутеней) и на высотах, недостижимых для реальных целей обнаруженного класса. Указанный технический результат решается также тем, что закон линейной частотной модуляции зондирующего сигнала изменяют на зеркальный, а также тем, что считают ложной целью сигналы, принятые во всем угломестном столбце на дальностях, на которых обнаружены сигналы с измененными параметрами и в пределах прямой видимости, если они коррелированы с сигналами, принятыми в зоне, где прием сигналов, отраженных от целей, маловероятен или невозможен, кроме того, сигналы считают коррелированными, если принятые с одного направления сигналы на разных дальностях имеют одинаковые уровни в режиме линейного приема сигналов и в режиме приема сигналов с ограничением или равны их автокорреляционные функции. 4 з.п. ф-лы, 3 ил.

Изобретение относится к области радиолокации, в частности к радиолокационным системам, использующим линейно-частотно-модулированные сигналы, и предназначено для подавления боковых лепестков сжатого линейно-частотно-модулированного сигнала (ЛЧМ-сигнала) с межпериодным расширением спектра. Достигаемый технический результат - снижение уровня боковых лепестков сжатого ЛЧМ-сигнала с межпериодным расширением спектра. Способ заключаюется в том, что формируют сигнал в виде последовательности из М ЛЧМ-импульсов, где М целое число, большее либо равное единице, причем несущая частота ЛЧМ-импульсов изменяется от импульса к импульсу с перекрытием спектров отдельных ЛЧМ-импульсов, излучают сигнал, принимают отраженный сигнал, осуществляют сжатие принятого сигнала путем свертки с опорным сигналом. Перед сжатием принятого сигнала формируют опорный сигнал посредством весового взвешивания каждого из М ЛЧМ-импульсов последовательности двумя специально подобранными оконными функциями. 2 з.п. ф-лы, 4 ил.

Изобретение относится к радиолокационной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Достигаемый технический результат - повышение эффективности выделения сигналов движущихся целей. Указанный результат достигается тем, что фильтр подавления помех содержит первый и второй блоки задержки, блок весовых коэффициентов, первый и второй комплексные перемножители, весовой блок, комплексный сумматор, блок комплексного сопряжения, блок переключения, блок точности, блок коммутации, двухканальный коммутатор и синхрогенератор, определенным образом соединенные между собой и осуществляющие когерентную обработку исходных отсчетов. 11 ил.

Изобретение относится к радиолокационной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Достигаемый технический результат - повышение эффективности выделения сигналов движущихся целей. Указанный результат достигается тем, что режекторный фильтр содержит первый и второй блоки задержки, блок весовых коэффициентов, первый и второй комплексные перемножители, весовой блок, комплексный сумматор, блок комплексного сопряжения, блок переключения, блок точности, блок коммутации, двухканальный коммутатор и синхрогенератор, определенным образом соединенные между собой и осуществляющие когерентную обработку исходных отсчетов. 11 ил.

Изобретение относится к технике первичных дальностных измерений импульсно-доплеровских радиолокационных станций (ИД РЛС). Достигаемый технический результат - повышение помехоустойчивости первичной дальнометрии обнаруженной одиночной либо не разрешаемой по углу и скорости группы рассредоточенных по дальности целей, которые предварительно обнаружены на фоне интенсивных пассивных помех (ПП) с узкополосным энергетическим спектром, например отражений от подстилающей поверхности земли, местных предметов и малоскоростных метеообразований. Указанный результат достигается использованием в измерительном цикле зондирования адаптированных к фоноцелевой обстановке квазинепрерывных сигналов с оптимизированными параметрами модуляции и характеристиками приемообработки локационных сигналов. Благодаря этому обеспечивается типовая для ИД РЛС эффективная доплеровская селекция целей на фоне ПП с возможностью их первичной дальнометрии за один-два цикла зондирования с точностью, соизмеримой с точностью дальностных измерений нониусным методом с многократным перебором используемых частот повторения импульсов. 3 з.п. ф-лы, 7 ил.

Изобретение относится к вычислительной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Достигаемый технический результат - повышение эффективности выделения сигналов движущихся целей. Вычислитель для подавления помех содержит первый, второй и третий блоки задержки, блок весовых коэффициентов, первый и второй комплексные перемножители, весовой блок, комплексный сумматор, синхрогенератор, блок комплексного сопряжения, блок переключения, блок точности, блок коммутации и двухканальный коммутатор, определенным образом соединенные между собой и осуществляющие когерентную обработку исходных отсчетов. Сигнал от движущейся цели и пассивной помехи, значительно превышающий полезный сигнал в квадратурных фазовых детекторах, переносится на видеочастоту и преобразуется таким образом, чтобы компенсировались остатки помехи. 11 ил.

Изобретения относятся к области радиолокации и могут быть использованы для сокращения времени обзора направления. Достигаемым техническим результатом изобретений является сокращение временных затрат на обнаружение подвижных целей и на измерение их координат в условиях действия пассивных помех. Технический результат достигается тем, что в двухэтапном способе измерения координат цели на первом этапе разрешают цель по скорости, а на втором - определяют дальность до нее, при этом параметры сигнала и (или) режим обнаружения цели на втором этапе формируют на основе информации об интервалах неоднозначности координат цели, полученных на первом этапе. Устройство для реализации способа содержит антенну, переключатель прием-передача, передатчик, приемник, регистратор обнаружения цели, формирователь сигнала, синхронизатор, устройство селекции движущихся целей (СДЦ), два оптимальных фильтра, многоотводную линию задержки с устройствами логического перемножения «И» в каждом отводе, вычислитель интервалов неоднозначности, при этом выход антенны соединен с первым входом переключателя прием-передача, выход которого соединен с входом приемника, выход приемника соединен с входом устройства СДЦ, первый выход устройства СДЦ соединен с входом первого оптимального фильтра, а второй его выход соединен с входом второго оптимального фильтра, выход первого оптимального фильтра соединен с входом вычислителя интервалов неоднозначности и с входом многоотводной линии задержки, выход вычислителя интервалов неоднозначности соединен с входом синхронизатора, первый выход которого соединен с входом формирователя сигнала, а второй со вторым входом многоотводной линии задержки, выход формирователя сигнала соединен с входом передатчика, выход передатчика соединен со вторым входом переключателя прием-передача, выход второго оптимального фильтра соединен со вторыми входами устройств логического перемножения «И», первые входы которых соединены с соответствующими отводами многоотводной линии задержки, выходы устройств логического перемножения «И» соединены с соответствующими входами регистратора обнаружения цели. 2 н. и 4 з.п. ф-лы, 3 ил.

Пороговое устройство для сигналов систем управления воздушным движением содержит аналого-цифровой преобразователь, схему вычисления постоянной составляющей сигнала, блок вычислителя амплитуды, четыре цифровых компаратора, три цифровых сумматора, противопомеховое устройство, две схемы выбора максимального значения, схему плавающего порога, соединенные определенным образом. Обеспечивается увеличение помехозащищенности бортовой аппаратуры управления воздушным движением. 6 ил.

Изобретение относится к области радиолокации и предназначено для использования в радиолокационных станциях для детектирования движущихся целей на фоне отражений от земной поверхности. Достигаемый технический результат - уменьшение вероятности обнаружения ложных целей и вероятности пропуска целей. Указанный результат достигается за счет того, что накапливают заданное количество радиолокационных кадров, находят в одних и тех же точках радиолокационных кадров амплитудные спектры функций яркости и вычисляют эффективную ширину, формируют результирующее яркостное изображение, размер которого равен размеру радиолокационных кадров, при этом в точках результирующего изображения устанавливают значение высокой или низкой яркости в зависимости от заданного порогового значения. 3 ил.
Наверх