Способ получения ω-(бис(пиридин-2-илметил)амино)алифатических кислот - прекурсоров с хелатными центрами для связывания металлов

Изобретение относится к области органической химии, конкретно к способу получения ω-(бис(пиридин-2-илметил)амино)алифатических кислот, которые являются прекурсорами с хелатными центрами для связывания металлов. Предлагаемый способ включает получение эфиров ω-производных алифатических кислот с последующим взаимодействием с реагентом, содержащим пиколил-заместитель, и состоит из двух стадий. На первой стадии получают промежуточные продукты синтеза - эфиры ω-иодалифатических карбоновых кислот - путем окислительного расщепления алифатических циклических кетонов под действием пероксида водорода в присутствии катализатора ионов меди и соединений иода при комнатной температуре. Подвергают расщеплению циклические кетоны, в качестве катализатора используют меди(I) хлорид, получение проводят при соотношении компонентов циклические кетоны:пероксид водорода:меди(I) хлорид=1:5:0,1, при перемешивании в течение 10-20 ч в присутствии метанольных или этанольных растворов иода. Количество иода берут в соотношении циклические кетоны:иод=1:0,5. Далее в реакционную массу добавляют насыщенный раствор натрия гидрокарбоната, переводя ω-иодалифатические карбоновые кислоты в водный слой в виде натриевых солей, а их эфиры отделяют путем экстракции водного слоя этилацетатом. Затем этилацетатное извлечение осушают с помощью натрия сульфата безводного, этилацетат отгоняют и получают эфиры ω-иодалифатических карбоновых кислот. На второй стадии в эфирах ω-иодалифатических карбоновых кислот атом иода замещают на бис(пиридин-2-илметил)аминогруппу, для чего используют ди-2-пиколиламин. Вторую стадию проводят при соотношении компонентов эфиры ω-иодалифатических карбоновых кислот:ди-2-пиколиламин:триэтиламин=1:1,16:1, соответственно, при перемешивании при 50°C в течение 24 ч. После этого выделяют эфиры ω-(бис(пиридин-2-илметил)амино)алифатических кислот, для чего в реакционную массу добавляют насыщенный раствор натрия гидрокарбоната и экстрагируют этилацетатом. Этилацетатное извлечение осушают с помощью натрия сульфата безводного, этилацетат отгоняют, остаток подвергают очистке методом колоночной хроматографии на силикагеле с использованием в качестве элюента смеси гексан-этилацетат (1:1), постепенно повышая градиент последнего, и выделяют эфир ω-(бис(пиридин-2-илметил)амино)алифатической кислоты. Полученный эфир подвергают гидролизу в ацетонитриле под действием концентрированной хлороводородной кислоты в течение 2 ч при температуре 50°C, растворитель отгоняют под вакуумом и получают ω-(бис(пиридин-2-илметил)амино)алифатические кислоты, не требующие дополнительной очистки. Предлагаемый способ позволяет повысить выход ω-(бис(пиридин-2-илметил)амино)алифатических кислот. 9 ил., 16 пр.

 

Изобретение относится к области органической химии, в частности к способам получения ω-бис(пиридин-2-илметил)амино)алифатических кислот - прекурсоров с хелатными центрами для связывания металлов на основе реакции расщепления циклических кетонов, соответствующих принципам «зеленой» химии (Green Chemistry), которые могут применяться в различных областях техники, в том числе в органической и фармацевтической химии, биохимии и в медицине, в частности, в качестве радиофармпрепаратов (фиг 1).

Значительное место в диагностике и терапии занимают радиофармацевтические препараты на основе изотопов технеция-99 и рения-188 соответственно. Главным в разработке синтеза таких радиофармпрепаратов является введение в их структуры прекурсоров - лиганд с высокой хелатирующей способностью для прочного связывания технеция-99 или рения-188, в качестве которых успешно применяются ω-бис(пиридин-2-илметил)амино)алифатические кислоты. Таким образом, разработка на основе реакции расщепления алифатических циклических кетонов нового способа получения ω-бис(пиридин-2-илметил)амино)алифатических кислот в качестве прекурсоров для связывания металлов является актуальной.

Известен способ получения производных ω-бис(пиридин-2-илметил)амино)алифатических кислот, основанный на синтезе из омега-аминопропановой и омега-аминогексановой кислот и 2-пиколил хлорид гидрохлоридом (фиг. 2). Исходные кислоты и 2-пиколил хлорид гидрохлорид растворяют в воде и перемешивают в течение 5 дней при комнатной температуре. Далее реакционную смесь подвергают обработке последовательно кислотой и щелочью и экстрагируют хлороформом. Грубый продукт очищают перекристаллизацией, и выход продукта составляет не более 41%. Главным недостатком этого метода является длительность процесса получения и низкие выходы конечных продуктов [2].

Известен способ получения ω-бис(пиридин-2-илметил)амино)алифатических кислот, основанный на синтезе из омега-аминоалифатических кислот и пиридин-2-карбальдегида в присутствии натрия триацетоксиборгидрида и дихлорэтана. Синтез ведут при перемешивании в течение 8 часов при комнатной температуре с последующим выделением продуктов экстракцией хлороформом и очисткой флэш-хроматографией (фиг. 3) [3]. Выходы продуктов невысокие (40-80%), реагенты малодоступные.

Наиболее близким к предлагаемому можно считать способ получения 6-(бис(пиридин-2-илметил)амино)гексановой и 11-(бис(пиридин-2-илметил)амино)ундекановой кислот, который включает реакцию нуклеофильного замещения атомов водорода в амино-группах 6-аминокапроновой кислоты или 11-аминоундекановой кислоты на 2-пиколин бромид (фиг. 4) [4]. В данном способе на первой стадии исходные субстраты 6-аминогексановую кислоту или 11-(бис(пиридин-2-илметил)амино)ундекановую кислоту этерифицируют метиловым спиртом с использованием токсичного тионилхлорида. Выходы продуктов составили не более 45%. На второй стадии метилированные продукты реагируют с двухкратным избытком 2-пиколин бромида в течение 5 дней при перемешивании при температуре 50°C. Выходы целевых продуктов 34-41%. Недостатками способа являются необходимость проводить предварительно трудоемкую реакцию этерификацию исходных субстратов с использованием токсичного тионилхлорида, низкие выходы продуктов реакции, большой расход реагента 2-пиколин бромида и длительность синтеза.

Новая техническая задача - упрощение способа, повышение селективности способа, повышение выходов продуктов, универсальность метода.

Для решения поставленной задачи в способе получения ω-бис(пиридин-2-илметил)амино)алифатических кислот, включающем получение эфиров ω-производных алифатических кислот с последующим взаимодействием с реагентом, содержащим пиколил-заместитель, на первом этапе получают промежуточные продукты синтеза - эфиры ω-иодалифатических карбоновых кислот путем окислительного расщепления алифатических циклических кетонов под действием пероксида водорода в присутствии катализатора ионов меди и соединений иода, при комнатной температуре, при этом, подвергают расщеплению такие циклические кетоны, как циклопентанон, циклогексанон, или циклогептанон, или 4-метилциклогексанон, или любой другой циклический кетон, также, в качестве катализатора используют меди (I) хлорид; получение проводят при следующем соотношении компонентов: циклические кетоны - пероксид водорода - меди (I) хлорид - 1:5:0,1, при перемешивании, в течение 10-20 часов, в присутствии метанольных или этанольных растворов иода, также, количество иода берут в следующем соотношении: циклические кетоны - иод - 1:0,5. Для выделения и разделения промежуточных продуктов в реакционную массу добавляют насыщенный раствор натрия гидрокарбоната, при этом, ω-иодалифатические карбоновые кислоты переводят в водный слой в виде натриевых солей, а их эфиры отделяют путем экстракции водного слоя этилацетатом, после этого, этилацетатное извлечение осушают с помощью натрия сульфата безводного, этилацетат отгоняют и получают эфиры ω-иодалифатических карбоновых кислот. На второй стадии способа в эфирах ω-иодалифатических карбоновых кислот атом иода замещают на бис(пиридин-2-илметил)амино)-группу, для этого используют ди-2-пиколиламин. Вторую стадию проводят при следующем соотношении компонентов: эфиры ω-иодалифатических карбоновых кислот - ди-2-пиколиламин - триэтиламин - 1:1,16:1, при перемешивании при 50°C в течение 24 часов. Для выделения эфиров ω-бис(пиридин-2-илметил)амино)алифатических кислот в реакционную массу добавляют насыщенный раствор натрия гидрокарбоната и экстрагируют этилацетатом, этилацетатное извлечение осушают с помощью натрия сульфата безводного, этилацетат отгоняют. Остаток подвергают очистки методом колоночной хроматографии на силикагеле с использованием в качестве элюента смесь гексан - этилацетат (1:1) постепенно повышая градиент последнего и выделяют эфир ω-бис(пиридин-2-илметил)амино)алифатической кислоты. Полученный эфир подвергают гидролизу в ацетонитриле под действием концентрированной хлороводородной кислотой в течение 2 часов при температуре 50°C. Растворитель отгоняют под вакуумом и получают ω-бис(пиридин-2-илметил)амино)алифатические кислоты, не требующие дополнительной очистки.

Отличительные признаки проявили в заявляемой совокупности предлагаемого способа новые свойства, явным образом не вытекающие из уровня техники в данной области и не очевидные для специалиста.

Предлагаемая совокупность признаков не описана в патентной и научно-технической литературе.

Примеры конкретных способов получения ω-бис(пиридин-2-илметил)амино)алифатических кислот

Пример 1. Получение метилового эфира ω-иодгексановой кислоты

К раствору циклогексанона в 10 мл метанола (6 ммоль, 0,588 г, ρ=0,946 г/см3) добавляют иод (3 ммоль, 0,762 г), катализатор меди (I) хлорида (0,6 ммоль, 0,06 г). Затем при перемешивании при комнатной температуре по каплям вносят раствор пероксида водорода в метаноле (12 ммоль, 1,275 г пергидроля (32%-ного H2O2, ρ=1,125 г/см3) в 5 мл метанола) в течение 4 часов. Далее добавляют 12 ммоль (1,275 г) пергидроля и меди (I) хлорида (0,3 ммоль, 0,03 г), перемешивают при комнатной температуре 10 часов и после этого добавляют еще 6 ммоль (0,638 г) пергидроля при перемешивании еще 6 часов в тех же условиях.

К реакционной смеси добавляют насыщенный раствор натрия гидрокарбоната до прекращения выделения углекислого газа и натрия сульфит для окисления остатка иода. Далее реакционную смесь фильтруют, отбрасывая осадок, содержащий соли меди (I) хлориды и иодиды. Полученный фильтрат экстрагируют этилацетатом (2×10 мл). Этилацетатное извлечение осушают путем пропускания через натрий сульфат безводный и растворитель отгоняют. Полученную светло-желтую маслообразную массу сушат под вакуумом. Выход 1,248 г (81%). Спектр ЯМР 1Н (500 MHz, CDCl3, δ, м.д.): 3,67 (с, 3H), 3,18 (т, 2Н), 2,32 (т, 2Н), 1,84 (кв, 2Н), 1,62 (кв, 2Н), 1,43(кв, 2Н) (фиг. 5).

Пример 2. Получение метилового эфира 6-(бис(пиридин-2-илметил)амино)гексановой кислоты при 30°C

К метиловому эфиру ω-иодгексановой кислоты (2,37 ммоль, 0,6068 г), полученному по примеру 1, добавляют 500 мкл (2,76 ммоль) 2-(дипикалил)амина, 2 мл изопропанола и 330 мкл (2,37 ммоль) триэтиламина. Реакционную массу перемешивают при 30°C в течение 24 часов. Конец реакции определяют методом тонкослойной хроматографии (элюент : этилацетат-этанол =10:3).

После к реакционной массе добавляют 5 мл 10% раствора соды и экстрагируют этилацетатом (2×5 мл). Этилацетатное извлечение промывают рассолом, сушат с безводным натрия сульфатом и растворитель отгоняют. Полученный продукт подвергают очистки методом колоночной хроматографии на силикагели с использованием в качестве элюента смесь гексан - этилацетат (1:1) постепенно повышая градиент последнего. Выход продукта составил 32%.

Для идентификации синтезированного метил 6-(бис(пиридин-2-илметил)амино)гексаноата был получен 1H-ЯМР-спектр, вид которого соответствует структуре синтезированного эфира (300 МГц, CDCl3, δ, м.д., J, Гц): 8,48 (д, 2Наром, J=4,8 Гц), 7,61 (т, 2Наром), 7,48 (д, 2Наром, J=7,8 Гц), 7,11 (т, 2Наром), 3,8 (с, СН2), 3,67 (с, СН3), 2,52 (т, СН2), 2,24 (т, СН2), 1,52 (м, СН2), 1,25 (м, СН2) (фиг. 6). MS (ESI)-m/z: (М+Н)+ - найдено: 328,2032, (М+Н)+ - вычислено: 328,2020 (фиг. 7).

Пример 3. Получение метилового эфира 6-(бис(пиридин-2-илметил)амино)гексановой кислоты при 40°C

К метиловому эфиру ω-иодгексановой кислоты (2,37 ммоль, 0,6068 г), полученному по примеру 1, добавляют 500 мкл (2,76 ммоль) 2-(дипикалил)амина, 2 мл изопропанола и 330 мкл (2,37 ммоль) триэтиламина. Реакционную массу перемешивают при 40°C в течение 24 часов. Конец реакции определяют методом тонкослойной хроматографии (элюент : этилацетат-этанол =10:3).

После к реакционной массе добавляют 5 мл 10% раствора соды и экстрагируют этилацетатом (2×5 мл). Этилацетатное извлечение промывают рассолом, сушат с безводным натрия сульфатом и растворитель отгоняют. Полученный продукт подвергают очистки методом колоночной хроматографии на силикагели с использованием в качестве элюента смесь гексан - этилацетат (1:1) постепенно повышая градиент последнего. Выход продукта составил 61%.

Для идентификации синтезированного метил 6-(бис(пиридин-2-илметил)амино)гексаноата был получен 1H-ЯМР-спектр, вид которого соответствует структуре синтезированного эфира (300 МГц, CDCl3, δ, м.д., J, Гц): 8,48 (д, 2Наром, J=4,8 Гц), 7,61 (т, 2Наром), 7,48 (д, 2Наром, J=7,8 Гц), 7,11(т, 2Наром), 3,8 (с, СН2), 3,67 (с, СН3), 2,52 (т, СН2), 2,24 (т, СН2), 1,52 (м, СН2), 1,25 (м, СН2) (фиг. 6). MS (ESI)-m/z: (М+Н)+ - найдено: 328,2032, (М+Н)+ - вычислено: 328,2020 (фиг. 7).

Пример 4. Получение метилового эфира 6-(бис(пиридин-2-илметил)амино)гексановой кислоты при 45°C

К метиловому эфиру ω-иодгексановой кислоты (2,37 ммоль, 0,6068 г), полученному по примеру 1, добавляют 500 мкл (2,76 ммоль) 2-(дипикалил)амина, 2 мл изопропанола и 330 мкл (2,37 ммоль) триэтиламина. Реакционную массу перемешивают при 45°C в течение 24 часов. Конец реакции определяют методом тонкослойной хроматографии (элюент : этилацетат-этанол =10:3).

После к реакционной массе добавляют 5 мл 10% раствора соды и экстрагируют этилацетатом (2×5 мл). Этилацетатное извлечение промывают рассолом, сушат с безводным натрия сульфатом и растворитель отгоняют. Полученный продукт подвергают очистки методом колоночной хроматографии на силикагели с использованием в качестве элюента смесь гексан - этилацетат (1:1) постепенно повышая градиент последнего. Выход продукта составил 83%.

Для идентификации синтезированного метил 6-(бис(пиридин-2-илметил)амино)гексаноата был получен 1H-ЯМР-спектр, вид которого соответствует структуре синтезированного эфира (300 МГц, CDCl3, δ, м.д., J, Гц): 8,48 (д, 2Наром, J=4,8 Гц), 7,61 (т, 2Наром), 7,48 (д, 2Наром, J=7,8 Гц), 7,11 (т, 2Наром), 3,8 (с, СН2), 3,67 (с, СН3), 2,52 (т, СН2), 2,24 (т, СН2), 1,52 (м, СН2), 1,25 (м, СН2) (фиг. 5). MS (ESI)-m/z: (М+Н)+ - найдено: 328,2032, (М+Н)+ - вычислено: 328,2020 (фиг. 6).

Пример 5. Получение метилового эфира 6-(бис(пиридин-2-илметил)амино)гексановой кислоты при 50°C

К метиловому эфиру ω-иодгексановой кислоты (2,37 ммоль, 0,6068 г), полученному по примеру 1, добавляют 500 мкл (2,76 ммоль) 2-(дипикалил)амина, 2 мл изопропанола и 330 мкл (2,37 ммоль) триэтиламина. Реакционную массу перемешивают при 50°C в течение 24 часов. Конец реакции определяют методом тонкослойной хроматографии (элюент : этилацетат-этанол =10:3).

После к реакционной массе добавляют 5 мл 10% раствора соды и экстрагируют этилацетатом (2×5 мл). Этилацетатное извлечение промывают рассолом, сушат с безводным натрия сульфатом и растворитель отгоняют. Полученный продукт подвергают очистки методом колоночной хроматографии на силикагели с использованием в качестве элюента смесь гексан - этилацетат (1:1) постепенно повышая градиент последнего. Выход продукта составил 90%.

Для идентификации синтезированного метил 6-(бис(пиридин-2-илметил)амино)гексаноата был получен 1H-ЯМР-спектр, вид которого соответствует структуре синтезированного эфира (300 МГц, CDCl3, δ, м.д., J, Гц): 8,48 (д, 2Наром, J=4,8 Гц), 7,61 (т, 2Наром), 7,48 (д, 2Наром, J=7,8 Гц), 7,11 (т, 2Наром), 3,8 (с, СН2), 3,67 (с, СН3), 2,52 (т, СН2), 2,24 (т, СН2), 1,52 (м, СН2), 1,25 (м, СН2) (фиг. 6). MS (ESI)-m/z: (М+Н)+ - найдено: 328,2032, (М+Н)+ - вычислено: 328,2020 (фиг. 7).

Пример 6. Получение метилового эфира 6-(бис(пиридин-2-илметил)амино)гексановой кислоты при 55°C

К метиловому эфиру ω-иодгексановой кислоты (2,37 ммоль, 0,6068 г), полученному по примеру 1, добавляют 500 мкл (2,76 ммоль) 2-(дипикалил)амина, 2 мл изопропанола и 330 мкл (2,37 ммоль) триэтиламина. Реакционную массу перемешивают при 55°C в течение 24 часов. Конец реакции определяют методом тонкослойной хроматографии (элюент : этилацетат-этанол =10:3).

После к реакционной массе добавляют 5 мл 10%) раствора соды и экстрагируют этилацетатом (2×5 мл). Этилацетатное извлечение промывают рассолом, сушат с безводным натрия сульфатом и растворитель отгоняют. Полученный продукт подвергают очистки методом колоночной хроматографии на силикагели с использованием в качестве элюента смесь гексан - этилацетат (1:1) постепенно повышая градиент последнего. Выход продукта составил 86%.

Для идентификации синтезированного метил 6-(бис(пиридин-2-илметил)амино)гексаноата был получен 1Н-ЯМР-спектр, вид которого соответствует структуре синтезированного эфира (300 МГц, CDCl3, δ, м.д., J, Гц): 8,48 (д, 2Наром, J=4,8 Гц), 7,61 (т, 2Наром), 7,48 (д, 2Наром, J=7,8 Гц), 7,11 (т, 2Наром), 3,8 (с, СН2), 3,67 (с, СН3), 2,52 (т, СН2), 2,24 (т, СН2), 1,52 (м, СН2), 1,25 (м, СН2) (фиг. 6). MS (ESI)-m/z: (М+Н)+ - найдено: 328,2032, (М+Н)+ - вычислено: 328,2020 (фиг. 7).

Пример 7. Получение метилового эфира 6-(бис(пиридин-2-илметил)амино)гексановой кислоты при 60°C

К метиловому эфиру ω-иодгексановой кислоты (2,37 ммоль, 0,6068 г), полученному по примеру 1, добавляют 500 мкл (2,76 ммоль) 2-(дипикалил)амина, 2 мл изопропанола и 330 мкл (2,37 ммоль) триэтиламина. Реакционную массу перемешивают при 60°C в течение 24 часов. Конец реакции определяют методом тонкослойной хроматографии (элюент : этилацетат-этанол =10:3).

После к реакционной массе добавляют 5 мл 10% раствора соды и экстрагируют этилацетатом (2×5 мл). Этилацетатное извлечение промывают рассолом, сушат с безводным натрия сульфатом и растворитель отгоняют. Полученный продукт подвергают очистки методом колоночной хроматографии на силикагели с использованием в качестве элюента смесь гексан - этилацетат (1:1) постепенно повышая градиент последнего. Выход продукта составил 64%.

Для идентификации синтезированного метил 6-(бис(пиридин-2-илметил)амино)гексаноата был получен 1H-ЯМР-спектр, вид которого соответствует структуре синтезированного эфира (300 МГц, CDCl3, δ, м.д., J, Гц): 8,48 (д, 2Наром, J=4,8 Гц), 7,61 (т, 2Наром), 7,48 (д, 2Наром, J=7,8 Гц), 7,11 (т, 2Наром), 3,8 (с, СН2), 3,67 (с, СН3), 2,52 (т, СН2), 2,24 (т, СН2), 1,52 (м, СН2), 1,25 (м, СН2) (фиг. 6). MS (ESI)-m/z: (М+Н)+ - найдено: 328,2032, (М+Н)+ - вычислено: 328,2020 (фиг. 7).

Пример 8. Получение метилового эфира 6-(бис(пиридин-2-илметил)амино)гексановой кислоты при 70°C

К метиловому эфиру ω-иодгексановой кислоты (2,37 ммоль, 0,6068 г), полученному по примеру 1, добавляют 500 мкл (2,76 ммоль) 2-(дипикалил)амина, 2 мл изопропанола и 330 мкл (2,37 ммоль) триэтиламина. Реакционную массу перемешивают при 70°C в течение 24 часов. Конец реакции определяют методом тонкослойной хроматографии (элюент : этилацетат-этанол =10:3).

После к реакционной массе добавляют 5 мл 10% раствора соды и экстрагируют этилацетатом (2×5 мл). Этилацетатное извлечение промывают рассолом, сушат с безводным натрия сульфатом и растворитель отгоняют. Полученный продукт подвергают очистки методом колоночной хроматографии на силикагели с использованием в качестве элюента смесь гексан - этилацетат (1:1) постепенно повышая градиент последнего. Выход продукта составил 42%.

Для идентификации синтезированного метил 6-(бис(пиридин-2-илметил)амино)гексаноата был получен 1H-ЯМР-спектр, вид которого соответствует структуре синтезированного эфира (300 МГц, CDCl3, δ, м.д., J, Гц): 8,48 (д, 2Наром, J=4,8 Гц), 7,61 (т, 2Наром), 7,48 (д, 2Наром, J=7,8 Гц), 7,11 (т, 2Наром), 3,8 (с, СН2), 3,67 (с, СН3), 2,52 (т, СН2), 2,24 (т, СН2), 1,52 (м, СН2), 1,25 (м, СН2) (фиг. 6). MS (ESI)-m/z: (М+Н)+ - найдено: 328,2032, (М+Н)+ - вычислено: 328,2020 (фиг. 7).

Пример 9. Получение метилового эфира 6-(бис(пиридин-2-илметил)амино)гексановой кислоты

К метиловому эфиру ω-иодгексановой кислоты (2,37 ммоль, 0,6068 г), полученному по примеру 1, добавляют 500 мкл (2,76 ммоль) 2-(дипикалил)амина, 2 мл изопропанола и 165 мкл (1,86 ммоль) триэтиламина. Реакционную массу перемешивают при 50°C в течение 24 часов. Конец реакции определяют методом тонкослойной хроматографии (элюент : этилацетат-этанол =10:3).

После к реакционной массе добавляют 5 мл 10% раствора соды и экстрагируют этилацетатом (2×5 мл). Этилацетатное извлечение промывают рассолом, сушат с безводным натрия сульфатом и растворитель отгоняют. Полученный продукт подвергают очистки методом колоночной хроматографии на силикагели с использованием в качестве элюента смесь гексан - этилацетат (1:1) постепенно повышая градиент последнего. Выход продукта составил 32%.

Для идентификации синтезированного метил 6-(бис(пиридин-2-илметил)амино)гексаноата был получен 1H-ЯМР-спектр, вид которого соответствует структуре синтезированного эфира (300 МГц, CDCl3, δ, м.д., J, Гц): 8,48 (д, 2Наром, J=4,8 Гц), 7,61 (т, 2Наром), 7,48 (д, 2Наром, J=7,8 Гц), 7,11 (т, 2Наром), 3,8 (с, СН2), 3,67 (с, СН3), 2,52 (т, СН2), 2,24 (т, СН2), 1,52 (м, СН2), 1,25 (м, СН2) (фиг. 6). MS (ESI)-m/z: (М+Н)+ - найдено: 328,2032, (М+Н)+ - вычислено: 328,2020 (фиг. 7).

Пример 10. Получение метилового эфира 6-(бис(пиридин-2-илметил)амино)гексановой кислоты

К метиловому эфиру ω-иодгексановой кислоты (2,37 ммоль, 0,6068 г), полученному по примеру 1, добавляют 430 мкл (2,37 ммоль) 2-(дипикалил)амина, 2 мл изопропанола и 330 мкл (2,37 ммоль) триэтиламина. Реакционную массу перемешивают при 50°C в течение 24 часов. Конец реакции определяют методом тонкослойной хроматографии (элюент : этилацетат-этанол =10:3).

После к реакционной массе добавляют 5 мл 10% раствора соды и экстрагируют этилацетатом (2×5 мл). Этилацетатное извлечение промывают рассолом, сушат с безводным натрия сульфатом и растворитель отгоняют. Полученный продукт подвергают очистки методом колоночной хроматографии на силикагели с использованием в качестве элюента смесь гексан - этилацетат (1:1) постепенно повышая градиент последнего. Выход продукта составил 32%.

Для идентификации синтезированного метил 6-(бис(пиридин-2-илметил)амино)гексаноата был получен 1H-ЯМР-спектр, вид которого соответствует структуре синтезированного эфира (300 МГц, CDCl3, δ, м.д., J, Гц): 8,48 (д, 2Наром, J=4,8 Гц), 7,61 (т, 2Наром), 7,48 (д, 2Наром, J=7,8 Гц), 7,11 (т, 2Наром), 3,8 (с, СН2), 3,67 (с, СН3), 2,52 (т, СН2), 2,24 (т, СН2), 1,52 (м, СН2), 1,25 (м, СН2) (фиг. 6). MS (ESI)-m/z: (М+Н)+ - найдено: 328,2032, (М+Н)+ - вычислено: 328,2020 (фиг. 7).

Пример 11. Методика синтеза 6-(бис(пиридин-2-илметил)амино)гексановой кислоты при 50°C

Метил 6-(бис(пиридин-2-илметил)амино)гексаноат 0,053 г (0,16 ммоль) растворяют в 2 мл ацетонитрила и добавляют 50 мкл HCl (36%). Реакционную массу перемешивают в течение 2 часов при температуре 50°C. Конец реакции определяют методом тонкослойной хроматографии (элюент : этилацетат - этанол =10:3). После окончания гидролиза растворители отгоняют при пониженном давлении. Выход продукта составил 96%. Для идентификации синтезированной 6-(бис(пиридин-2-илметил)амино)гексановой кислоты был получен 1Н-ЯМР-спектр, вид которого соответствует структуре синтезированной кислоте (300 МГц, H2O, δ, м.д., J, Гц): 8,65 (д, 2Наром, J=5,7 Гц), 8,4 (т, 2Наром), 7,97 (д, 2Наром, J=9,1 Гц), 7,89 (т, 2Наром), 4,24 (с, СН2), 2,20 (т, СН2), 1,40 (м, СН2), 1,10 (м, СН2). (фиг. 8). MS (ESI)-m/z для C18H24N3O2: (М+Н)+ - найдено: 314,1879; (М+Н)+ - вычислено: 314,1869 (фиг. 9)

Пример 12. Методика синтеза 6-(бис(пиридин-2-илметил)амино)гексановой кислоты при 40°C

Метил 6-(бис(пиридин-2-илметил)амино)гексаноат 0,053 г (0,16 ммоль) растворяют в 2 мл ацетонитрила и добавляют 50 мкл HCl (36%). Реакционную массу перемешивают в течение 2 часов при температуре 40°C. Конец реакции определяют методом тонкослойной хроматографии (элюент : этилацетат - этанол =10:3). После окончания гидролиза растворители отгоняют при пониженном давлении. Выход продукта составил 76%. Для идентификации синтезированной 6-(бис(пиридин-2-илметил)амино)гексановой кислоты был получен 1H-ЯМР-спектр, вид которого соответствует структуре синтезированной кислоте (300 МГц, H2O, δ, м.д., J, Гц): 8,65 (д, 2Наром, J=5,7 Гц), 8,4 (т, 2Наром), 7,97 (д, 2Наром, J=9,1 Гц), 7,89 (т, 2Наром), 4,24 (с, СН2), 2,20 (т, СН2), 1,40 (м, СН2), 1,10 (м, СН2). (фиг. 8). MS (ESI)-m/z для C18H24N3O2: (М+Н)+ - найдено: 314,1879; (М+Н)+ - вычислено: 314,1869 (фиг. 9).

Пример 13. Методика синтеза 6-(бис(пиридин-2-илметил)амино)гексановой кислоты при 45°C

Метил 6-(бис(пиридин-2-илметил)амино)гексаноат 0,053 г (0,16 ммоль) растворяют в 2 мл ацетонитрила и добавляют 50 мкл HCl (36%). Реакционную массу перемешивают в течение 2 часов при температуре 45°C. Конец реакции определяют методом тонкослойной хроматографии (элюент : этилацетат - этанол =10:3). После окончания гидролиза растворители отгоняют при пониженном давлении. Выход продукта составил 95%. Для идентификации синтезированной 6-(бис(пиридин-2-илметил)амино)гексановой кислоты был получен 1Н-ЯМР-спектр, вид которого соответствует структуре синтезированной кислоте (300 МГц, H2O, δ, м.д., J, Гц): 8,65 (д, 2Наром, J=5,7 Гц), 8,4 (т, 2Наром), 7,97 (д, 2Наром, J=9,1 Гц), 7,89 (т, 2Наром), 4,24 (с, СН2), 2,20 (т, СН2), 1,40 (м, СН2), 1,10 (м, СН2). (фиг. 8). MS (ESI)-m/z для C18H24N3O2: (М+Н)+ - найдено: 314,1879; (М+Н)+ - вычислено: 314,1869 (фиг. 9).

Пример 14. Методика синтеза 6-(бис(пиридин-2-илметил)амино)гексановой кислоты при 55°C

Метил 6-(бис(пиридин-2-илметил)амино)гексаноат 0,053 г (0,16 ммоль) растворяют в 2 мл ацетонитрила и добавляют 50 мкл HCl (36%). Реакционную массу перемешивают в течение 2 часов при температуре 55°C. Конец реакции определяют методом тонкослойной хроматографии (элюент : этилацетат - этанол =10:3). После окончания гидролиза растворители отгоняют при пониженном давлении. Выход продукта составил 96%. Для идентификации синтезированной 6-(бис(пиридин-2-илметил)амино)гексановой кислоты был получен 1H-ЯМР-спектр, вид которого соответствует структуре синтезированной кислоте (300 МГц, H2O, δ, м.д., J, Гц): 8,65 (д, 2Наром, J=5,7 Гц), 8,4 (т, 2Наром), 7,97 (д, 2Наром, J=9,l Гц), 7,89 (т, 2Наром), 4,24 (с, СН2), 2,20 (т, СН2), 1,40 (м, СН2), 1,10 (м, СН2). (фиг. 8). MS (ESI)-m/z для C18H24N3O2: (М+Н)+ - найдено: 314,1879; (М+Н)+ - вычислено: 314,1869 (фиг. 9).

Пример 15. Методика синтеза 6-(бис(пиридин-2-илметил)амино)гексановой кислоты при 60°C

Метил 6-(бис(пиридин-2-илметил)амино)гексаноат 0,053 г (0,16 ммоль) растворяют в 2 мл ацетонитрила и добавляют 50 мкл HCl (36%). Реакционную массу перемешивают в течение 2 часов при температуре 50°C. Конец реакции определяют методом тонкослойной хроматографии (элюент : этилацетат - этанол =10:3). После окончания гидролиза растворители отгоняют при пониженном давлении. Выход продукта составил 90%. Для идентификации синтезированной 6-(бис(пиридин-2-илметил)амино)гексановой кислоты был получен 1H-ЯМР-спектр, вид которого соответствует структуре синтезированной кислоте (300 МГц, Н2О, δ, м.д., 7 Гц): 8,65 (д, 2Наром, J=5,7 Гц), 8,4 (т, 2Наром), 7,97 (д, 2Наром, J=9,1 Гц), 7,89 (т, 2Наром), 4,24 (с, СН2), 2,20 (т, СН2), 1,40 (м, СН2), 1,10 (м, СН2). (фиг. 8). MS (ESI)-m/z для C18H24N3O2: (М+Н)+ - найдено: 314,1879; (М+Н)+ - вычислено: 314,1869 (фиг. 9)

Пример 16. Методика синтеза 6-(бис(пиридин-2-илметил)амино)гексановой кислоты

Метил 6-(бис(пиридин-2-илметил)амино)гексаноат 0,053 г (0,16 ммоль) растворяют в 2 мл ацетонитрила и добавляют 50 мкл HCl (36%). Реакционную массу перемешивают в течение 1,5 часов при температуре 50°C. Конец реакции определяют методом тонкослойной хроматографии (элюент : этилацетат - этанол =10:3). После окончания гидролиза растворители отгоняют при пониженном давлении. Выход продукта составил 86%. Для идентификации синтезированной 6-(бис(пиридин-2-илметил)амино)гексановой кислоты был получен 1Н-ЯМР-спектр, вид которого соответствует структуре синтезированной кислоте (300 МГц, H2O, δ, м.д., 7 Гц): 8,65 (д, 2Наром, J=5,7 Гц), 8,4 (т, 2Наром), 7,97 (д, 2Наром, J=9,1 Гц), 7,89 (т, 2Наром), 4,24 (с, СН2), 2,20 (т, СН2), 1,40 (м, СН2), 1,10 (м, СН2). (фиг. 8). MS (ESI)-m/z для C18H24N3O2: (М+Н)+ - найдено: 314,1879; (М+Н)+ - вычислено: 314,1869 (фиг. 9)

Обоснование режима

Экспериментальным путем подобран оптимальный температурный режим получения ω-бис(пиридин-2-илметил)амино)алифатических кислот (примеры 2-8). Установлено, что реакцию получения эфиров ω-бис(пиридин-2-илметил)амино)алифатических кислот необходимо проводить при температуре 45-55°C, при этом выход продуктов составляет 80-90%, а увеличение температуры до 60-70°C приводит к снижению выхода на 20-40%.

Оптимальным является соотношение компонентов в реакционной смеси эфиры ω-иодалифатических карбоновых кислот - ди-2-пиколиламин - триэтиламин - 1:1,16:1. Такое соотношение позволяет практически полностью заместить атомы иода на остаток ди-2-пиколиламин, что необходимо для достижения высоких выходов целевых продуктов (примеры 5, 9-10).

Для стадии гидролиза принципиальными оказались температурный режим и время проведения гидролиза. Оптимальным является проведение гидролиза при температуре 45-55°C, при этом выход ω-бис(пиридин-2-илметил)амино)алифатических кислот свыше 98%. Так, при более высокой температуре (более 60°C) выходы существенно снижались (на 10-15%), так как помимо гидролиза происходило образованию побочных продуктов (примеры 11-15).

Выход ω-бис(пиридин-2-илметил)амино)алифатических кислот достигается наибольшим при проведении гидролиза в течение 2-3 часов (примеры 11, 16). Уменьшение времени реакции (менее 2 ч) приводит к неполному гидролизу эфиров и, следовательно, к снижению выхода целевых кислот.

Таким образом, предлагаемый способ имеет принципиальные преимущества перед известными способами получения ω-бис(пиридин-2-илметил)амино)алифатических кислот. Во-первых, это доступность субстратов - эфиров ω-иодалифатических карбоновых кислот, которые предлагается получать из дешевых, коммерчески доступных, не обладающих токсичностью циклических кетонов. Используемые остальные компоненты синтеза также отвечают принципам «зеленой» химии. Во-вторых, подобранные условия, а именно соотношения реагентов, время реакции и температура реакции, позволяют получить продукты с выходами 80-95%). Также, по результатам экспериментов было установлено, что выход меченного комплекса 99mTc с ω-бис(пиридин-2-илметил)амино)алифатическими кислотами составил 83,6% при радиохимической чистоте 90,3%, что позволяет успешно предлагать ω-бис(пиридин-2-илметил)амино)алифатические кислоты, полученные по разработанному способу, для связывания технеция-99 м.

Источники информации

1. Патент №2494087 от 27.09.2013. Способ получения ω-иодалифатических карбоновых кислот и их эфиров / Юсубов М.С., Жданкин В.В., Ларькина М.С., Дрыгунова Л.А.

2. Amino Acid and Peptide Bioconjugates of Copper(II) and Zinc(II) Complexes with a Modified N,N-Bis(2-picolyl)amine Ligand / Srecko I. Kirin, Pierre Dubon, Thomas Weyhermuller, Eckhard Bill, and Nils Metzler-Nolte // Inorganic Chemistry, Vol. 44, No. 15, 2005. P. 5405-5415.

3. Synthesis and Evaluation of a Series of 99mTc(CO)31 Lisinopril Complexes for In Vivo Imaging of Angiotensin-Converting Enzyme Expression / Frank J. Femia, Kevin P. Maresca, Shawn M. Hillier, Craig N. Zimmerman, John L. Joyal, John A. Barrett, Omer Aras, Vasken Dilsizian, William C. Eckelman, and John W. Babich // The journal of nuclear medicine. Vol. 49. No. 6. June 2008. P. 970-977.

4. Huahui, Z. Synthesis, characterization and biodistribution of new fatty acids conjugates bearing N,N,N-donorsincorporated [99mTc/Re(CO)3]+ / Dalton Transaction. - 2012. - Vol. 42. - P. 2894.

Фигура 1 - Схема получения ω-бис(пиридин-2-илметил)амино)алифатических кислот - прекурсоров с хелатными центрами для связывания металлов

Фигура 2 - Схема получения 6-(бис(пиридин-2-илметил)амино)гексановой кислоты

Фигура 3 - Схема получения производных ω-бис(пиридин-2-илметил)амино)алифатических кислот

Фигура 4 - Схема получения производных ω-бис(пиридин-2-илметил)амино)алифатических кислот

Фигура 5 - 1H-ЯМР-спектр метил 6-иодгексаноата (300 МГц, CDCl3, δ, м.д., J, Гц)

Фигура 6 - 1H-ЯМР-спектр метил 6-(бис(пиридин-2-илметил)амино)гексаноата (300 МГц, CDCl3, δ, м.д., J, Гц)

Фигура 7 - Элементный анализ метил 6-(бис(пиридин-2-илметил)амино)гексаноата

Фигура 8 - 1Н-ЯМР-спектр 6-(бис(пиридин-2-илметил)амино)гексановой кислоты (в виде гидрохлорида) (300 МГц, H2O, δ, м.д., J, Гц)

Фигура 9 - Элементный анализ 6-(бис(пиридин-2-илметил)амино)гексановой кислоты

Способ получения ω-(бис(пиридин-2-илметил)амино)алифатических кислот, включающий получение эфиров ω-производных алифатических кислот с последующим взаимодействием с реагентом, содержащим пиколил-заместитель, отличающейся тем, что на первом этапе получают промежуточные продукты синтеза - эфиры ω-иодалифатических карбоновых кислот - путем окислительного расщепления алифатических циклических кетонов под действием пероксида водорода в присутствии катализатора ионов меди и соединений иода при комнатной температуре, далее подвергают расщеплению циклические кетоны, в качестве катализатора используют меди(I) хлорид; получение проводят при следующем соотношении компонентов: циклические кетоны:пероксид водорода:меди(I) хлорид=1:5:0,1, при перемешивании в течение 10-20 ч в присутствии метанольных или этанольных растворов иода, также количество иода берут в следующем соотношении: циклические кетоны:иод=1:0,5, далее в реакционную массу добавляют насыщенный раствор натрия гидрокарбоната, переводя ω-иодалифатические карбоновые кислоты в водный слой в виде натриевых солей, а их эфиры отделяют путем экстракции водного слоя этилацетатом, затем этилацетатное извлечение осушают с помощью натрия сульфата безводного, этилацетат отгоняют и получают эфиры ω-иодалифатических карбоновых кислот; на второй стадии в эфирах ω-иодалифатических карбоновых кислот атом иода замещают на бис(пиридин-2-илметил)аминогруппу, для этого используют ди-2-пиколиламин, также вторую стадию проводят при следующем соотношении компонентов: эфиры ω-иодалифатических карбоновых кислот:ди-2-пиколиламин:триэтиламин=1:1,16:1, соответственно, при перемешивании при 50°C в течение 24 ч, после этого выделяют эфиры ω-(бис(пиридин-2-илметил)амино)алифатических кислот, для чего в реакционную массу добавляют насыщенный раствор натрия гидрокарбоната и экстрагируют этилацетатом, этилацетатное извлечение осушают с помощью натрия сульфата безводного, этилацетат отгоняют, остаток подвергают очистке методом колоночной хроматографии на силикагеле с использованием в качестве элюента смеси гексан-этилацетат (1:1), постепенно повышая градиент последнего, и выделяют эфир ω-(бис(пиридин-2-илметил)амино)алифатической кислоты, полученный эфир подвергают гидролизу в ацетонитриле под действием концентрированной хлороводородной кислоты в течение 2 ч при температуре 50°C, растворитель отгоняют под вакуумом и получают ω-(бис(пиридин-2-илметил)амино)алифатические кислоты, не требующие дополнительной очистки.



 

Похожие патенты:

Изобретение относится к новым сокристаллам нифлумовой кислоты с изоникотинамидом или кофеином, где молярное соотношение нифлумовой кислоты с изоникотинамидом или кофеином составляет 1:1, причем сокристалл нифлумовой кислоты с изоникотинамидом имеет эндотермический пик от 152 до 162°C по данным измерений при помощи дифференциальной сканирующей калориметрии и пики при 2θ(°) 6.3, 7.4, 12.5, 14.5, 19.2, 23.2, 25.0 по данным измерения дифракции рентгеновского излучения на порошке, а сокристалл нифлумовой кислоты с кофеином имеет эндотермический пик от 155 до 165°C по данным измерений при помощи дифференциальной сканирующей калориметрии и пики при 2θ(°) 9.7, 12.0, 13.26, 14.3, 17.0, 18.1, 22.5, 26.2 и 26.9 по данным измерения дифракции рентгеновского излучения на порошке.

Изобретение относится к сульфонамидным соединениям формулы (1) или к их фармацевтически приемлемым солям, в которой А представляет собой фенил, необязательно замещенный от 1 до 2 атомами галогена, C1-6 алкильной группой, трифторметильной группой, С1-6 алкоксигруппой или -SCH3 группой, тиофенил, необязательно замещенный C1-C6 алкильной группой или атомом галогена, пиридинил, необязательно замещенный атомом галогена, нафталенил или дигидроинденил; R1 представляет собой следующие формулы (Rla) или (Rlb): [в формулах (Rla) и (Rlb) Ar1 представляет собой следующие формулы (Arla), (Arlb) или (Ar1c): (каждый R5 и R6 независимо представляет собой атом водорода, атом галогена, C1-6 алкильную группу, необязательно замещенную вплоть до трех атомов галогена, C1-6 низшую алкоксигруппу, необязательно замещенную вплоть до трех атомов галогена); Ar2 представляет собой следующие формулы (Ar2a), (Ar2b) или (Ar2c): (каждый R7 и R8 независимо представляет собой атом водорода, гидроксильную группу, атом галогена, C1-6 алкильную группу, необязательно замещенную вплоть до трех атомов галогена, или C1-6 низшую алкоксигруппу, необязательно замещенную вплоть до трех атомов галогена, аминогруппу, нитрогруппу, С2-6 ацильную группу, или R7 и R8 образуют вместе -СН2СН2О-; R9 представляет собой атом водорода или -J-COOR10; J представляет собой ковалентную связь, алкилен, содержащий от 1 до 5 атомов углерода, алкенилен, содержащий от 2 до 5 атомов углерода, или алкинилен, содержащий от 2 до 5 атомов углерода, где один атом углерода в упомянутых алкиленовых группах может быть заменен атомом кислорода, атомом серы, NR11, CONR11 или NR11CO в любом химически разрешенном положении; R11 представляет собой атом водорода; и R10 представляет собой атом водорода); и р равно 0 или 1]; R2 представляет собой C1-6 алкильную группу; каждый R3 и R4 независимо представляет собой C1-6 алкильную группу; * обозначает асимметрический атом углерода; и m равно целому числу от 1 до 3.

Изобретение относится к улучшенному способу получения 4-метил-N3-[4-(3-пиридинил)-2-пиримидинил]-1,3-фенилендиамина, формулы 1 например, иматиниба: (4-[(4-метил-1-пинеразинил)метил]-N-[4-метил-3-[[4-(3-пиридинил)-2-пиримидинил]амино]фенил]бензамида.

Изобретение относится к фторсодержащему сераорганическому соединению, представленному формулой (I): , где m равно 0; n равно 2; А представляет собой 6-членную ароматическую гетероциклическую группу, выбранную из пиридина или пиримидина, замещенные группой E1; R1 и R 3 являются одинаковыми или различными и представляют собой С1-С4алкильную группу, группу -C(=G)R5, атом галогена или атом водорода; R2 и R4 являются одинаковыми или различными и представляют собой атом водорода; Q представляет собой С1-С5галогеналкильную группу, содержащую по меньшей мере один атом фтора; G представляет собой атом кислорода; R5 представляет собой С1-С4алкоксигруппу; группа Е1 представляет собой С1-С6алкильную группу, замещенную группой, выбранной из группы L, OR6, и атом галогена; R6 представляет собой С1-С4алкильную группу; группа L представляет собой атома галогена.

Изобретение относится к кристаллической форме (R)-6-циклопентил-6-(2-(2,6-диэтилпиридин-4-ил)этил)-3-((5,7-диметил-[1,2,4]триазоло[1,5-а]пиримидин-2-ил)метил)-4-гидрокси-5,6-дигидропиран-2-она, показывающей характеристические пики в картине дифракции рентгеновских лучей на порошке, выраженные в градусах два-тета, выбранные из примерно 7,1, примерно 12,1 и примерно 16,1; или примерно 7,1, примерно 12,1 и примерно 17,5; или примерно 7,1, примерно 12,1 и примерно 23,5; или примерно 12,1, примерно 16,1 и примерно 17,5; или примерно 12,1, примерно 16,1 и примерно 23,5; или примерно 16,1, примерно 17,5 и примерно 23,5; или примерно 7,1, примерно 17,5 и примерно 23,5; или примерно 7,1, примерно 12,1 и примерно 23,5; или примерно 7,1, примерно 16,1 и примерно 23,5 и к фармацевтической композиции на основе указанного соединения, которые могут найти применение в медицине для изготовления лекарственного средства, воздействующего на вирус гепатита С (HCV) у HCV-инфицированного млекопитающего.

Изобретение относится к новым производным антраниловой кислоты, обладающим ингибирующей активностью в отношении продуцирования металлопротеазы 13 матрикса формулы 1 ,где R1 представляет собой атом водорода или карбоксизащитную группу, выбранную из C 1-3алкила; R2 представляет собой фенил, С 3-6циклоалкил, насыщенную или ненасыщенную 5-6-членную гетероциклическую группу, содержащую 1-3 гетероатома, выбранных из N, О, S, которая может быть конденсирована с фенилом, которые могут быть необязательно замещены C1-6алкилом, C 1-6алкокси, ацетилом, ацетокси, галогеном, галогенС 1-6алкилом, нитрогруппой, гидроксильной группой, CN, аминогруппой, фенилом, насыщенной или ненасыщенной 5-6-членной гетероциклической группой, содержащей 1-4 гетероатома, выбранных из N, О, S, которая может быть дизамещена C1-6алкилом; R3 представляет собой фенил, С3-6циклоалкил, С5циклоалкенил, насыщенную или ненасыщенную 5-6-членную гетероциклическую группу, содержащую 1-3 гетероатома, выбранных из N, О, S, которая может быть конденсирована с фенилом (за исключением бензоксазола), которые могут быть необязательно замещены C1-6алкилом, C1-6алкокси, фенилом, ацетилом, галогеном, галогенС 1-6алкилом, галогенС1-6алкокси, нитрогруппой, гидроксильной группой, гидроксиС1-6алкилом, CN, ацетиламино, кето, фенокси, бензоилом, бензилом, аминогруппой, которая может быть дизамещена C1-6алкилом, карбоксигруппой, C 1-6алкилсульфонильной группой или пирролилом; X1 представляет собой карбонильную группу или сульфонильную группу; X2 представляет собой C1-3алкиленовую, С2-3алкениленовую или С2-3алкиниленовую группу, которая может быть необязательно замещена C1-3 алкилом, или связь; при условии, что, когда X1 представляет собой сульфонильную группу и X4 представляет собой связь, X2 представляет собой C1-3алкиленовую, С2-3алкениленовую или С2-3алкиниленовую группу, которая может быть необязательно замещена C1-3 алкилом; X3 представляет собой атом кислорода или связь; и X4 представляет собой группу, представленную общей формулой -Х5-Х6- или -Х6 -Х5-, где связь с левой стороны каждой общей формулы присоединена к R3; и X5 представляет собой атом кислорода, атом серы, иминогруппу, которая может быть необязательно защищена, или связь; и X6 представляет собой С 1-4алкиленовую, С2-3алкениленовую или С 2-3алкиниленовую группу, или связь, а также к их фармацевтически приемлемым солям.

Изобретение относится к новым соединениям формулы (I), включая его фармацевтически приемлемые соли, сольваты, сложные эфиры и амиды, обладающим способностью связывать ER - и ER -эстрогеновые рецепторы, к фармацевтической композиции на их основе, к вариантам применения предлагаемых соединений в изготовлении лекарства и к способу связывания ER - и ER -эстрогеновых рецепторов.

Изобретение относится к соединению формулы I или его фармацевтически приемлемым солям, где группировка Het представляет собой пиридинил или тиазолил; каждый из R1 и R2 представляет собой Н; каждый из R3 и R4 независимо представляет собой Н, -С1-8алкил или R3 и R4, взятые вместе, образуют С3-6циклоакил; W представляет собой -Н, -РО(ОН)2 или -СН2ОРО(ОН)2; каждый из X и Y представляет собой хлор или каждый из X и Y представляет собой фтор, и Z представляет собой Н.

Изобретение относится к соединению формулы [1] или его фармацевтически приемлемой соли, где R1 и R2 являются одинаковыми или отличаются и каждый из них представляет собой атом водорода, С1-6алкильную группу, С3-8циклоалкильную группу или С1-6алкоксигруппу (С1-6алкильная группа, С1-6алкоксигруппа и С3-8циклоалкильная группа могут быть замещены 1-3 заместителями, которые являются одинаковыми или отличаются и выбраны из "атома галогена, С1-6алкоксигруппы"); R3 представляет собой атом водорода или С1-6алкильную группу; R4 представляет собой атом водорода, С1-6алкильную группу, С3-8циклоалкильную группу(которые могут быть замещены заместителями, которые указаны в формуле изобретения), гетероциклическую группу, выбранную из пиридина; А1 представляет собой двухвалентную арильную группу, двухвалентную гетероциклическую группу, выбранную из пиридила, пиразинила, тиофенила, или С3-8циклоалкиленовую группу (двухвалентная арильная группа может быть замещена 1-4 заместителями, которые являются одинаковыми или отличаются и выбраны из следующей группы заместителей Ra, которые указаны в формуле изобретения); L представляет собой -С≡С-, -С≡С-С≡С-, -С≡С-(CH2)m-O-, СН=СН-, -СН=CH-С≡C-, -С≡С-СН=СН-, -O-, -(СН2)m-O-, -O-(CH2)m-, C1-4алкиленовую группу или связь; m обозначает 1, 2 или 3; А2 представляет собой двухвалентную арильную группу, двухвалентную гетероциклическую группу (приведенную в формуле изобретения), С3-8циклоалкиленовую группу, С3-8циклоалкениленовую группу, С1-4алкиленовую группу или С2-4алкениленовую группу (которые могут быть замещены 1-4 заместителями, которые являются одинаковыми или отличаются и выбраны из группы заместителей Rb, которая приведена в формуле изобретения); W представляет собой R6-X1-, R6-X2-Y1-X1-, R6-X4-Y1-X2-Y3-X3-, Q-X1-Y2-X3- или Q-X1-Y1-X2-Y3-X3-; Y2, Y1, Y3, n, X1, X3, X2, X4, Q, R6, R7, R8 и R9 приведены в формуле изобретения.

Изобретение относится к способу получения соединения формулы (I). Способ включает реакцию соединения формулы (II) с соединением формулы (III) в щелочных условиях и в присутствии сульфита.

Изобретение относится к соединению, представленному формулой , или его фармацевтически приемлемой соли, или сольвату. Значения радикалов следующие: Rt - Н, C1-C8 алкильная группа, ион аммония, ион щелочного или щелочноземельного металла; R84 - незамещенный C1-8 алкил; R - С1-8 гидроксиалкил, C1-8 алкоксиалкил, C1-8 аминоалкил, (CH2)8(NHC(S)NH)Ph(SO2NH2), (CH2)dPh(SO2NH2), (CH2)5C(O)NH-(1-ацетилпирролидин-2-ил)борная кислота, (1-ацетилпирролидин-2-ил)борная кислота, (CH2)4CH(NH2)CO2H, (CH2)3CH(NH2)CO2H, (CH2)2CH(NH2)CO2H, -(CH2)d-R80, -C(O)(CH2)d-R80, или аминокислотный радикал; R80 - карбоксилат, С6-10 арил, 3-6 членный гетероциклил, аминокислота; d представляет собой целое число в интервале от 0 до 12 включительно; и R82, R83, R85 и R86 - водород, или замещенный или незамещенный алкил, простой эфир, сложный эфир, СН2СН2ОСН2СН3, СН2СН(ОСН3)2, -(CH2)d-R80, или (CH2)dR87; где R87 представляет собой фосфонат или фосфинат.

Изобретение относится к соединениям формулы I, II или IV где значения радикалов W, V, Ra, Rb, X, L, Rt, A представлены в формуле изобретения. Заявленные соединения распознают и связывают CA-IX протеин, могут включать радиоактивный элемент для радионуклидной визуализации или терапевтического применения.

Изобретение относится к новым аминопроизводным структурной формулы (А), обладающим свойствами ингибитора изомеразной активности ретиноидного цикла. В формуле (А) Z представляет собой -С(R9)(R10)-С(R1)(R2)- или -X-C(R31)(R32); Х представляет собой -O-, -S-, -S(=O)-, -S(=O)2- или -N(R30)-; G выбран из -C(R41)2-C(R41)2-R40, -C(R42)2-S-R40, -C(R42)2-SO-R40, -C(R42)2-SO2-R40 или -C(R42)2-O-R40; R40 выбран из -C(R16)(R17)(R18), С6-10арила; каждый R6, R19, R34, R42 независимо выбран из водорода или С1-С5алкила; каждый R1 и R2 независимо друг от друга выбран из водорода, галогена, С1-С5алкила или -OR6; или R1 и R2 вместе образуют оксо; каждый R3, R4, R30, R31, R32, R41 представляет собой водород; каждый R9 и R10 независимо друг от друга выбран из водорода, галогена, С1-С5алкила или -OR19; или R9 и R10 образуют оксо; или возможно R9 и R1 вместе образуют прямую связь для обеспечения двойной связи; или возможно R9 и R1 вместе образуют прямую связь и R10 и R2 вместе образуют прямую связь для обеспечения тройной связи; n равно 0 или 1; значения радикалов R11, R12, R16-R18, R23, R33 приведены в формуле изобретения.

Изобретение относится к пиридилдиамидному комплексу переходного металла. Комплекс описывается общей формулой (IV) в которой М обозначает Ti, Zr или Hf; R6, R7, R8 и R9 означают водород; R1 и R11 независимо выбраны из группы, включающей алкилы и фенильные группы, которые содержат от 0 до 5 различных заместителей, которые включают F, Cl, Br, I, CF3, NO2, алкоксигруппу, диалкиламиногруппу, гидрокарбил (такой как алкил и арил) и замещенные гидрокарбилы (такие как гетероарил), содержащие от 0 до 10 атомов углерода; R2 и R10 все независимо обозначают -E(R12)(R13)-, где Е обозначает углерод, и каждый R12 и R13 независимо выбран из группы, включающей водород и фенильные группы; R3, R4 и R5 означают водород; L обозначает анионную отщепляющуюся группу, причем группы L могут быть одинаковыми или разными и любые две группы L могут быть связаны с образованием дианионной отщепляющейся группы; n равно 0, 1, 2, 3 или 4; L' выбран из группы, включающей простые эфиры, простые тиоэфиры, амины, нитрилы, имины, пиридины и фосфины; и w равно 0, 1, 2, 3 или 4.

Изобретение относится к соединению формулы (I) где А означает кольцо, выбираемое из фенильной группы или гетероарильной группы, Q означает атом кислорода или связующее звено -СН2-, X, Y и Z означают атомы углерода; R1 и R2, одинаковые или различные, выбирают из следующих атомов и групп: водород, галоген, -CF3, (С1-С6)алкил, Alk, (С1-С6)алкокси, (С1-С6)алкил-О-(С1-С6)алкил, -(СН2)m-SO2-(С1-С6)алкил с m, равным 0, 1 или 2, бензил, пиразолил, -СН2-триазолил и -L-R12, где L представляет собой связь или мостик -СН2 - и/или -СО- и/или -SO2-, и R12 означает (С3-С8)циклоалкил или группу формулы (b), (с), (с ), (a) или (е): где: n=0 или 1, R13 означает одну-три группы, одинаковые или различные, выбираемые из атомов водорода и гидроксила, (С1-С4)алкила, оксо и фенила, R14 означает атом водорода или выбирается из групп - NR18R19, -NR18-COOR19, -NR18-Alk-R20 и -R21, где R18, R19, R20, R21 и Alk имеют значения, как определено ниже, R14 означает -СО-(С1-С6)алкил, R15 выбирают из групп -Alk, -R20, -Alk-R20, -Alk-R21, -CO-Alk, -CO-R20, -CO-R21, -Alk-CO-NR18R19, (С3-С8)циклоалкил и -СО-(С3-С8)циклоалкил, где R18, R19, R20, R21 и Alk имеют значения, как определено ниже, R16 означает атом водорода или группу Alk, где Alk имеет значение, как определено ниже, R17 означает группу -Alk, -Alk-R20 или -Alk-R21, где Alk, R20 и R21 имеют значения, как определено ниже, -СО-(С1-С6)алкил, -СО-(С3-С8)циклоалкил, R18 и R19, одинаковые или различные, означают атом водорода или (С1-С6)алкил, R20 означает фенильную или гетероарильную группу (такую как пиридинил, пиразолил, пиримидинил или бензимидазолил), которая необязательно замещена одним (С1-С6)алкилом, R21 означает гетероциклоалкильную группу, необязательно замещенную одним или более атомами галогена или (С1-С6)алкильными, гидроксильными или (С1-С4)алкоксигруппами, и Alk означает (С1-С6)алкил, который является линейным или разветвленным и который необязательно замещен одной или двумя группами, одинаковыми или различными, выбираемыми из гидроксила, фенила, (С1-С4)алкокси и -NR18R19, где R18 и R19 имеют значения, как определено выше, R3 означает линейный (С1-С10)алкил, который необязательно замещен одной-тремя группами, одинаковыми или различными, выбираемыми из атомов галогена и (С1-С4)алкоксигрупп, R4 означает атом водорода, R5 и R6 означают, независимо один от другого, атом водорода или (С1-С5)алкил, R7 и R8 означают, независимо один от другого, атом водорода или (С1-С5)алкил, R9 и R10 означают, независимо один от другого, атом водорода, или R9 и R10 вместе образуют линейную (С2-С3)алкиленовую цепь, таким образом образуя 6-членное кольцо с атомами азота, к которым они присоединены, причем указанная алкиленовая цепь необязательно замещена одной-тремя группами, выбираемыми из (С1-С4)алкила, оксо, R11 означает атом водорода или (С1-С8)алкил, который необязательно замещен одной-тремя группами, выбираемыми из атомов галогена, гидроксила, (С1-С6)алкокси, -NR18R19, или пиридинила, где R18 и R19 имеют значения, как определено выше; где «гетероциклоалкильная группа» означает насыщенное 5- или 6-членное кольцо, содержащее один или два гетероатома, выбираемых из атомов кислорода, азота и серы; «гетероарильная группа» означает ароматическую циклическую группу, содержащую 5-11 кольцевых атомов, выбираемых из атомов углерода, азота, кислорода и серы, причем гетероарильные группы могут быть моноциклическими или бициклическими, в случае которых, по меньшей мере, один из двух циклических фрагментов является ароматическим; в виде свободного основания или аддитивной соли кислоты или основания.

Изобретение относится к соединениям формулы IIIA. Технический результат: получены новые соединения формулы IIIА, а также композиции на их основе для ингибирования NAMPT, описано применение соединений для получения лекарственного средства для лечения рака. 7 н. и 14 з.п. ф-лы, 3 табл., 3 сх., 20 пр.
Наверх