Уплотнение для газовой турбины, расположенное вблизи проточного тракта

В настоящем изобретении предложено уплотнение (100) для газовой турбины (10), расположенное вблизи проточного тракта и содержащее основание (130), пару плеч (110, 120), проходящих от основания (130), и криволинейную выемку (160), расположенную между парой плеч (110, 120). 14 з.п. ф-лы, 6 ил.

 

Область техники

[0101] Настоящая заявка и последующий патент относятся в целом к газотурбинным двигателям и, в частности, к расположенному вблизи проточного тракта уплотнению с аксиально гибкими плечами.

Уровень техники

[0102] В целом газовая турбина содержит основной проточный тракт, предназначенный для прохождения в нем основной рабочей текучей среды, т.е. горячих газообразных продуктов сгорания. В смежных конструктивных компонентах ротора турбины внутри может находиться охлаждающая текучая среда, не зависящая от основной рабочей текучей среды. Таким образом, для защиты деталей ротора от прямого контакта с основной рабочей текучей средой, приводящей в действие турбину, может использоваться уплотнительное устройство. Такие устройства также предотвращают выход охлаждающей текучей среды в основную рабочую текучую среде. Типичные уплотнительные устройства, однако, могут привести к снижению эффективности и производительности турбины из-за протечек. Например, протечки в уплотнительных устройствах, таких как межступенчатые уплотнения, могут потребовать увеличение количества паразитарной текучей среды, необходимой для охлаждения. Использование паразитарной охлаждающей текучей среды снижает общую производительность и эффективность работы газотурбинного двигателя.

[0103] Существует, таким образом, потребность в усовершенствовании уплотнения проточного тракта турбины, в частности, для использования между ступенями. Предпочтительно такое уплотнение проточного тракта может эффективно защищать роторные компоненты с обеспечением пониженной протечки и без ущерба для общей эффективности газотурбинного двигателя и выходной производительности.

Сущность изобретения

[0104] В настоящей заявке и в последующем патенте, таким образом, предложено уплотнение для газотурбинного двигателя, расположенное вблизи проточного тракта. Указанное уплотнение содержит основание, пару плеч, проходящих от основания, и криволинейную выемку, расположенную между указанными плечами.

[0105] В настоящей заявке и в последующем патенте также предложено уплотнение для газовой турбины, расположенное вблизи проточного тракта. Уплотнение может содержать разделенное основание, пару плеч, проходящих от разделенного основания с образованием вилкообразной конфигурации, и криволинейную выемку, расположенную между указанными плечами.

[0106] В настоящей заявке и в последующем патенте также предложено уплотнение для газовой турбины, расположенное вблизи проточного тракта. Уплотнение может содержать основание, пару плеч, проходящих от основания с параллельной ориентацией, так что первое плечо выше, чем второе плечо, и криволинейную выемку, расположенную между указанными плечами.

[0107] Эти и другие свойства и усовершенствования настоящего изобретения станут очевидными для специалиста при рассмотрении следующего подробного описания, в сочетании с чертежами и прилагаемой формулой изобретения.

Краткое описание чертежей

[0108] Фиг.1 изображает схему газотурбинного двигателя, показывающую компрессор, камеру сгорания и турбину.

[0109] Фиг.2 изображает вид сбоку части турбины с известным уплотнением, расположенным вблизи проточного тракта.

[0110] Фиг.3 изображает вид сбоку расположенного вблизи проточного тракта уплотнения, которое может быть описано в настоящем описании.

[0111] Фиг.4 изображает вид сбоку альтернативного варианта выполнения расположенного вблизи проточного тракта уплотнения, которое может быть описано в настоящем описании.

[0112] Фиг.5 изображает вид сбоку альтернативного варианта выполнения расположенного вблизи проточного тракта уплотнения, которое может быть описано в настоящем описании.

[0113] Фиг.6 изображает вид сбоку альтернативного варианта выполнения расположенного вблизи проточного тракта уплотнения, которое может быть описано в настоящем описании.

Подробное описание

[0114] Обратимся теперь к чертежам, на которых одинаковые номера позиций относятся к подобным элементам на нескольких видах. Фиг.1 изображает схему газотурбинного двигателя 10, который может использоваться в настоящем документе. Газотурбинный двигатель 10 может содержать компрессор 15. Компрессор 15 сжимает входящий поток воздуха 20 и подает сжатый поток воздуха 20 в камеру 25 сгорания. Камера 25 сгорания смешивает сжатый поток воздуха 20 с потоком топлива 30 под давлением и воспламеняет полученную смесь для создания потока газообразных продуктов 35 сгорания. Хотя показана только одна камера 25 сгорания, газотурбинный двигатель 10 может содержать любое количество камер 25 сгорания. Поток газообразных продуктов 35 сгорания, в свою очередь подается в турбину 40. Поток продуктов 35 сгорания приводят в движение турбину 40 для получения механической работы. Механическая работа, производимая в турбине 40, через вал 45 приводит в действие компрессор 15 и внешнюю нагрузку 50, такую как электрический генератор и тому подобное.

[0115] Газотурбинный двигатель 10 может использовать природный газ, различные виды синтетического газа и/или другие виды топлива. Газотурбинный двигатель 10 может быть любым из целого ряда различных газотурбинных двигателей, предлагаемых компанией General Electric Company г.Скенектади, шт.Нью-Йорк, в том числе, но не ограничиваясь этим, например, тяжелым газотурбинным двигателем 7 или 9 серии и т.д. Газотурбинный двигатель 10 может иметь различные конфигурации и может использовать другие типы компонентов. Другие типы газотурбинных двигателей также могут использоваться в настоящем документе. Несколько газотурбинных двигателей, другие типы турбин и другие виды энергетического оборудования также могут вместе использоваться в настоящем документе.

[0116] Фиг.2 изображает примерную часть турбины 40 с фрагментами нескольких ступеней 55. В частности, показаны первая роторная лопатка 60 и вторая роторная лопатка 65, между которыми расположена сопловая лопатка 70. Лопатки 60, 65 могут быть прикреплены к валу 45 с обеспечением вращения вместе с ним. Вокруг сопловой лопатки 70 в промежутке между лопатками 60, 65 может быть расположено межступенчатое уплотнение 75, или уплотнение 75, расположенное вблизи проточного тракта. Уплотнение 75 может проходить от осевого выступа 80 на каждой из лопаток 60, 65. Уплотнение 75 может образовывать внешнюю границу для потока продуктов 35 сгорания с обеспечением предотвращения прохода через него продуктов 35 сгорания.

[0117] В целом, уплотнение 75 может содержать пару плеч: первое плечо 85 и второе плечо 90. Плечи 85, 90 могут проходить от основания 95 уплотнение. Плечи 85, 90 и основание 95 могут образовывать по существу «Т»-образную конфигурацию. Эта Т-образная конфигурация может быть очень жесткой в осевом направлении (т.е. в направлении вала 45) с соответственно высокими осевыми коэффициентами упругости.

[0118] В целом, плечи 85, 90 уплотнения 75 может отклоняться в наружном направлении благодаря центробежной силе и контактировать с лопатками 60, 65 для создания уплотнения. Уплотнение 75 также может подвергаться действию осевой нагрузки из-за прогиба ротора, обусловленного его тяжестью. Эта осевая нагрузка может компенсироваться силой трения вокруг лопаток 60, 65. Уплотнение 75 таким образом, может быть предназначено для "прилипания" к лопатками 60, 65, путем создания большей силы трения, чем нагрузка, создаваемая прогибом ротора от тяжести. В дополнение к постоянным условиям нагрузки, создаваемым центробежной силой, сила сопротивления, такая как нагрузка от прогиба ротора под его тяжестью, также может вызвать переменную нагрузку на плечи 85, 90 уплотнения 75. Как таковая, эта Т-образная конфигурация может быть относительно жесткой и потребовать значительных масс, чтобы компенсировать эти противоборствующие силы.

[0119] Фиг.3 изображает примерное уплотнение 100, расположенное вблизи проточного тракта, как может быть описано в настоящем документе. Уплотнение 100 содержит пару плеч: первое плечо 110 и второе плечо 120. Уплотнение 100 также содержит основание 130, с каждой стороны которого расположены плечи 110, 120. Вместо Т-образной конфигурации, описанной выше, уплотнение 100 может иметь конфигурацию 140 типа "крыло чайки". Конфигурация 140 типа крыла чайки может содержать смещенное основание 150, т.е. первое плечо 110 может быть длиннее, чем второе плечо 120. Конфигурация 140 также может содержать криволинейную выемку 160 между первым плечом 110 и вторым плечо 120. Криволинейная выемка 160 может проходить в основание 130. Первое плечо 110 может иметь первую толщину 170, а второе плечо 120 может иметь вторую толщину 180, при этом первая толщина 170 больше, чем вторая толщина 180, особенно вблизи основания 130. Первое и второе плечи 110, 120 могут иметь несколько наклонную конфигурацию 190 относительно основания 130, так что конец первого плеча 110 выше, чем второе плечо 120 (или наоборот). Конфигурация 140 крыла чайки может иметь осевую жесткость в фунтах на дюйм, которая может составлять около половины осевой жесткости Т-образной конфигурации, описанной выше. В настоящем документе могут использоваться другие компоненты и другие конфигурации.

[0120] Фиг.4 изображает альтернативный вариант уплотнения 200, расположенного вблизи проточного тракта, как может быть описано в настоящем документе. Уплотнение 200 также содержит первое плечо 110, второе плечо 120 и основание 130. В этом примере уплотнение 200 может иметь в значительной степени "цилиндрическую" конфигурацию 210. Цилиндрическая конфигурация 210 также содержит смещенное основание 220, т.е. первое плечо 110 может быть длиннее, чем второе плечо 120. Цилиндрическая конфигурация 210 также может содержать пару смещенных плеч 230, т.е. первое плечо 110 может быть расположено над вторым плечом 120 (или наоборот), и между ними вокруг основания 130 может быть расположена криволинейная выемка 240. Первое плечо 110 может иметь первую толщину 250, а второе плечо 120 может иметь вторую толщину 260, при этом первая толщина 250 больше, чем вторая толщина 260, в частности, вблизи криволинейной выемки 240. Первое плечо 110 и второе плечо 120 могут иметь в значительной степени параллельную конфигурацию 270, так что плечи 110, 120 проходят в целом параллельно, но в противоположных направлениях друг относительно друга. Осевая жесткость цилиндрической конфигурации 210 в фунтах на дюйм может составлять около четверти осевой жесткости Т-образной конфигурации, описанной выше. В настоящем документе могут использоваться другие компоненты и другие конфигурации.

[0121] Фиг.5 изображает еще один вариант уплотнения 300, расположенного вблизи проточного тракта, которое может быть описано в настоящем описании. Уплотнение 300 может содержать первое плечо 110, второе плечо 120 и основание 130. В этом примере уплотнение 300 может иметь в значительной степени "вилкообразную" конфигурацию 310. Вилкообразная конфигурация 310 может содержать отдельное основание 320 с проходящей глубоко в нем криволинейной выемкой 330. Эффект от вилкообразной конфигурации состоит в том, что первое плечо 340 вилки и второе плечо 350 вилки имеют по существу противоположную полукруглую конфигурацию, если смотреть с дальних концов плеч 340, 350 вниз через выемку 330 основания 320. Первое и второе плечи 340, 350 также могут иметь наклонную конфигурацию 360, так что конец первого плеча 340 расположен выше, чем конец второго плеча 350 (или наоборот). Выемка 330 может проходить к полукруглому соединению 370. Осевая жесткость вилкообразной конфигурации 310 может составлять несколько процентов жесткости Т-образной конфигурации, описанной выше. В настоящем документе могут использоваться другие компоненты и другие конфигурации.

[0122] В качестве альтернативы может использоваться разделенное уплотнение 380 проточного тракта. Разделенное уплотнение 380 может быть аналогичным уплотнению 300, описанному выше, но с разделенным основанием 390. Разделенное основание 390 может быть полностью разделено с образованием двух независимых половин, первой половины 400 и второй половины 410, с тем чтобы уменьшить напряжение. Половины 400, 410 затем могут быть соединены в соответствии с обстоятельствами. Первое плечо 110 таким образом, может быть сформировано с первой половиной 400, а второе плечо 120 - со второй половиной 410. В настоящем документе могут использоваться другие компоненты и другие конфигурации.

[0123] Уплотнения 100, 200, 300, описанные здесь, таким образом обеспечивают упругие в осевом направлении плечи 110, 120. Упругие в осевом направлении плечи 110, 120 могут выдерживать большие осевые отклонения, не вызывая больших переменных напряжений из-за нагрузки от прогиба ротора от тяжести и тому подобное. Плечи 110, 120 могут быть аксиально гибкими с соответственно низкими осевыми коэффициентами упругости. Таким образом, уплотнения 100, 200, 300 могут привести к снижению риска проскальзывания на интерфейсах лопаток, а также поломок, связанных с износом при истирании. Иными словами, контактные напряжения могут быть уменьшены, чтобы улучшить прочность внешних поверхностей лопаток. Более низкие переменные напряжения также могут увеличить запас прочности при высоком отказе при циклической усталости и тому подобное. Уплотнения 100, 200, 300, таким образом, могут потребовать относительно меньшую массу. Уплотнения 100, 200, 300, описанные здесь, обеспечивают адекватную герметизацию и повышение общей прочности, практически без расходов на дополнительные компоненты или с минимальными расходами.

[0124] Должно быть очевидно, что вышеизложенное относится только к определенным вариантам выполнения настоящего изобретения. Многочисленные изменения и модификации могут быть сделаны специалистом без отступления от общего объема и сущности изобретения, как определено в формуле изобретения и ее эквивалентах.

1. Уплотнение (100) для газовой турбины, расположенное вблизи проточного тракта и в промежутке между лопатками (60, 65), содержащее:

основание (130),

пару плеч (110, 120), проходящих от основания (130), и криволинейную выемку (160), расположенную между указанными плечами (110, 120),

при этом указанная пара плеч (110, 120) выполнена с возможностью отклонения в наружном направлении благодаря центробежной силе и контакта с лопатками (60, 65) для создания уплотнения.

2. Уплотнение (100) по п. 1, которое имеет конфигурацию (140) крыла чайки.

3. Уплотнение (100) по п. 2, в котором первое плечо (110) длиннее, чем второе плечо (120).

4. Уплотнение (100) по п. 2, в котором первое плечо (110) толще, чем второе плечо (120).

5. Уплотнение (100) по п. 2, в котором первое плечо (110) и второе плечо (120) имеют наклонную конфигурацию (190), так что первое плечо выше (110), чем второе плечо (120).

6. Уплотнение (100) по п. 1, которое имеет цилиндрическую конфигурацию (210).

7. Уплотнение (100) по п. 6, в котором первое плечо (110) длиннее, чем второе плечо (120).

8. Уплотнение (100) по п. 6, в котором первое плечо (110) толще, чем второе плечо (120).

9. Уплотнение (100) по п. 6, в котором первое плечо (110) и второе плечо (120) имеют параллельную конфигурацию (270), при этом первое плечо (110) выше, чем второе плечо (120).

10. Уплотнение (100) по п. 1, которое имеет вилкообразную конфигурацию (310).

11. Уплотнение (100) по п. 10, в котором первое плечо (110) длиннее, чем второе плечо (120).

12. Уплотнение (100) по п. 10, в котором первое плечо (110) и второе плечо (120) имеют наклонную конфигурацию (360), при этом первое плечо (110) выше, чем второе плечо (120).

13. Уплотнение (100) по п. 10, в котором первое плечо (110) содержит первое плечо (340) вилки, а второе плечо (120) содержит второе плечо (350) вилки.

14. Уплотнение (100) по п. 10, в котором основание (130) представляет собой разделенное основание (320).

15. Уплотнение (100) по п. 10, в котором криволинейная выемка (160) содержит полукруглое место (370) соединения.



 

Похожие патенты:

Радиально-торцовое газодинамическое уплотнение масляной полости опор роторов турбомашин, содержащее крышку масляной полости опоры, изготовленную из магниевого или титанового сплава, размещенные в ней: газодинамическое уплотнение, уплотняющее масляную полость опоры, содержащее корпус газодинамического уплотнения, закрепленный в крышке масляной полости опоры, невращающееся подвижное в осевом направлении разрезное уплотнительное кольцо, прижимаемое давлением воздуха, или давлением воздуха и пружинами, или пружиной к закрепленной на валу вращающейся втулке, на рабочем торце которой выполнены спиральные газодинамические камеры, и контактирующее цилиндрической поверхностью с корпусом газодинамического уплотнения, к которому оно прижато упругими силами этого кольца и давлением воздуха в предмасляной полости опоры, лабиринтное уплотнение, уплотняющее предмасляную полость опоры, образованное закрепленным на валу лабиринтным кольцом, и закрепленным в крышке масляной полости корпусом лабиринтного уплотнения с закрепленной в нем уплотняющей вставкой из вырабатываемого материала, а стыки корпусов обоих уплотнений с крышкой масляной полости опоры уплотнены резиновыми уплотнительными кольцами.

Турбина (1) электростанции, предпочтительно паровая турбина включает в себя статор (2), ротор (3) и по меньшей мере одно уплотнительное устройство (12). Статор (2) имеет корпус (4) и в корпусе по меньшей мере одну обойму (5, 6, 7) направляющих лопаток, снабженную направляющими лопатками (8).

Изобретение относится к уплотнительному устройству для прохода соединительной тяги системы управления шагом лопастей вентилятора турбовинтового двигателя сквозь перегородку.

Изобретение относится к роторам турбин низкого давления газотурбинных двигателей авиационного и наземного применения. Ротор турбины включает установленный на задней по потоку газа стороне обода диска лабиринт с внутренним радиальным ребром, а также установленный с передней стороны обода диска фланец.

Турбина двухроторного газотурбинного двигателя содержит наружный корпус, воздушный коллектор, предмасляную и масляную полости, роторы высокого и низкого давлений, каналы подачи масла в роликоподшипники, масляные уплотнения, межроторное лабиринтное уплотнение, питающие форсунки.

Изобретение относится к авиадвигателестроению, в частности к процессу изготовления сотовой ленты, применяемой в газотурбинных двигателях, и касается способа изготовления сотового уплотнения.

Опора турбины газотурбинного двигателя содержит подшипник (4), вал (6) и лабиринт (11) с фланцем (10) между подшипником (4) и диском (8) турбины. С внешней стороны фланца (10) лабиринта (11) установлен дополнительный фланец (12) с образованием полости продувки (13).

Предложены способ и система для регулирования протечки газа в турбине и сама турбина. Могут использоваться несколько уплотнений, расположенных последовательно, причем каждое из этих уплотнений может быть выполнено с возможностью уменьшения давления обратного потока из входа элемента турбины.

Изобретение относится к уплотнению вала для турбомашины. Уплотнение вала для турбомашины содержит нагружаемое технологическим газом и запираемое со стороны процесса уплотнение технологического газа и нагружаемое воздухом и запираемое со стороны атмосферы атмосферное уплотнение.

Изобретение относится к роторам турбомашин газотурбинных двигателей авиационного и наземного применения. Ротор турбомашины включает диск турбины, установленный на валу задним фланцем.

Изобретение относится к узлу уплотнения полки лопатки газотурбинного двигателя, содержащего диск турбины и несколько лопаток турбины. Узел уплотнения полки лопатки содержит уплотнение полки лопатки и метку валидации. Уплотнение полки лопатки содержит первый конец, второй конец, расположенный напротив и на отдалении от первого конца; тело, расположенное между первым концом и вторым концом. Метка валидации включает в себя фиксирующий участок, прикрепленный к уплотнению полки лопатки, и участок наблюдаемой индикации, выступающий из фиксирующего участка. Также представлены узел лопатки турбины, газотурбинный агрегат и способ сборки диска турбины в сборе для газотурбинного агрегата. Изобретение позволяет уменьшить время установки турбинных лопаток. 4 н. и 6 з.п. ф-лы, 10 ил.

Уплотнение для газотурбинного двигателя содержит основную часть, расположенную у основания турбинной лопатки, и крыловидную часть, проходящую в осевом направлении от указанной основной части уплотнения. Крыловидная часть имеет первый участок, по существу параллельный центральной оси (С) двигателя, и проходящий вверх под углом участок. Угол (А) между центральной осью двигателя и указанным проходящим вверх участком составляет от приблизительно 0° до приблизительно 90°. Технический результат – повышение эффективности уплотнения. 6 з.п. ф-лы, 4 ил.

Узел уплотнения между полостью диска и каналом горячего газа, проходящий через секцию турбины газотурбинного двигателя, содержит вращающийся узел рабочих лопаток и неподвижный узел направляющих лопаток. Вращающийся узел рабочих лопаток включает множество рабочих лопаток, которые вращаются вместе с ротором турбины во время работы двигателя. Неподвижный узел направляющих лопаток включает множество направляющих лопаток и внутренний кожух. Внутренний кожух содержит обращенную радиально наружу первую поверхность, обращенную радиально внутрь вторую поверхность и множество канавок, выходящих на вторую поверхность. Канавки располагаются таким образом, что между смежными канавками образована область, имеющая протяженность в окружном направлении, причем во время работы двигателя канавки направляют продувочный воздух из полости диска в направлении канала горячего газа таким образом, что продувочный воздух течет в требуемом направлении относительно направления потока горячего воздуха через канал горячего газа. Канавки сужаются в направлении от их входов, расположенных на удалении относительно аксиального концевого участка внутреннего бандажа, до их выходов, расположенных вблизи аксиального концевого участка внутреннего бандажа, таким образом, что входы имеют ширину больше, чем выходы. Изобретение позволяет более эффективно предотвращать попадание горячего газа в полость диска турбины газотурбинного двигателя. 8 з.п. ф-лы, 4 ил.
Наверх