Способ модифицирования магниевых сплавов

Изобретение относится к области металлургии легких сплавов и может быть использовано при производстве магниевого сплава системы магний-алюминий-цинк-марганец, содержащего примесь циркония. В способе перед модифицированием при температуре 770-780°C в расплав вводят кальций и железо в количестве 0,05-0,15% и 0,005-0,015% соответственно от массы расплава с интервалом введения железа не менее 10 мин, после выдержки расплава в течение 10-20 мин при температуре 720-750°C осуществляют модифицирование магнезитом в количестве 0,3-0,4% от веса расплава, при этом железо вводят в состав железосодержащего сплава при соотношении железа к содержащейся в сплаве примеси циркония 0,25-2,5. Изобретение позволяет устранить негативное влияние примеси циркония, обеспечивает возможность проведения модифицирования сплава для повышения качества литья за счет уменьшения содержания в сплаве водорода, тем самым снижая возможность образования микрорыхлостей, а также позволяет получить мелкозернистую структуру сплава и стабильные механические свойства. 1 табл.

 

Изобретение относится к области металлургии легких сплавов и может быть использовано при производстве магниевых сплавов системы магний-алюминий-цинк-марганец.

В промышленности наибольшее применение получил способ модифицирования (получение мелкозернистой структуры) введением в расплав углекислых солей, в частности, магнезита. Модифицирование магниевых сплавов системы магний-алюминий-цинк-марганец осуществляют введением магнезита, измельченного до размера 10-25 мм, в количестве 0,3-0,4% от веса расплава при температуре 720-730°C в течение 8-12 мин до прекращения выделения углекислого газа (М.Б. Альтман, А.А. Лебедев, М.В. Чухров. Плавка и литье легких сплавов. М. Металлургия, 1969. С.350). Недостатком модифицирования магнезитом является возможность загрязнения расплава примесями из магнезита и насыщения водородом. Кроме того, при загрязнении сплава цирконием этот метод неэффективен.

Известен способ обработки сплава системы магний-цинк-РЗМ-марганец введением в расплав железа из цинковожелезной лигатуры, содержащей 7% железа. Хлорное железо, введенное в расплав при температуре 750-770°C в количестве 0,5-1% от его веса, также способствует измельчению зерна магниевых сплавов (М.Б. Альтман, и др. Магниевые сплавы. Справочник Т. 2. М. Металлургия, 1978. С. 33). Недостатком модифицирования железом (хлорным железом) является некоторое понижение коррозионной стойкости.

Известен способ обработки магниевых сплавов, загрязненных цирконием, включающий введение железа в расплав и последующую его обработку магнезитом. Железо вводится в расплав в количестве 0,5% от веса расплава из лигатуры алюминий-железо, затем обрабатывают расплав магнезитом (а.с. №540935, МПК C22C 23/02, опубл. 30.12.1976 г.). Недостатком указанного способа является возможность загрязнения сплава железом и снижение коррозионной стойкости. Кроме того, способ не применим для модифицирования сплавов повышенной чистоты.

Наиболее близким аналогом, взятым за прототип, является способ модифицирования магниевых сплавов, включающий введение железа в расплав в количестве 0,005-0,015 от массы расплава, причем за 3-6 мин перед введением железа в расплав вводят титан при соотношении титана к железу в пределах 0,6-0,7 по массе (а.с. №1153563, МПК C22C 21/06, опубл. 10.10.2015 г.). Недостатком способа является сложность соблюдения в производственных условиях правильного временного режима и соотношения вводимых компонентов в указанных пределах без учета примесей, содержащихся в сплаве, что в свою очередь может привести к браку по химическому составу и структуре сплава.

Технической задачей и техническим результатом заявленного способа является повышение чистоты магниевых сплавов системы магний-алюминий-цинк-марганец по содержанию примесей, повышение прочностных и коррозионных характеристик, а также выхода годного за счет исправления структуры сплава, загрязненного примесью циркония, за счет снижения (или устранения) окисляемости расплава (вследствие образования плотной защитной пленки) и удаления из него водорода, повышения чистоты сплава по металлическим примесям и неметаллическим включениям, коррозионной стойкости и механических свойств (вследствие уменьшения количества неметаллических шлаковых включений и устранения влияния циркония на формирование мелкозернистой структуры сплава).

Технический результат достигается путем введения железа в расплав сплава и обработки расплава магнезитом, при этом в расплав вводят железо в количестве 0,005-0,015% от массы расплава при соотношении железа к содержащейся в сплаве примеси циркония 0,25-2,5 и при температуре 720-750°C проводят модифицирование магнезитом в количестве 0,3-0,4% от веса расплава, причем перед вводом железа в расплав вводят кальций в количестве 0,05-0,15% от веса расплава при температуре 770-780°C.

Ввод кальция в количестве 0,05-0,15% от веса расплава при температуре 770-780°C и выдержка не менее 10 мин позволяет защитить расплав от окисления в течение всего процесса модифицировании и связать присутствующий в нем водород в устойчивый гидрид и тем самым исключить образование микрорыхлоты в отливках.

Введение лигатуры алюминий-железо (5-10% Fe) (т.е. введение железа в количестве 0,005-0,015%) при соотношении железа к содержащейся в сплаве примеси циркония 0,25-2,5 позволяет устранить влияние циркония на формирование мелкозернистой структуры.

После выдержки расплава в течение 10-20 мин с целью более полного растворения железа в расплаве температуру расплава снижают до 720-750°C, создавая условия, необходимые для ликвации нерастворимых в магнии соединений железа и гидридов, и проводят модифицирование магнезитом в количестве 0,3-0,4% от веса расплава, что позволяет при сбалансированном, таким образом, химическом составе сплава по основным компонентам и примесям получать в отливках мелкозернистую структуру без неметаллических шлаковых включений и высокий уровень механических и коррозионных свойств.

Заявляемый способ модифицирования может быть использован при плавке сплавов системы Mg-Al-Zn-Mn: МЛ5, МЛ5пч, ВМЛ18 только в том случае, если по результату спектрального анализа наблюдается превышение содержания в сплаве циркония свыше 0,002%. Тогда перед процессом модифицирования при температуре 770-780°C в сплав вводят кальций и железо в количестве 0,05-0,15% и 0,005-0,15% соответственно от веса расплава с интервалом введения не менее 10 мин. При температуре 720-750°C сплав модифицируют магнезитом. Отливки сплавов системы Mg-Al-Zn-Mn, полученные с использованием предлагаемого способа, по механическим, коррозионным свойствам и чистоте удовлетворяют действующим техническим условиям. Флюсовая коррозия отсутствует. В таблице 1 приведены контрольные примеры, подтверждающие оптимальность заявляемого способа по сравнению с прототипом. Составы, приведенные в таблице, получены по технологии, изложенной в описании.

Заявленный способ является эффективным при устранении негативного влияния примеси циркония, обеспечивает возможность проведения модифицирования сплава с целью повышения качества литья: уменьшает содержание в сплаве водорода, тем самым снижая возможность образования микрорыхлоты, позволяет получить мелкозернистую структуру сплава и стабильные механические свойства.

Способ модифицирования магниевого сплава системы магний-алюминий-цинк-марганец, содержащего примесь циркония, включающий введение железа в расплав сплава и модифицирование расплава магнезитом, отличающийся тем, что перед модифицированием при температуре 770-780°C в расплав вводят кальций и железо в количестве 0,05-0,15% и 0,005-0,015% соответственно от массы расплава с интервалом введения железа не менее 10 мин, после выдержки расплава в течение 10-20 мин при температуре 720-750°C осуществляют модифицирование магнезитом в количестве 0,3-0,4% от веса расплава, при этом железо вводят в состав железосодержащего сплава при соотношении железа к содержащейся в сплаве примеси циркония 0,25-2,5.



 

Похожие патенты:

Изобретение относится к области металлургии и литейного производства, а именно к процессам модифицирования при плавке магниевых сплавов. Способ включает расплавление сплава и введение в него модификатора.

Изобретение относится к области металлургии сплавов и может быть использовано при производстве жаропрочных, высокопрочных и специальных магниевых сплавов, содержащих редкоземельные металлы (РЗМ), цинк, цирконий и др.

Изобретение относится к области металлургии, а именно к сплавам на магниевой основе и способам их получения. Способ получения сплава на магниевой основе включает обеспечение расплава магния или магниевого сплава, добавление 0,01-30 мас.% оксида щелочноземельного металла на поверхность расплава, поверхностное перемешивание в течение от 1 секунды до 60 минут на 0,1 мас.% добавленного оксида щелочноземельного металла с обеспечением его диссоциации и частичного расходования, обеспечение возможности взаимодействия щелочноземельного металла, полученного в результате расходования оксида щелочноземельного металла, с магнием и/или легирующим элементом в магниевом сплаве с получением интерметаллического соединения, удаление оксида щелочноземельного металла, остающегося после реакции, вместе со шлаком, разливку и кристаллизацию.

Изобретение относится к области металлургии, в частности к сплавам на основе магния, подходящим для применения при высокой температуре. Способ получения сплава на магниевой основе включает расплавление магния или магниевого сплава с получением жидкой фазы, добавление 0,5-4,0 мас.% СаО на поверхность расплава, поверхностное перемешивание с обеспечением по существу полного расходования СаО в магнии, образование соединения кальция (Са) с металлом или другими легирующими элементами в сплаве на магниевой основе и отверждение расплава.

Изобретение относится к области металлургии, в частности к магниевому сплаву, подходящему для применения при комнатной температуре. Способ получения сплава на магниевой основе включает расплавление магния или магниевого сплава, добавление от 0,05 мас.% до 1,2 мас.% оксида кальция (СаО) на поверхность расплава, перемешивание с обеспечением, по существу, полного расходования СаО, обеспечение взаимодействия кальция (Са), полученного в результате указанной реакции, с указанным расплавом, литье и отверждение сплава.

Изобретение относится к получению литого композиционного материала на основе магниевого сплава, армированного дискретными упрочняющими частицами. .

Изобретение относится к технике защиты от коррозии стальных сооружений и коммуникаций в электропроводящих средах, в частности стальных трубопроводов и конструкций.

Изобретение относится к получению деформируемого магниевого сплава, имеющего высокую прочность и прекрасную формуемость при экструзии или прокатке, а также способу его изготовления.
Изобретение относится к области металлургии, в частности, к производству лигатур и модифицирующих добавок. .

Изобретение относится к области химических источников тепла, а конкретно - к материалам для теплопередачи на основе реакции окисления магния. .
Изобретение относится к порошковой металлургии, в частности к получению композитов на основе металлической матрицы из алюминия или его сплавов c наполнителем из частиц борсодержащего материала и вольфрама.

Изобретение относится к шихте для получения пористого проницаемого каталитического материала методом самораспространяющегося высокотемпературного синтеза (СВС), который может быть использован для изготовления каталитических фильтров нейтрализаторов отработанных газов двигателей внутреннего сгорания, фильтрующих элементов, пламегасителей и аэраторов.

Изобретение относится к шихте для получения пористого проницаемого каталитического материала методом самораспространяющегося высокотемпературного синтеза (СВС), который может быть использован для изготовления каталитических фильтров нейтрализаторов отработанных газов двигателей внутреннего сгорания, фильтрующих элементов, пламегасителей и аэраторов.

Изобретение относится к шихте для получения пористого проницаемого каталитического материала методом самораспространяющегося высокотемпературного синтеза (СВС), который может быть использован для изготовления каталитических фильтров нейтрализаторов отработанных газов двигателей внутреннего сгорания, фильтрующих элементов, пламегасителей и аэраторов.

Изобретение относится к шихте для получения пористого проницаемого каталитического материала методом самораспространяющегося высокотемпературного синтеза (СВС), который может быть использован для изготовления каталитических фильтров нейтрализаторов отработавших газов двигателей внутреннего сгорания, фильтрующих элементов, пламегасителей и аэраторов.
Изобретение относится к производству слоистых композиционных материалов, содержащих слой пеноалюминия. Cпособ включает приготовление алюминиевого расплава, перегревание его выше температуры ликвидус.

Изобретение относится к области металлургии и может быть использовано для получения поршней двигателей внутреннего сгорания из заэвтектического силумина. В способе осуществляют расплавление шихты в печи, рафинирование расплава от водорода, внепечное модифицирование расплава лигатурой, содержащей соединения фосфора, получение поршневой заготовки и ее гомогенизацию.
1. Способ относится к получению низкомодульного сплава на основе системы титан-ниобий селективным лазерным сплавлением и может найти применение в области аддитивных технологий в медицине в качестве материалов для имплантатов.

Изобретение относится к получению порошка квазикристаллического сплава Al-Cu-Fe. Порошки металлов шихтуют в соотношении, соответствующем области существования квазикристаллической фазы сплава системы Al-Cu-Fe.

Изобретение относится к области металлургии, а именно к производству жаростойких порошковых сплавов на основе интерметаллида NiAl, и может быть использовано в авиационной, космической и энергетической отраслях для изготовления теплонагруженных деталей, работающих в условиях высоких температур и испытывающих относительно невысокие механические нагрузки.
Изобретение относится к получению композитного титан-ниобиевого порошка для аддитивных технологий. Способ включает механическую активацию смеси порошков титана и ниобия с добавлением противоагломерирующего компонента. Механическую активацию смеси порошков титана и ниобия ведут в планетарной шаровой мельнице ударно-фрикционного типа в течение 10-20 мин, с ускорением мелющих тел 40 g, при соотношении объемов смеси порошков и мелющих тел, равном 1:20, а в качестве противоагломерирующего компонента используют этиловый спирт. Обеспечивается однородное распределение титана и ниобия по объему композита. 3 з.п. ф-лы, 1 пр.
Наверх