Способ получения электроизоляционной композиции

Изобретение относится к кабельной промышленности и может быть использовано при изготовлении изоляции и оболочек кабелей и проводов, характеризующихся пониженным выделением дыма при горении. Для получения электроизоляционной композиции смешивают полиолефин - полиэтилен высокого давления, неорганический наполнитель с полярной поверхностью – тальк, антипирены с полярной поверхностью – декабромдифенилоксид (ДБДФО) и оксид сурьмы, стабилизаторы с аполярной поверхностью - стеарат кальция и ричнокс 1010 при следующем соотношении компонентов, мас.%: полиэтилен высокого давления 49,6-71,6; тальк 15,0-40,0; ДБДФО 7-9; оксид сурьмы 3-4; стеарат кальция 0,2; ричнокс 1010 0,2. Наполнитель и антипирены предварительно высушивают при 105°С до абсолютно сухого состояния. Изобретение позволяет получить однородную электроизоляционную композицию, исключить неравномерное перемешивание полимера, наполнителя и антипиренов. 4 табл., 2 пр.

 

Изобретение относится к кабельной промышленности, а именно к способам получения электроизоляционной композиции, предназначенной для изоляции и оболочек кабелей и проводов, характеризующихся пониженным выделением дыма при горении.

Известен способ нанесения на неорганические наполнители различных гидрофобных продуктов, например насыщенных или ненасыщенных жирными кислотами или их солями, в частности олеиновой кислотой или стеариновой кислотой, или соответствующими олеатами или стеаратами, или органосиланами или титанатами [1. Сироткина Е.Е., Митюшкин С.Ю., Борило А.В. Полипропилен и тальконаполненные композиции на его основе // Пластические массы. 1997. - №2. - С. 27-31].

Недостатком способа является образование слоя покрытия с неудовлетворительным внешним видом, который имеет тусклую шероховатую поверхность. Наблюдается образование пор внутри огнезащитного слоя, что приводит к последующему ухудшению механических свойств этого покрытия.

Наиболее близким является способ приготовления огнезащитной композиции [RU 2237078 С2, МПК 7 С09К 21/02, C08J 3/20, C08L 23/08, Н01В 7/295, С09К 21/02, C08J 3/20, опубл. 27.09.2004], заключающийся в смешивании полимерной основы с неорганическим наполнителем при нагревании при заданной температуре и в течение заданного времени таким образом, чтобы уменьшить влажность, содержащуюся в огнезащитном наполнителе, а затем добавление дегидратирующего агента к полученной в результате смеси, который способствует поглощению воды.

В качестве дегидратирующего агента используют оксид кальция, хлорид кальция, безводную окись алюминия, цеолиты, сульфат магния, оксид магния, оксид бария или их смесей. Этот дегидратирующий агент может быть добавлен к огнезащитной композиции во время стадии смешивания (приготовления смеси) или непосредственно перед введением в экструдер.

Дегидратирующий агент оказывает свое действие путем поглощения воды, присутствующей в огнезащитном наполнителе, которая выделяется во время нагрева композиции на стадии экструдирования.

Механизм адсорбции предпочтительно относится к необратимому типу, или дегидратирующий агент может адсорбировать воду обратимо, но с низкой скоростью высвобождения влаги при температуре экструдирования, с тем чтобы обеспечить, по существу, отсутствие воды в парообразном состоянии во время стадии экструдирования. Это предотвращает образование пор внутри огнезащитного покрытия и/или появление шероховатостей на его поверхности. Количество высвобожденной воды увеличивается с повышением температуры экструдирования, в результате чего преимущества, происходящие от присутствия дегидратирующих агентов, становятся особенно очевидными тогда, когда используются относительно высокие температуры экструдирования, как правило выше 180°С, предпочтительно выше 200°С.

Однако известный способ имеет следующие недостатки:

1. Введение дегидратирующего агента ведет к дополнительным затратам (расходам) реагентов и может ухудшать физико-механические свойства композиции.

2. Усложнение способа получения полимерной композиции за счет добавления дегидратирующего агента.

Задачей изобретения является создание способа получения однородной электроизоляционной композиции, исключающей неравномерное перемешивание полимера и наполнителей с гидрофильной поверхностью.

Поставленная задача достигается тем, что в предложенном способе получения электроизоляционной композиции осуществляют смешение полиолефина - полиэтилена высокого давления с неорганическим наполнителем и добавками (антипирены и стабилизаторы). Все компоненты с полярной поверхностью предварительно высушивают при температуре 105°С до абсолютно сухого состояния.

В качестве наполнителя используют тальк, обладающий в естественных условиях полярной поверхностью. Поверхность полимерных веществ (полиолефинов) является аполярной, поэтому в процессе смешения этих компонентов возникает проблема равномерного распределения порошкообразного наполнителя в полимерной матрице, что приводит к ухудшению физико-механических свойств композиции.

Кроме наполнителей в полимерную композицию вводят стабилизаторы, предотвращающие или замедляющие термоокислительную и фотоокислительную деструкцию, позволяющие предотвратить старение полимерных материалов и продлить срок их службы. В качестве стабилизаторов использовались ричнокс 1010 и стеарат кальция.

Ричнокс 1010 (Richnox 1010), (тетракис[метилен-3-(3,5-ди-трет-бутил-4-гидроксифенил)пропионат]метан). Молекулярная масса 1178 г/моль. Порошок белого цвета с плотностью 1015 г/см3. Интервал температуры плавления 110-125°С. Растворимость в воде <1⋅10-4 г/л (при 20°С). Хорошо растворим в ацетоне, этилацетате. Применяется для стабилизации полиолефинов, таких как полиэтилен, полипропилен, полибутен, а также для полиацеталей, полиамидов и полиуретанов.

Стеарат кальция - (С17Н35СОО)2Са. Белый порошок с температурой плавления 175°С и плотностью 1,035 г/см3. Растворяется в бензоле, толуоле и других неполярных растворителях. Не растворяется в воде.

В качестве антипиренов, препятствующих разложению материала с выделением горючих газов, предотвращающих их воспламенение и повышающих огнестойкость, использовались оксид сурьмы (III) и декабромдифенилоксид (ДБДФО).

Оксид сурьмы - Sb2О3. Тонкодисперсный порошок белого цвета. Температура плавления 656°С, кипения 1456°С. Практически не растворяется в воде.

ДБДФО - декабромдифенилоксид (С16Н10Вr10О). Порошок белого или слегка кремового цвета с температурой плавления 300°С. Плохо растворяется в органических растворителях. Антипирен для полиэтилена, полистирола, АБС-пластика, полиуретанов и др.; придает негорючесть текстильным материалам из хлопка, полиэфирных и полиамидных волокон.

Электроизоляционная композиция получена при следующем соотношении компонентов, масс. %:

полиэтилен высокого давления 49,6-71,6
тальк 15,0-40,0
ДБДФО 7-9
оксид сурьмы 3-4
стеарат кальция 0,2
ричнокс 1010 0,2

Так как поверхность ричнокса и стеарата кальция является аполярной, то эти порошки хорошо смешиваются с расплавленными полиолефином.

Компонентами, обладающими полярными свойствами, является наполнитель (тальк) и антипирены (оксид сурьмы и декабромдифенилоксид).

Количество влаги, адсорбированной на поверхности полярных частиц наполнителя и антипиренов, зависит не только от физических свойств частиц (размер частиц, краевой угол смачивания, адсорбционные свойства и пр.), но и от влажности окружающей среды. Чем больше влажность воздуха, тем большее количество влаги адсорбируется на полярной поверхности, и тем самым большее количество воды вносится в полимерную матрицу.

Для предотвращения агрегации тонкодисперсных порошков с полярной поверхностью в полимерной матрице необходимо предварительное высушивание наполнителя и антипиренов до абсолютно сухого состояния, после чего поверхности этих порошков становятся аполярными. Это было проверено экспериментально по удельным седиментационным объемам порошков в жидкостях различной полярности. При этом влажность наполнителя варьировалась от абсолютно сухого до предельного насыщения при 100% влажности воздуха. Навески порошкообразного наполнителя и антипиренов с полярной поверхностью в количестве 1 г помещали в пробирки и заливали полярной (вода) и аполярной (октан) жидкостью, выдерживали 1 сутки, после чего определяли удельный седиментационный объем осадка (табл. 1-2).

Величина объема, занимаемого одной и той же навеской в жидкостях различной полярности, позволяет оценить их смачиваемость, исходя из предложенного нами коэффициента смачивания - К (табл. 3).

где Vп - удельный седиментационный объем порошка в полярной жидкости, см3/г;

Vап - удельный седиментационный объем порошка в аполярной жидкости, см3/г.

При значениях К>1 - поверхность исследуемого материала гидрофобная, при К<1 - поверхность гидрофильная. Чем больше значение К отличается от единицы, тем соответственно более гидрофобным или гидрофильным является исследуемый материал. При равенстве удельных седиментационных объемов коэффициент К=1, что соответствует краевому углу смачивания, равному 90°.

Анализируя полученные результаты, можно сделать следующие выводы. Изменение удельного седиментационного объема талька, ДБДФО и оксида сурьмы с гидрофильной поверхностью в жидкостях различной полярности позволило установить, что гидрофильность поверхности зависит от гигроскопичности порошков, т.е. способности материала поглощать влагу из окружающей среды. Установлено, что естественная влажность талька равна 0,18%, оксида сурьмы - 0,20%, ДБДФО - 0,14%. При осуществлении процесса глубокой сушки порошка поверхность частиц становится гидрофобной. Как показано в табл. 1-3, тальк, оксид сурьмы и ДБДФО, имеющие на своей поверхности гигроскопическую влагу, обладают гидрофильной поверхностью. Однако высушенные до абсолютно сухого состояния эти порошки становятся гидрофобными, так как удельный седиментационный объем осадков в воде превышает удельный седиментационный объем осадков в октане.

Это говорит о том, что гидрофобные взаимодействия не проявляются в абсолютно сухом материале. Однако порошки с естественной влажностью, или специально увлажненные до максимальной гигроскопичности, занимают различные объемы в полярной и аполярной жидкостях. То есть молекулы воды, адсорбированные на поверхности порошкообразного материала, способствуют проявлению гидрофобных взаимодействий.

В таблице 1 представлены удельные седиментационные объемы наполнителя и антипиренов в полярной (вода) среде, в таблице 2 - в аполярной (октан) среде.

В таблице 3 представлен коэффициент смачивания порошков К.

В таблице 4 показаны примеры получения электроизоляционной композиции.

Пример 1. В лабораторный смеситель типа Бенбери загружают 1,5 кг смеси следующего состава (% масс):

ПЭВД 15803-020 56,6
тальк POW 30,0
ДБДФО 9
оксид сурьмы 4
стеарат кальция 0,2
ричнокс 1010 0,2

Тальк берут естественной влажностью 0,18%, оксид сурьмы влажностью 0,20% и ДБДФО - 0,14%. Смешение происходит при температуре 140°С в течение 8 минут, затем полученную композицию экструдируют и определяют физико-механические свойства, представленные в табл. 4.

Пример 2. В лабораторный смеситель типа Бенбери загружают смесь, как в примере 1. Тальк, оксид сурьмы ДБДФО были предварительно высушены при 105°С до абсолютно сухого состояния. Смешение компонентов происходит при 140°С в течение 4 минут, затем полученную композицию гранулируют при температуре расплава и проводят физико-механические испытания (табл. 4).

Примеры на предельные и запредельные значения приведены в таблице 4, из которой видно, что время перемешивания композиции с абсолютно сухими добавками с полярной поверхностью составляет 3-5 мин, в то время как использование компонентов с естественной влажностью увеличивает время перемешивания до 13 мин.

На физико-механические свойства композиции влияет также содержание наполнителя (талька) от 15 до 40%.

При 15% содержании талька в композиции физико-механические свойства изменяются незначительно в зависимости от содержания влаги в наполнителе. Однако у композиции с высушенным тальком физико-механические показатели несколько выше, чем у полимерной композиции с увлажненным наполнителем.

При увеличении содержания талька до 40% улучшаются физико-механические показатели для композиции с абсолютно сухими порошками с полярной поверхностью по сравнению с увлажненными компонентами: показатель текучести расплава с 1,3 до 1,4 г/10 мин; относительное удлинение с 40 до 50%. При этом время перемешивания композиции уменьшается с 13 до 5 мин.

Способ получения электроизоляционной композиции, включающий смешение полиолефина - полиэтилена высокого давления, неорганического наполнителя с полярной поверхностью – талька, антипиренов с полярной поверхностью – декабромдифенилоксида (ДБДФО) и оксида сурьмы, стабилизаторов с аполярной поверхностью - стеарата кальция и ричнокса 1010 с предварительным высушиванием наполнителя и антипиренов при 105°С до абсолютно сухого состояния при следующем соотношении компонентов, мас.%:

полиэтилен высокого давления 49,6-71,6
тальк 15,0-40,0
ДБДФО 7-9
оксид сурьмы 3-4
стеарат кальция 0,2
ричнокс 1010 0,2.



 

Похожие патенты:

Изобретение относится к силовому кабелю постоянного тока, который содержит полимерную композицию и, возможно, является сшиваемым и затем сшитым, а также к способу изготовления силового кабеля постоянного тока кабеля, в том числе силового кабеля постоянного тока высокого напряжения.

Изобретение относится к сшивающимся полимерным композициям для производства изоляционного слоя электрического кабеля среднего напряжения. В пероксидносшиваемую композицию для изоляции силовых кабелей, содержащую полиолефин и органическую перекись, дополнительно введены сополимер этилена с бутилакрилатом, сополимер этилена на основе бутена, или на основе гексена, или на основе октена, монометиловый эфир полиэтиленгликоля, тиодиэтилен-бис[3-(3,5-ди-трет-бутил-4-гидроксифенил)пропионат], диалкиловый эфир тиодипропионовой кислоты при следующем содержании компонентов, мас.%: полиолефин 80,0-93,0, сополимер этилена с бутилакрилатом 3,0-5,0, сополимер этилена на основе бутена, или гексена, или октена 2,5-4,0, монометиловый эфир полиэтиленгликоля 0,2-1,0, тиодиэтилен-бис[3-(3,5-ди-трет-бутил-4- гидроксифенил)пропионат] 0,1-1,0, диалкиловый эфир тиодипропионовой кислоты 0,1-1,0, органическая перекись 1,5-2,5.
Изобретение относится к покрытию для полимерного изоляционного материала и способу его получения. Такие покрытия могут быть нанесены как на трехмерные детали, так и на листовые материалы, такие как пленки и тканые материалы.

Изобретение относится к способу изготовления электроизоляционного материала. Способ изготовления электроизоляционного материала (5, 6, 7) включает стадии изготовления жидкокристаллического полимера; формирования из жидкокристаллического полимера изоляционной пленки так, что в изоляционной пленке присутствует мезофаза жидкокристаллического полимера, за счет чего молекулы полимера в изоляционной пленке ориентированы в предпочтительном направлении; ламинирования нескольких изоляционных пленок в образующий электроизоляционный материал (5, 6, 7) слоистый комбинированный материал.

Изобретение относится к кабельной промышленности, а именно к способу получения электроизоляционной композиции, и предназначено для изоляции и оболочек кабелей и проводов, характеризующихся пониженным выделением дыма при горении.

Изобретение относится к термостойкому проводу или кабелю с высокими рабочими характеристиками, предназначенному для использования в требующихся или экстремальных условиях, например при бурении скважин или разработке месторождений, в промышленных, военных аэрокосмических, морских областях, а также автомобильном, железнодорожном и общественном транспорте.

Изобретение относится к отверждаемой излучением полимерной композиции для нанесения покрытия на электрические провода, конкретнее на питающие провода, телефонные провода, провода для соединения между электронным оборудованием или внутри электронного оборудования и тому подобное.

Изобретение относится к отверждаемой излучением полимерной композиции для покрытий проводов. Композиция включает (A) от 30 до 80 мас.% смеси уретанового (мет)акрилата, имеющего структуру, производную от алифатического полиола, и уретанового (мет)акрилата, не имеющего структуру, производную от полиола, (B) от 15 до 60 мас.% соединения, имеющего циклическую структуру и одну этиленненасыщенную группу, выбранного из группы изоборнилметакрилата, борнилметакрилата, трициклодеканилметакрилата, дициклопентанилметакрилата, бензилметакрилата, 4-бутилциклогексилметакрилата, акрилоилморфолина, винилимидазола, винилпиридина, и (D) от 0,01 до 1 мас.% соединения (4a), представляющего собой эфир фосфорной кислоты.

Изобретение касается изоляционной ленты, применяемой преимущественно в транспортерных лентах при производстве пластиковых пакетов и включающей изоляционную сердцевину, покрытую с обеих сторон слоем целлюлозы пленку из сложного полиэфира, и слой изоляционного материала, расположенный, по меньшей мере, с одной из двух плоскостных сторон, где изоляционный материал содержит лак и добавочный материал, содержащий кремневую кислоту и ПЭ-воск.

Изобретение относится к сшивающимся композициям на основе полиолефинов и их сополимеров и модификаторам для получения силанольносшивающихся полимерных композиций, которые могут быть использованы для получения пленочных покрытий, изоляции и оболочек кабелей и проводов различного назначения.

Изобретение относится к композиции полиэтилена высокой плотности для производства труб или изделий, используемых в системе трубопроводов, обладающей устойчивостью к повреждениям в присутствии хлорированной и нехлорированной воды.

Изобретение относится к конструкции на основе полиэтилена, включающей полимерную композицию, содержащую 60-90 мас.% полиэтилена (А), 5-35 мас.% модифицированного кислотой полиэтилена (В) и 5-35 мас.% содержащего мета-ксилиленовую группу полиамида (С), где содержащий мета-ксилиленовую группу полиамид (С) является диспергированным в форме слоев в конструкции, а кислотное число модифицированного кислотой полиэтилена (В) имеет значение от 10 до 30 мг/г.

Изобретение относится к кабелю, в том числе к сшитому кабелю, также к способу его производства кабеля, более предпочтительно к способу производства силового кабеля.

Изобретение относится к силовому кабелю постоянного тока, который содержит полимерную композицию и, возможно, является сшиваемым и затем сшитым, а также к способу изготовления силового кабеля постоянного тока кабеля, в том числе силового кабеля постоянного тока высокого напряжения.

Изобретение относится к cоставам для производства полиэтилена для формирования экструзией, литьем и раздувом полых изделий и к способу их получения. Состав содержит первый полиэтилен и второй полиэтилен, которые произведены в любом порядке в присутствии катализатора Циглера-Натта в последовательно соединенных газофазных реакторах.

Способ // 2609029
Изобретение относится к полиэтиленовой смеси высокой плотности, предназначенной для изготовления изделий, предпочтительно таких как трубы. Полиэтиленовая смесь имеет показатель текучести расплава (ПТР21) не более 10,0 г/10 мин, определенный в соответствии с ISO 1133 при 190° С и нагрузке 21,6 кг, и плотность по меньшей мере 940 кг/м3.

Изобретение относится к полиэтиленовой композиции, предназначенной для изготовления формованных изделий различных видов. Композиция имеет плотность от 0,953 до 0,960 г/см3 и соотношение MIF/MIP от 17 до 29, где MIF индекс текучести расплава при 190°C с нагрузкой в 21,60 кг, a MIP индекс текучести расплава при 190°C с нагрузкой в 5 кг.

Изобретение относится к составу для формирования теплоизолирующего ячеистого неароматического полимерного материала, который может быть использован для получения изделия, в частности контейнера.

Изобретение относится к многослойному поверхностному покрытию без ПВХ, содержащему по меньшей мере один слой термопластичной композиции, при этом термопластичная композиция содержит матрицу на основе полимера, представляющую 100 частей по весу и содержащую один или несколько полимеров на основе олефина и один или несколько сополимеров ангидрида, при этом указанные один или несколько сополимеров ангидрида представляют от 5 до 40 частей по весу матрицы на основе полимера, один или несколько наполнителей, представляющих по весу по меньшей мере 100 частей на 100 частей указанной матрицы на основе полимера, один или несколько оксидов основного или амфотерного металла, представляющих от 5 до 40 частей по весу на 100 частей указанной матрицы на основе полимера.

Настоящее изобретение относится к композиции, пригодной для получения сформованных изделий. Описана композиция, пригодная для получения сформованных изделий, содержащая: A) полимер на основе этилена; B) соединение, выбранное из соединений формулы 1: где R1 и R2, каждый независимо, выбраны из С1-С20 алкильных групп, X представляет собой ОН, n равно от 1 до 10 и m равно от 10 до 30 и где соединение формулы 1 присутствует в количестве от 500 до 2500 частей на млн в расчете на общую массу композиции; С) соединение, выбранное из соединений формулы 2: где R1, R2 и R3, каждый независимо, выбраны из С1-С20 алкильных групп; R4, R5, R6, R7, R8 и R9, каждый независимо, выбраны из С1-С20 алкильных групп, X1, Х2 и Х3, каждый представляет собой ОН, n равно от 1 до 6, m равно от 1 до 6 и о равно от 1 до 6; и где массовое отношение компонента С к компоненту В (С/В) более чем 1, D) соединение, выбранное из соединений формулы 3; где R1 и R2, каждый независимо, выбраны из С1-С20 алкильных групп, X представляет собой ОН, n равно от 1 до 10 и m равно от 1 до 10; Е) соединение, выбранное из соединений формулы 4: где R1 и R2, каждый независимо, выбраны из С1-С20 алкильных групп; и где компонент Е присутствует в количестве от 500 до 1500 частей на млн в расчете на массу композиции, и где массовое отношение компонента Е к компоненту В (Е/В) от 0,5 до 2,0.

Изобретение относится к эпоксивинилэфирной композиции и может быть использовано для изготовления изделий из полимерных композиционных материалов методом вакуумной инфузии, в том числе с использованием наполнителя, изготовленного методом плетения, в автомобилестроении, химическом машиностроении, энергетической, строительной, машиностроительной, судостроительной, авиационной индустриях и других областях техники.
Наверх