Датчик потока технических жидкостей с ребристым копланарным фланцем

Заявленная группа изобретений относится к области систем измерения давления технической жидкости. Заявленная группа включает систему измерения давления технической жидкости, ребристый фланец для соединения датчика давления технической жидкости с потоком и узел для монтажа датчика давления технической жидкости на трубопровод. При этом система измерения давления технической жидкости включает датчик давления технической жидкости с двумя отверстиями для технической жидкости, расположенными копланарно друг к другу на его поверхности, который предназначен для измерения дифференциального давления между двумя отверстиями для технической жидкости и индикации измеренного дифференциального давления по контуру связи с процессом, ребристый фланец, имеющий первую поверхность для монтажа датчика давления технической жидкости на нижнюю часть и вторую поверхность напротив первой, а также боковую стенку, находящуюся между первой и второй поверхностями, и множество ребер на боковой стенке. Технический результат заключается в обеспечении системы измерения давления технической жидкости, устанавливаемую над элементом расходомера технической жидкости или трубой и функционирующую на более высоких температурах, чем ранее, а также в обеспечении снижения температуры, воздействию которой подвергаются электроника датчика давления технической жидкости и изоляционная жидкость, а также в увеличении отвода тепла от датчика давления технической жидкости в сферах применения с высокими температурами. 3 н. и 14 з.п. ф-лы, 4 ил.

 

УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ

[0001] Для контроля и управления процессами производства используются системы контроля и управления процессом. Производственные процессы используются при изготовлении различных продуктов, таких как очищенная нефть, лекарственные средства, бумага, продукты питания и т.д. В крупномасштабных сферах применения должны осуществляться контроль и управление такими процессами, чтобы обеспечить работу в пределах требуемых параметрах.

[0002] «Датчик» стал термином, использующимся для описания устройств, которые подключаются к технологическому оборудованию и определяют параметр процесса. Типичные параметры процесса включают давление, температуру, поток и др. Зачастую датчик находится на удаленном участке (т.е. «на месте») и передает измеряемую переменную процесса обратно на центральную диспетчерскую. Для передачи переменной процесса используются различные технологии, в том числе проводная и беспроводная связь. В одной стандартной технологии проводной связи используется то, что известно как двухпроводной контур управления процессом, в котором одна пара проводов применяется для передачи информации и подачи питания на датчик. Одной из хорошо известных технологий передачи данных является контроль уровня тока через контур управления процессом между 4 мА и 20 мА. Величина тока в диапазоне 4-20 мА может быть преобразована в соответствующие величины переменной процесса.

[0003] Одним из типов датчиков является датчик давления. В целом, датчиком давления может быть любой датчик, который измеряет давление технической жидкости (термин «жидкость» в этом случае включает газ, пар и жидкости и их сочетание). Датчики давления могут использоваться для непосредственного измерения давления, в том числе дифференциальное, абсолютное или манометрическое давление. К тому же, благодаря использованию известных технологий, датчики давления можно применять для измерения потоков технической жидкости на основании перепада давления технической жидкости между двумя участками.

[0004] Как правило, датчик давления включает в себя сенсор давления, который подает техническую жидкость под давлением через изолированную систему. Например, изолированная система может включать изоляционную диафрагму, которая находится в физическом контакте с технической жидкостью, и изоляционную заполняющую жидкость, которая расширяется между изоляционной диафрагмой и сенсором давления. Заполняющая жидкость предпочтительно содержит несжимаемую жидкость, такую как масло. По мере того, как техническая жидкость оказывает давление на изоляционную диафрагму, изменения во внешнем давлении передаются по диафрагме через изоляционную жидкость на сенсор давления. Такие изолированные системы предотвращают непосредственное воздействие технической жидкости на чувствительные компоненты сенсора давления.

[0005] В некоторых технологических средах, техническая жидкость может находиться на относительно высоких температурах. Однако, максимальная рабочая температура датчиков обычно составляет 185-250°F. Даже в тех случаях, когда датчик выдерживает высокую температуру, предельные значения температуры все равно могут привести к погрешностям измерений давления. В процессах, где превышается максимальная рабочая температура датчика давления, датчик должен находиться на удалении от технической жидкости и контактировать с ней через длинную капиллярную трубу. Капиллярная труба может быть длиной несколько футов и переносить изоляционную жидкость. Один конец трубы соединен с потоком посредством изоляционной диафрагмы, а другой - с датчиком давления. Эта длинная капиллярная труба и изоляционная диафрагма обычно называется «выносной диафрагмой» или «водяными петлями» в измерениях потока пара.

[0006] Поскольку система выносной диафрагмы все же не обеспечивает эффективное измерение, существуют некоторые компромиссные решения. Когда «водяные петли» используются и устанавливаются некорректно, в фактических измерениях давления могут появиться погрешности. Кроме того, водяные петли требуют наличия дополнительных антиобледенителей в определенном климате. Таким образом, система измерения давления технической жидкости с непосредственным монтажом, которая может применяться при высоких температурах, была бы предпочтительной для пользователей, не желающих использовать систему выносной диафрагмы в области высоких температур.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0007] В настоящем изобретении предусмотрена система измерения давления технической жидкости. Данная система включает в себя датчик давления жидкости с двумя отверстиями для технической жидкости, расположенными копланарно друг к другу на его нижней поверхности. Датчик давления технической жидкости предназначен для измерения дифференциального давления между двумя отверстиями для технической жидкости и индикации измеренного дифференциального давления по контуру связи с процессом. Ребристый фланец имеет первую поверхность для монтажа датчика давления технической жидкости на нижнюю часть и вторую поверхность напротив первой, а также как минимум одну боковую стенку, находящуюся между первой и второй поверхностью. Возле боковой поверхности находится множество ребер.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0008] На РИС. 1 показано схематическое изображение системы измерения давления технической жидкости с непосредственным монтажом, которая устанавливается на трубу технической жидкости согласно варианту осуществления настоящего изобретения.

[0009] На РИС. 2 показано схематическое изображение системы измерения давления технической жидкости с непосредственным монтажом согласно варианту осуществления настоящего изобретения.

[0010] На РИС. 3 показано схематическое перспективное изображение ребристого копланарного фланца согласно варианту осуществления настоящего изобретения.

[0011] На РИС. 4 показано схематическое изображение в разобранном виде системы измерения давления технической жидкости с непосредственным монтажом согласно другому варианту осуществления настоящего изобретения.

ПОДРОБНОЕ ОПИСАНИЕ ПОЯСНИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

[0012] Датчики давления технической жидкости зачастую устанавливаются непосредственно на элемент расходомера технической жидкости, такой как измерительная диафрагма или усредняющая напорная трубка, например, первичный элемент Annubar®, доступный в Emerson Process Management (Эмерсон Процесс Менеджмент), Шанхассен, шт. Миннесота. Первичный элемент располагается в потоке технической жидкости, такой как пар. В сферах применения с высокими температурами техническая жидкость может перегревать заполняющую жидкость датчика давления технической жидкости и приводить к повреждению его сенсора(ов). Это может произойти, когда температура технической жидкости составляет 185-250°F и выше. Такая проблема усугубляется в случаях, когда возле датчика давления технической жидкости недостаточно или нет циркуляции воздуха, или на участках, где температура окружающей среды возле датчика давления технической жидкости зачастую высокая, например, возле потолка. Хотя датчик давления технической жидкости можно непосредственно установить ниже элемента расходомера технической жидкости, есть ряд причин, по которым такое расположение не рекомендуется. Так, на дне технологического трубопровода часто оседает конденсат, другие нежелательные жидкости, частицы или другие загрязнители. Такие жидкости или загрязнители попадают в импульсные линии системы измерения давления технической жидкости. В зависимости от давления и/или температуры, эта жидкость может замерзать и повреждать систему, либо загрязнители могут накапливаться и засорять сенсор(ы) давления, приводя к неточностям или выходу из строя. Кроме того, непосредственный монтаж ниже элемента расходомера технической жидкости может привести к проблемам с зазором с поверхностью или полом. Таким образом, важно предусмотреть систему измерения давления технической жидкости, которую можно бы было непосредственно устанавливать над элементом расходомера технической жидкости или трубой либо которая могла бы функционировать на более высоких температурах, чем ранее.

[0013] РИС. 1 - это схематическое изображение системы измерения давления технической жидкости с непосредственным монтажом, которая устанавливается на трубу технической жидкости согласно варианту осуществления настоящего изобретения. Система 10 включает датчик давления технической жидкости 12, соединенный с трубой технической жидкости 14 посредством двух импульсных линий 16 и ребристого копланарного фланца 18. Датчик 12 включает секцию электроники 20 и модуль сенсора давления 22. Модуль сенсора давления 22 включает сенсор дифференциального давления, который имеет электрическую характеристику, такую как емкость, изменяющуюся в зависимости от создаваемого дифференциального давления на двух изоляционных диафрагмах на его нижней поверхности 23 (показано на РИС. 2). Модуль сенсора давления 22 также включает схему для измерения электрической характеристики и выводит измерение на электронику датчика в секции 20. Электроника датчика принимает данные об измерении от модуля сенсора давления 22 и генерирует данные о переменной процесса, указывающие на переменную процесса для передачи по контуру управления процессом. Передача данных о переменной процесса может происходить через проводной, беспроводной контур управления процессом или через оба контура. В одном варианте осуществления настоящего изобретения датчик 12 может быть коммерчески доступным датчиком давления, который продается под торговым обозначением Модель 30501SFC в Emerson Process Management. В некоторых вариантах осуществления изобретения, датчик 12 оснащен схемой в модуле сенсора давления 22 или секцией электроники 20, которая может приспосабливаться под максимальную рабочую температуру 185-250°F. Эта же схема также может контролировать фактическую температуру в модуле сенсора давления 22.

[0014] Труба технической жидкости 14 переносит техническую жидкость, такую как перегретый пар, при температуре, которая может быть равна или выше максимальной рабочей температуры датчика давления технической жидкости 12. Часто для определения скорости потока или другой величины, связанной с потоком технической жидкости в трубе 14, элемент расходомера технической жидкости устанавливается посреди потока. Например, первичный элемент усредняющей напорной трубки можно вставить в трубу 14, обеспечивая два давления технической жидкости в потоке. В случае первичного элемента усредняющей напорной трубки, первичное давление технической жидкости может быть давлением потока, а вторичное давление может быть статическим давлением в трубе 14. Затем, можно рассчитать поток жидкости, используя принцип Бернулли и диаметр трубы. Как вариант, в трубу 14 можно вставить измерительную диафрагму, которая создает локальное ограничение потока. В этом варианте осуществления изобретения, первичное давление технической жидкости относится к давлению жидкости на входе, а вторичное давление технической жидкости относится к давлению на выходе после измерительной диафрагмы. Используя известные уравнения, с помощью этих давлений можно рассчитать поток технической жидкости.

[0015] В вышеописанных вариантах осуществления настоящего изобретения, техническая жидкость под двумя разными давлениями подается из трубы на датчик давления технической жидкости. Также, как установлено выше, техническая жидкость может находиться на уровне или выше максимальной рабочей температуры датчика давления технической жидкости. Хотя в предыдущих работах датчик давления с непосредственным монтажом был физически отделен от процесса (см. патент США 7,497,123, выданный Стивену М. Бему, переданный Патентообладателю настоящего изобретения), все еще остается необходимость разработать решение по измерению рабочего давление с непосредственным монтажом, где датчик давления находился бы в непосредственной близости к потоку. Это особенно необходимо в сферах применения, где расстояние до датчика давления технической жидкости ограничено.

[0016] Как показано на РИС. 1, датчик давления технической жидкости 12 соединен с трубой технической жидкости 14 через ребристый копланарный фланец 18. В частности, модуль сенсора давления 22 датчика 12 привинчен к поверхности 36 ребристого фланца 18 четырьмя болтами по углам модуля 22. Две изоляционных диафрагмы возле нижней поверхности модуля сенсора давления 22 пневматически уплотняют два напорных отверстия технической жидкости в ребристом фланце 10, предпочтительно с помощью уплотняющих колец. В дополнение к этому, импульсные линии 16 соединены с нижней поверхностью 34 ребристого фланца 18 путем любых подходящих методов соединения. Поверхности 34 и 36 обычно параллельны и противоположны друг другу. Как минимум одна боковая стенка 37 находится между поверхностями 34 и 36. В варианте осуществления изобретения, показанном на РИС. 1, фланец 18 включает четыре боковые стенки, однако в других вариантах может присутствовать только одна боковая стенка. Например, в вариантах осуществления изобретения, где ребристый фланец круглый, необходима только одна боковая стенка.

[0017] Клапанный манифольд может быть соединен с поверхностью 34 фланца 18 для обеспечения множества фланцев 24, 26 и 28, выполняющих функции манифольда. Например, клапаны 24 и 26 могут быть запорными клапанами, которые закрываются для изолирования модуля сенсора давления 22 от потока в целях его замены. Кроме того, клапан 8 может быть клапаном выравнивания, обеспечивающим подачу жидкости между двумя отверстиями для технической жидкости.

[0018] Чтобы снизить нагрев поверхности 23 модуля сенсора давления 22 из-за технической жидкости, ребристый фланец 18 включает множество ребер 32. Ребра 32 обычно проходят перпендикулярно поверхности 23 модуля сенсора давления 22 и предпочтительно проходят полное расстояние между поверхностями 34, 36 манифольда ребристого фланца 18. Кроме того, ребра 32 предпочтительно должны находиться на всех четырех боковых стенках ребристого фланца 18. Однако варианты осуществления настоящего изобретения могут выполняться с различными вариациями. Например, одна или несколько сторон фланца 18 не обязательно должны иметь ребра 32; количество ребер на конкретной стороне может варьировать; длина и/или ширина ребер может варьировать и т.д. Ребра 32 обеспечивают дополнительную площадь поверхности, где тепло, переданное от технической жидкости, может быть выпущено в окружающую среду путем конвекции или излучения, вместо передачи на изоляционные диафрагмы модуля сенсора давления 22. Учитывая то, что техническая жидкость может достигать температуры 400°F или выше, а окружающая среда может иметь комнатную температуру либо немного выше, характеристики теплопередачи ребристого фланца 18 существенны.

[0019] На РИС. 2 показано схематическое изображение части системы измерения давления технической жидкости с непосредственным монтажом согласно варианту осуществления настоящего изобретения. На РИС. 2 показан датчик давления технической жидкости 12 и ребристый копланарный фланец 18 в более детальном виде. Например, на РИС. 2 представлено несколько ребер 32 с множеством вырезов 35 для увеличения свойств теплопередачи каждого ребра 32. Как показано, каждое ребро 32 предпочтительно находится между поверхностями 34 и 36 фланца 18. В дополнение к этому, смежные ребра предпочтительно соединены с ребристым копланарным фланцем 18 посредством шва или криволинейной части 37, которая дает дополнительную прочность ребрам 32.

[0020] На РИС. 3 показано схематическое перспективное изображение ребристого копланарного фланца согласно варианту осуществления настоящего изобретения. Ребристый копланарный фланец 18 включает два отверстия для технической жидкости 40, 42, соединенных с датчиком давления технической жидкости с двумя копланарными изоляционными диафрагмами. Кроме того, фланец 18 включает множество крепежных отверстий для установки крепежных болтов (не показаны). Как показано на РИС. 3, вырезы 35 обычно проходят поперек ребер 32, позволяя воздуху проходить по ним. Более того, в некоторых вариантах осуществления изобретения, вырезы 35 могут совпадать друг с другом, чтобы упростить их изготовление. В заключение, отделка поверхности ребер 32 может быть выполнена для увеличения теплопередачи, например, выполняя отделку поверхности ребер 32 более грубой, чем у поверхности 46, на которой устанавливается датчик давления технической жидкости 12.

[0021] На РИС. 4 показано схематическое изображение в разобранном виде системы измерения давления технической жидкости с непосредственным монтажом согласно другому варианту осуществления настоящего изобретения. Датчик давления технической жидкости 12 соединен с ребристым копланарным фланцем 100, который может быть любым подходящим ребристым копланарным фланцем, включая ребристый копланарный фланец, как описано выше в РИС. 1-3. Фланец 100 предпочтительно включает спускные отверстия для слива и/или отвода технической жидкости. Ребристый копланарный фланец 100 предпочтительно соединен с многоклапанным манифольдом 102, который выполнен как соединение датчика с непосредственным монтажом для ребристого фланца 100 и датчика давления технической жидкости 12. Манифольд 102 соединен с двумя впускными патрубками для нагнетания технической жидкости от первичного элемента 104 через элемент 106. Элемент 106 проходит от манифольда 102 до первичного элемента 104 и переносит техническую жидкость из каждого отверстия в первичном элементе 104 к манифольду 102. Элемент 106 также соединен с днищем 108, которое является элементом «поддержания давления/конструкции». У днища 108 есть два конца 110, 112, каждый из который оснащен соответствующим креплением для приводного стержня 114, 116. Приводные стержни 114, 116 входят в контакт с объединенными приводами в узле 118, чтобы первичный элемент 104 и датчик давления технической жидкости можно было поднять и извлечь из узла 118. Согласно варианту осуществления настоящего изобретения днище 108 включает ряд вертикальных ребер 120, которые передают тепло от технической жидкости в элементе 106 в окружающую среду. Таким образом, как минимум некоторое количество тепла от технической жидкости не передается на датчик давления технической жидкости 12, таким образом, снижая температуру, воздействию которой подвергаются электроника датчика давления технической жидкости и изоляционная жидкость. Кроме того, варианты осуществления настоящего изобретения могут предусматривать наличие ребер в днище 108 и ребристом фланце 100, чтобы еще больше увеличить отвод тепла от датчика давления технической жидкости в сферах применения с высокими температурами.

[0022] Хотя в некоторых вариантах осуществления настоящего изобретения ребра составляют одно целое с манифольдом, предполагается, что ребра могут быть частью узла теплообмена, который закреплен на фланце или днище. Такой узел теплообмена может быть привинчен, зафиксирован или иным образом закреплен на манифольде для обеспечения дополнительной теплопередачи. Таким образом, как минимум некоторые из вариантов осуществления настоящего изобретения могут предусматриваться соединением ребристого копланарного фланца с ребристым узлом теплообмена для работы на более высокой температуре.

Хотя настоящее изобретение описано с учетом предпочтительных вариантов осуществления, специалисты в данной области признают, что в форму и содержание можно вносить изменения без отступления от существа и объема настоящего изобретения.

1. Система измерения давления технической жидкости, включающая:

датчик давления технической жидкости с двумя отверстиями для технической жидкости, расположенными копланарно друг к другу на его поверхности, который предназначен для измерения дифференциального давления между двумя отверстиями для технической жидкости и индикации измеренного дифференциального давления по контуру связи с процессом;

ребристый фланец, имеющий первую поверхность для монтажа датчика давления технической жидкости на нижнюю часть и вторую поверхность напротив первой, а также боковую стенку, находящуюся между первой и второй поверхностями; и

множество ребер на боковой стенке.

2. Система по п. 1, отличающаяся тем, что вторая поверхность установлена на клапанный манифольд, переносящий техническую жидкость из двух отверстий первичного элемента.

3. Система по п. 2, отличающаяся тем, что первичный элемент является первичным элементом усредняющей напорной трубки.

4. Система по п. 2, отличающаяся тем, что первичный элемент является измерительной диафрагмой.

5. Система по п. 1, отличающаяся тем, что каждое ребро полностью проходит от первой до второй поверхности.

6. Система по п. 5, отличающаяся тем, что каждое ребро проходит в направлении, перпендикулярном поверхности датчика давления технической жидкости.

7. Система по п. 6, отличающаяся тем, что как минимум одно ребро включает вырез, проходящий через него в поперечном направлении.

8. Ребристый фланец для соединения датчика давления технической жидкости с потоком, включающий:

первую поверхность для монтажа датчика давления технической жидкости, которая имеет два отверстия для технической жидкости, подающие техническую жидкость на соответствующие изоляционные диафрагмы датчика давления технической жидкости;

вторую поверхность напротив первой, которая имеет пару впускных патрубков, соединенных с соответствующими отверстиями для технической жидкости, где впускные патрубки принимают техническую жидкость;

как минимум одну боковую стенку, находящуюся между первой и второй поверхностью; и

множество ребер на как минимум одной боковой стенке.

9. Фланец по п. 8, отличающийся тем, что как минимум одна боковая стенка включает четыре боковые стенки.

10. Фланец по п. 9, отличающийся тем, что каждое ребро полностью проходит от первой до второй поверхности.

11. Фланец по п. 8, отличающийся тем, что каждое ребро проходит в направлении, перпендикулярном нижней поверхности датчика давления технической жидкости.

12. Фланец по п. 8, отличающийся тем, что каждое ребро составляет одно целое с ребристым фланцем.

13. Фланец по п. 8, отличающийся тем, что ребра отделены, но соединены как минимум с одной боковой стенкой.

14. Фланец по п. 8, отличающийся тем, что как минимум одно ребро включает вырез, проходящий через него в поперечном направлении.

15. Узел для монтажа датчика давления технической жидкости на трубопровод, включающий:

первичный элемент, вставляемый в трубу с технической жидкостью и имеющий множество отверстий для технической жидкости;

клапанный манифольд;

днище, соединенное с клапанным манифольдом;

рабочий элемент с первым концом, соединенным с первичным элементом, и вторым концом, соединенным с днищем, который предназначен для переноса технической жидкости от одного конца ко второму;

ребристый фланец, включающий несколько ребер, установленный на клапанный манифольд и имеющий множество спускных отверстий для слива технической жидкости,

при этом днище термически соединено с рабочим элементом и включает множество ребер для передачи тепла от рабочего элемента окружающей среде.

16. Узел по п. 15, дополнительно включающий датчик дифференциального давления технической жидкости, соединенный с ребристым фланцем для измерения дифференциального давления между множеством отверстий для технической жидкости и индикации измеренного дифференциального давления по контуру связи с процессом.

17. Узел по п. 15, отличающийся тем, что как минимум одно ребро включает вырез, проходящий через него в поперечном направлении.



 

Похожие патенты:

Изобретение относится к нефтегазодобывающей промышленности. Устройство содержит выполненный в виде полого цилиндра корпус 1 с, по меньшей мере, одним отверстием 2.

Изобретение относится к преобразователям давления, а именно к преобразователям давления технологической текучей среды для измерения технологического давления относительно атмосферного давления.

Микроэлектронный датчик давления с чувствительным элементом, защищенным от перегрузки, содержит корпус - 1, внутри которого установлены: чувствительный элемент давления (ЧЭД) - 2 с интегральным преобразователем давления (ИПД) - 3 с тонкой гибкой симметрично выполненной мембраной - 4 с тензорезисторами - 5, средствами электрических соединений - 6 и контактными площадками - 7, расположенными на лицевой стороне - 8 мембраны - 4, и, по меньшей мере, с тремя жесткими центрами - 9 - на оборотной стороне - 10, и, по меньшей мере, один механический предохранительный упор -11, жестко связанный с периферической частью - 12, ИПД - 3 и с выполненной в нем полостью - 13.

Изобретение относится к приборам для измерения давления газа, получаемого разложением воды в электролизно-водных генераторах. Техническим результатом изобретения является улучшение герметичности демпфера.

Датчик давления предназначен для использования при воздействии повышенных виброускорений и широкого диапазона нестационарных температур окружающей и измеряемой среды.

Изобретение относится к элементам конструкции измерителей давления, предотвращающим влияние перегрузки давлением измеряемой среды на точность измерений, и может использоваться в измерительной технике, в частности в датчиках давления с разделительными мембранами.

Изобретение относится к области технологии изготовления датчиков давления и направлено на повышение надежности герметизации и упрощение процесса герметизации при изготовлении датчиков, что обеспечивается за счет того, что при осуществлении герметизации полости в датчике давления, заполненной жидкостью, герметизирующий элемент помещают в заливочное отверстие полости корпуса, заполненной жидкостью, обжимают и заваривают.

Изобретение относится к измерительной технике, в частности к датчикам, предназначенным для использования в различных областях науки и техники, связанных с измерением давления в условиях воздействия повышенных виброускорений и широкого диапазона температур.

Изобретение относится к датчикам давления/вакуума для использования в вариантах применения с высокой степенью чистоты. .

Изобретение относится к высокоинтегрированным зондам давления рабочей текучей среды. Зонд (100) для измерения давления рабочей текучей среды содержит датчик (112) давления, образованный из монокристаллического материала и прикрепленный к первому металлическому барьеру (130) рабочей текучей среды, предназначенный для прямого контакта с рабочей текучей средой. Датчик (112) давления имеет электрическую характеристику, которая изменяется в зависимости от давления рабочей текучей среды. Проходной элемент (122) образован из монокристаллического материала и имеет множество проводников, продолжающихся от первого конца ко второму концу. Проходной элемент (122) прикреплен ко вторичному металлическому барьеру (116) рабочей текучей среды и разнесен от датчика (112) давления, но является электрически соединенным с ним. Датчик (112) давления и проходной элемент (122) установлены таким образом, что вторичный металлический барьер (116) рабочей текучей среды изолирован от рабочей текучей среды посредством первого металлического барьера (116) рабочей текучей среды. Технический результат – повышение надежности и безопасности. 4 н. и 20 з.п. ф-лы, 7 ил.

Предложен преобразователь для измерения технологического параметра технологической среды. Преобразователь содержит: корпус; фланец трубы, присоединенный к корпусу, выполненный с возможностью установки преобразователя в отверстии в трубе; измеритель, продолжающийся от фланца и в трубу через отверстие в трубе. Измеритель включает опору (40) датчика давления, имеющую отверстие (36) в ней. Датчик (52) давления проходит через и установлен в отверстии (36). Датчик (52) давления имеет электрическую характеристику, которая изменяется при приложенном давлении. Изоляторная вставка (50) выполнена с возможностью подвергания воздействию технологической текучей среды текучей средой. Изоляторная вставка имеет изоляционную диафрагму (64), расположенную для контакта с технологической текучей средой. Канал (66) присоединен по текучей среде к изоляционной диафрагме (64) с возможностью передачи давления технологической текучей среды от изоляционной диафрагмы (64) к датчику (52) посредством несжимаемой текучей среды. Опора (40) датчика давления присоединена к изоляторной вставке (50) и имеет некруглую форму, если смотреть вдоль оси отверстия. Технический результат – создание компактного устройства, чувствительного к давлению, без физического контакта частиц или твердых веществ, содержащихся в технологической среде, с изоляционной диафрагмой. 2 н. и 24 з.п. ф-лы, 15 ил.

Создана система измерения давления (10). Система (10) включает в себя зонд (16) измерения давления, выдвигающийся в технологическую текучую среду и имеющий датчик (50) давления с электрической характеристикой, которая изменяется вместе с давлением технологической текучей среды. Кабель (18) с минеральной изоляцией имеет металлическую оболочку (30) с дальним концом, прикрепленным к зонду измерения давления, и ближним концом. Кабель (18) с минеральной изоляцией включает в себя множество жил, (34, 36) проходящих в металлической оболочке (30) и отделенных друг от друга сухим электроизоляционным минералом (58). Защитный элемент окружает датчик давления и защищает датчик давления от технологической текучей среды. Ближний конец металлической оболочки выполнен с возможностью герметичного прикрепления к емкости (14) с технологической текучей средой. Технический результат – возможность работы в очень высоких температурах, отсутствие необходимости использовать стеклянное/металлическое уплотнение. 2 н. и 26 з.п. ф-лы, 6 ил.
Наверх