Способ эксплуатации ветроэнергетической установки

Изобретение относится к способу эксплуатации по меньшей мере одной ветроэнергетической установки (31). Способ эксплуатации по меньшей мере одной ветроэнергетической установки (31) содержит следующие этапы: регистрация колебания башни, введение меры по уменьшению колебаний, если зарегистрированное колебание башни является продольным колебанием (40) или содержит его, и амплитуда продольного колебания (40) превышает заранее определенную предельную величину. Мера по уменьшению колебания включает фиксацию актуального установочного угла на актуальной величине на заранее определенный период фиксации. Изобретение направлено на уменьшение продольных колебаний башни. 3 н. и 10 з.п. ф-лы, 3 ил.

 

Настоящее изобретение относится к способу эксплуатации по меньшей мере одной ветроэнергетической установки. Кроме того, настоящее изобретение относится к ветроэнергетической установке и ветропарку. Кроме того, оно относится к эксплуатации ветропарка.

Ветроэнергетические установки общеизвестны, они, в частности, с помощью ротора, вращающегося вокруг по существу горизонтально установленной оси, преобразуют механическую энергию ветра в электрическую энергию, причем, кроме того, используется электрогенератор. Пример такой ветроэнергетической установки схематически изображен на фиг. 1.

В такой ветроэнергетической установке могут происходить колебания, распространяющиеся вплоть до башни, несущей аэродинамический ротор ветроэнергетической установки. При этом в принципе различают два вида колебаний, а именно продольные и поперечные колебания, которые в принципе могут также накладываться.

Поперечным колебанием является такое колебание, которое по существу происходит поперек направления оси ротора. Такое поперечное колебание часто обусловлено дисбалансом ротора, и имеет частоту в соответствии с частотой вращения ротора. Поскольку этот дисбаланс при вращении вызывает это колебание непосредственно, то в данном случае можно говорить также о принудительном колебании.

Продольное колебание по существу возникает в продольном направлении оси вращения ротора. Таким образом, в этом случае ветроэнергетическая установка колеблется как бы вперед-назад. Такие продольные колебания чаще всего вызываются ветром и регулярно взаимодействуют со свойствами ветроэнергетической установки. В частности, частота колебаний такого продольного колебания регулярным образом обуславливается собственной или резонансной частотой, которые чаще всего весьма сходны, или их кратной величиной. В частности, тогда, когда сам ветер не постоянен, он может вызвать такое продольное колебание. Продольное колебание может также возникнуть или усилиться вследствие того, что ветроэнергетическая установка в соответствии с техникой регулирования реагирует на усиление ветра, включая шквал, влияя тем самым на движение ветроэнергетической установки, причем реакция ветроэнергетической установки на это регулирующее воздействие снова влечет за собой дальнейшее изменение колебаний, что в худшем случае может привести к их нарастанию.

Возможное регулирующее воздействие, которое могло бы вызвать или усилить такое колебание, это так называемое регулирование шага, при котором угол установки роторных лопастей изменяется с помощью соответствующего регулирующего привода. В данном случае повышенное давление ветра может уменьшаться за счет соответствующей перестановки роторных лопастей, вследствие чего снова могло бы быть ослаблено давление ветра, так чтобы роторные лопасти снова встали на прежнее место до тех пор пока, возможно, снова не установится слишком высокое давление, так что задействуется повторное регулирование шага, и в результате может возникнуть колебательный режим.

С точки зрения техники регулирования такая проблема, конечно, должна учитываться, для чего устанавливается, например, соответствующее демпфирование или используются комплексные регуляторы, содержащие устройство контроля за помехами для лучшего учета помех. Однако проблема заключается при этом в том, что такое изменение структуры регулирования может регулярно приводить к непредвиденным последствиям. К этому добавляется то, что ветроэнергетическая установка является индивидуальной и реагирует индивидуально. Это, естественно, не в последнюю очередь, связано также с тем, что каждая ветроэнергетическая установка устанавливается на различных местах и, соответственно, никогда не бывает идентичных условий.

Другая проблема, также лежащая в основе настоящего изобретения и, возможно, еще не рассматривалась в уровне техники, может возникнуть в случае наличия нескольких взаимовлияющих ветроэнергетических установок. При этом, в частности, рассматривается феномен, при котором одна первая ветроэнергетическая установка находится в определенном рабочем режиме, в частности, при определенном направлении ветра располагается в ветровой тени позади второй ветроэнергетической установки. В дополнение к известным дефицитам энергии у ветроэнергетической установки, находящейся в ветровой тени, колебания могут передаваться также от передней, то есть второй ветроэнергетической установки, на заднюю, то есть первую ветроэнергетическую установку и возбуждаться лишь в задней ветроэнергетической установке.

Проблемой при таких воздействиях является, в частности, то, что они возникают редко и поэтому трудно, поддаются изучению или же совсем не поддаются исследованиям. Наконец, такой описанный феномен может произойти лишь в том случае, если направление ветра является таким, что первая ветроэнергетическая установка установлена позади второй ветроэнергетической установки. Однако даже в этом случае такие воздействия непринципиальны, а скорее зависят от других условий, как, например, от преобладающей скорости ветра или, может быть, от порывистости преобладающего ветра.

Ведомство по патентам и товарным знакам провела по приоритетной заявке поиск следующего уровня техники: DE 102006001613 A1, DE 102008009 740 A1, DE 102009039340 A1, DE 69901876 T2, US 2009/0200804 A1, WO 2007/089136 A2 и WO 2012125842 A1.

Таким образом, в основу изобретения положена задача по преодолению по меньшей мере одной из вышеупомянутых проблем. В частности, должно быть предложено решение, возможно более простым и несложным способом и по возможности без воздействия на существующие регуляторы препятствует возникновению описанных продольных колебаний. По меньшей мере должно быть предложено одно альтернативное решение.

Согласно изобретению предлагается способ по п. 1. Такой способ как минимум касается эксплуатации по меньшей мере одной первой ветроэнергетической установки. Учет второй ветроэнергетической установки или еще и других ветроэнергетических установок может быть рациональным, однако оно должно зависеть также от конкретно возникающего колебания, не обязательно от второй ветроэнергетической установки. В конце концов, способ согласно одному из вариантов осуществления может осуществляться также по меньшей мере на одной отдельной ветроэнергетической установке, даже если описанные проблемы вызываются и усиливаются, возможно, лишь другой ветроэнергетической установкой. Предложенный способ, предпочтительно, обходится без определения конкретной причины колебаний, которые необходимо устранить.

Таким образом, способ согласно изобретению прежде всего включает колебание башни. Поскольку это колебание башни является продольным колебанием или содержит продольное колебание, то принимаются меры по уменьшению колебаний, если амплитуда продольного колебания превышает заранее определенную предельную величину. Согласно одной возможности исследуется только одна амплитуда, и принимаются соответствующие меры. При этом может остаться незамеченным наличие или отсутствие наложения на это продольное колебание вместе с зарегистрированной амплитудой продольного колебания еще и поперечного колебания. Однако в порядке дополнения или альтернативы поперечное колебание также может учитываться, что при известных условиях имеет влияние на инициирующую предельную величину. Предельная величина, предпочтительно, устанавливается таким образом, чтобы ветроэнергетическая установка не перегружалась колебанием.

В качестве меры по уменьшению колебаний, предлагаются несколько вариантов, которые в принципе могут также комбинироваться. Мера по уменьшению колебаний может также упрощено называться уменьшением колебаний. Решающим для соответствующих мер является их инициирование. Проверка, достигается ли уменьшения колебаний и в какой степени оно фактически достигается, на месте эксплуатации ветроэнергетической установки можно не осуществлять детально. В этом смысле меры касаются, предпочтительно, хотя и не исключительно, управленческих мер.

В соответствии с мерой по уменьшению колебаний актуальный установочный угол фиксируется на актуальной величине на заранее определенный период фиксации. Это, соответственно, предусматривает, наличие регулируемой по шагу ветроэнергетической установки. Такая установка снабжена алгоритмом регулирования, который устанавливает установочный угол в зависимости от абсолютно разных заданий. Этот алгоритм регулирования по существу действует при эксплуатации ветроэнергетической установки постоянно и может способствовать постоянному отслеживанию установочного угла, что может быть даже желательным. Чистый алгоритм регулирования, например, постоянно задает задаваемую величину шага, преобразуемую одним или несколькими шаговыми приводами для каждой отдельной роторной лопасти или при необходимости для всех их. В частности, эта задаваемая величина при замораживании актуальной величины угла устанавливается на постоянное значение. При этом этот алгоритм регулирования шага продолжает действовать без изменения и при необходимости постоянно рассчитывает вновь задаваемую величину установочного угла. Однако эта задаваемая величина шага, заново рассчитываемая в рамках периода фиксации, не передается дальше. Внутренняя реализация, естественно, может производиться также иначе.

Во всяком случае, на короткое время добиваются сохранения шагового перемещения. В результате возможный установившийся алгоритм нарастания колебаний может быть прерван. Чаще всего такого короткого перерыва бывает достаточно, и алгоритм регулирования установочного угла может после этого продолжать работать нормально. Нарастание колебаний таким образом заканчивается, а алгоритм регулирования шага как таковой, да и другие алгоритмы регулирования в установке, не нуждались бы в изменении или адаптации. В частности, воздействие на стабильность концепции общего регулирования благодаря этому также является недолгим.

В основе этой предложенной меры лежит также понимание того, что такие продольные колебания происходят сравнительно редко и для их возникновения в большинстве случаев должны по большей части одновременно возникнуть очень много условий, по меньшей мере необходимо исходить из этого. В этом случае по истечении заранее определенного периода фиксации уже нет больше той ситуации, при которой наступает или возбуждается такое нарастание продольного колебания. Эта мера по кратковременной фиксации в данном случае чаще всего может являться одноразовой мерой и в ближайшее время, возможно, не должна повториться. Возможно, речь идет даже об одноразовом явлении за время службы ветроэнергетической установки.

Период фиксации может быть выбран сравнительно коротким и он, предпочтительно, находится в диапазоне от 5 сек до 1 мин, в частности, в диапазоне 10-20 сек. Эта мера по уменьшению колебаний путем фиксации установочного угла направлена на то, чтобы их нарастание однажды прекратилось и в результате было создано новое условие, при котором регулярного нарастания продольного колебания, а тем самым и превышения заранее определенной предельной величины больше не происходило.

Впрочем, заранее определенная предельная величина может быть равной амплитуде виброперемещения башни, например, в области вершины башни, или даже максимальному ускорению.

Кроме того, или альтернативно предлагается заменять используемый алгоритм регулирования шага. В частности, регулирование шага в принципе осуществляется с помощью базового или стандартного алгоритма регулирования шага. Алгоритм регулирования шага заменяется только тогда, когда возникает продольное колебание и амплитуда превышает заранее определенную предельную величину. Для этого может быть заложен второй альтернативный алгоритм регулирования шага, или в алгоритме регулирования шага изменяется лишь параметр времени. В обоих случаях замена алгоритма регулирования шага может происходить таким образом, чтобы скорость регулирования сокращалась. Постоянная времени регулирования может увеличиваться, например, на 10 или на 20%. Когда затем амплитуда продольного колебания успокоится и/или когда закончится заранее определенное время, то снова произойдет возврат к первоначальному алгоритму регулирования шага.

Альтернативно или дополнительно предлагается регулировать положение по азимуту на заранее определенный азимутальный угол. Такая мера уменьшения колебаний предлагается, в частности, но не исключительно, для ветроэнергетической установки в ветропарке. В данном случае одна вторая ветроэнергетическая установка, установленная по ветру перед первой ветроэнергетической установкой, может повлиять на ветер таким образом, чтобы он приводил к колебаниям в стоящей позади нее первой ветроэнергетической установке. Незначительной перестановкой азимутального угла, то есть направления оси ротора, воздействие такой второй ветроэнергетической установки, стоящей перед первой ветроэнергетической установкой, может быть по меньшей мере изменено.

В одной отдельной ветроэнергетической установке изменение положение по азимуту на небольшую величину может также снова уменьшить возникающее большое продольное колебание, поскольку определенные препятствия на участке ветроэнергетической установки, которые могут быть удалены даже, например, на несколько сотен метров, вызывают определенный неблагоприятный набегающий поток воздуха, ослабляемый даже минимальной регулировкой по азимуту.

Азимутальный угол, предпочтительно, регулируется в диапазоне 2-8°, в частности, в диапазоне 4-5°. Уже при столь малой величине такое колебание может быть предотвращено, и при этом возможная результирующая потеря производительности вследствие не совсем оптимально установленного азимутального угла является незначительной. Можно исходить из того, что производительность из-за неоптимального азимутального угла уменьшена на косинус этого азимутального угла, отклоняющегося от оптимального азимутального угла. Поскольку косинус в диапазоне 0, т.е. еще даже до 8°, почти не изменяется, то почти никакого сокращения производительности не осуществляется. Возможно, она даже не обнаружится.

Азимутальный угол может быть установлен обратно на оптимальную величину, когда продольное колебание уляжется и его амплитуда окажется значительно меньше заранее определенной предельной величины или оно в качестве дополнительного или альтернативного критерия сможет учитывать заранее определенное время ожидания, составляющего, например, одну или пять минут, пока положение по азимуту снова не возвратится к прежнему. Дополнительно или альтернативно положение по азимуту может устанавливаться на номинальное значение, если направление ветра изменилось, по меньшей мере изменилось незначительно. В этом случае следует ожидать, что и причины колебания, зависящей от направления ветра, больше нет, и ветроэнергетическая установка, в отношении ее азимутального угла, снова может эксплуатироваться нормально. В этом случае этот новый номинальный азимутальный угол не является более азимутальным углом, при котором ветроэнергетическая установка регулировалась для уменьшения колебаний. Такая настройка азимутального угла, в частности, предлагается, если первая ветроэнергетическая установка располагается точно в ветровой тени другой ветроэнергетической установки.

Кроме того или альтернативно предлагается, чтобы первая ветроэнергетическая установка переключалась с первого режима эксплуатации на второй. При этом первый режим эксплуатации основывается на первой характеристике мощности, а второй режим эксплуатации, соответственно, на второй характеристике мощности. При этом характеристика мощности показывает связь между мощностью и частотой вращения, и, в частности, мощность устанавливается в зависимости от частоты вращения. Таким образом, мощность каждый раз устанавливается на соответствующее значение характеристики, пока частота вращения сохраняет там свое значение. Такое изменение в результате переключения режима эксплуатации может быть незначительным, но оно изменяет параметр ветроэнергетической установки таким образом, что исходное положение, которое в конечном счете также должно было привести к продольному колебанию, изменяется. По истечении заранее определенного времени можно снова вернуться обратно к первой, в частности, стандартной характеристике мощности. Во всяком случае, изменение характеристики мощности может привести, например, к незначительному изменению частоты вращения относительно прежнего значения. Этого может быть достаточно для прекращения продольного колебания.

Согласно другому или альтернативному варианту осуществления предлагается согласовывать друг с другом две ветроэнергетические установки, оказывающие воздействие на друг друга, а именно в результате ветра. При этом предлагается, чтобы частота вращения первой ветроэнергетической установки, а именно той, которая находится в ветровой тени второй ветроэнергетической установки, согласовывалось с частотой второй ветроэнергетической установки. В частности, таким образом, чтобы частота вращения первой ветроэнергетической установки отклонялась от частоты вращения второй ветроэнергетической установки по меньшей мере на заранее определенную разность частот вращения.

При этом частота вращения первой ветроэнергетической установки, предпочтительно, по меньшей мере на 0,2 об/мин больше или меньше частоты вращения второй ветроэнергетической установки. Предпочтительно, она по меньшей мере на 0,5 об/мин больше или меньше частоты вращения второй ветроэнергетической установки. Тем самым, в частности, производится десинхронизация обеих ветроэнергетических установок. В этом случае оба ротора первой и второй ветроэнергетических установок вращаются с несколько разными частотами вращения и благодаря этому могут предотвращать или прерывать нарастание колебаний первой ветроэнергетической установки при участии и поддержке второй, а именно передней ветроэнергетической установки.

Несмотря на то, что при этой мере с конкретным согласованием обеих частот вращения друг с другом могут выступать ветроэнергетические установки по существу аналогичной конструкции, однако такая десинхронизация может быть предложена и для разных ветроэнергетических установок. Однако чаще такая мера предусматривается для двух аналогичных ветроэнергетических установок, поскольку разные ветроэнергетические установки в большинстве случаев имеют также системно обоснованные разные частоты вращения.

Соответственно, во всяком случае, для этой меры предпочтительно, однако, и для других мер, предлагается использовать ветроэнергетическую установку с регулируемой частотой вращения. Такая ветроэнергетическая установка с регулируемой частотой вращения, в частности, может использовать синхронный генератор, генерирующий переменный ток, выпрямляемый, а затем поступающий в сеть через инвертор. Другими словами, использование ветроэнергетической установки с концепцией так называемого полного выпрямителя - это предпочтительный вариант осуществления.

Предпочтительно, при использовании меры по уменьшению колебаний, предлагающей переключение режимов эксплуатации, а именно переключение между двумя характеристиками мощности, стремятся, чтобы соседняя ветроэнергетическая установка, в частности, тогда, когда она имеет аналогичную конструкцию, не переключалась по своей характеристике мощности. Таким образом, у двух взаимовлияющих ветроэнергетических установок целенаправленно предотвращается проведение предложенной меры по уменьшению продольного колебания аналогичным образом, в результате чего, мера по уменьшению колебаний оказывается не эффективной или недостаточно эффективной. Предпочтительно, поступают таким образом, чтобы задняя, то есть первая, ветроэнергетическая установка работала с меньшей, в частности пониженной, частотой вращения. В этом отношении изменялась бы характеристика мощности или соответственно частота вращения и той ветроэнергетической установки, в которой имеются проблемы с продольными колебаниями.

Предпочтительно, фиксация актуального установочного угла и/или замена используемого алгоритма регулирования шага осуществляются в режиме эксплуатации с полной нагрузкой. При этом режим эксплуатации с полной нагрузкой описывает ситуацию, при которой преобладающая скорость ветра создает номинальную скорость, произведенная мощность создает номинальную мощность и/или частота вращения создает примерно номинальную частоту вращения. При этом режиме эксплуатации с полной нагрузкой установочный угол регулярно используется для поддержания частоты вращения постоянной. Следовательно, если фактическая частота вращения отклоняется от заданной частоты вращения минимально, то путем регулировки установочного угла стремятся осуществлять ответные меры. Продольные колебания, возникающие именно при этом, должны сокращаться или устраняться путем фиксации установочного угла и/или замены измененного алгоритма регулирования шага, и поэтому эти меры предлагаются в режиме эксплуатации с полной нагрузкой.

Кроме того, или альтернативно меры по регулировке положения по азимуту, по переключению режима эксплуатации первой ветроэнергетической установки и/или по изменению частоты вращения первой ветроэнергетической установки осуществляются в режиме эксплуатации с частичной нагрузкой. Режим эксплуатации с частичной нагрузкой имеет место, когда преобладающая скорость ветра меньше номинальной скорости ветра. В таком режиме эксплуатации с частичной нагрузкой установочный угол может быть установлен на постоянное значение. Поэтому фиксация установочного угла, или соответственно замена алгоритма регулирования шага, который в данном случае не действует, здесь имеет меньше смысла, в то время как в этом случае может быть установлена другая скорость вращения и/или может быть выбрана другая характеристика мощности. В этом режиме эксплуатации с частичной нагрузкой конкретная частота вращения, а также конкретная мощность зависят, соответственно, от преобладающего ветра и постоянно изменяются вместе с ним. При этом эта постоянная частота вращения и/или это изменение мощности учитываются, и поэтому предлагаются переключение режима эксплуатации и/или изменение частоты вращения.

В данном случае может быть также целесообразной регулировка положения по азимуту, в особенности, если имеют место более слабые ветры. Однако регулировка положения по азимуту может происходить и в режиме эксплуатации с полной нагрузкой.

Предпочтительно, в области перехода с режима эксплуатации с частичной нагрузкой на режим эксплуатации с полной нагрузкой предлагается смещение характеристики мощности, в частности второй характеристики мощности. Тем самым именно в области перехода, когда некоторые из предложенных мер не действуют или действуют плохо, благодаря этому смещению характеристики в этой области может быть создана лучшая или дополнительная возможность для осуществления воздействия.

Кроме того, предлагается ветроэнергетическая установка для производства электрической энергии с помощью ветра, использующая способ согласно по меньшей мере одному из вышеупомянутых вариантов осуществления.

Предпочтительно, такая ветроэнергетическая установка содержит синхронный генератор, возбуждаемый постоянным током, изменяемым для уменьшения колебаний на заранее определенную величину, а именно на заранее определенную величину тока возбуждения, предпочтительно, увеличивается или уменьшается на 2-8%, в частности на 4-5%. В результате изменения тока возбуждения и тем самым возбуждения синхронного генератора последний при одной и той же частоте вращения может производить большую или меньшую мощность. Однако вследствие этого происходит также увеличение крутящего момента, противодействующего вращению ротора. В результате частота вращения ротора может уменьшиться или при уменьшении возбуждения - увеличиться. Это воздействие путем возбуждения является предпочтительной формой выполнения, которая может осуществляться или может осуществляться не так хорошо с другими типами установок. Таким образом, предпочтительно, предлагается ветроэнергетическая установка с синхронным генератором с возбуждением постоянным током.

Кроме того, предлагается ветропарк, содержащий по меньшей мере одну ветроэнергетическую установку, в частности упомянутую согласно одному из вышеприведенных вариантов осуществления, и/или по меньшей мере одну, предпочтительно, по меньшей мере две, ветроэнергетические установки, эксплуатируемые в соответствии со способом согласно по меньшей мере одному из вышеприведенных вариантов осуществления.

Ниже изобретение в качестве примера более подробно поясняется на основе вариантов осуществления со ссылкой на приложенные фигуры, на которых показано:

Фиг. 1 - ветроэнергетическая установка в перспективе;

Фиг. 2 - упрощенная блок-схема для пояснения уменьшения колебаний согласно изобретению;

Фиг. 3 - схематично вид сверху двух ветроэнергетических установок для наглядности представления воздействия.

На фиг. 1 изображена ветроэнергетическая установка 100 с башней 102 и с гондолой 104. На гондоле 104 установлен ротор 106 с тремя роторными лопастями 108 и одним обтекателем 110 втулки. Ротор 106 при эксплуатации приводится во вращение ветром и тем самым приводит в действие генератор 104.

На фиг. 2 изображена упрощенная блок-схема 2, начинающаяся измерительным блоком 4. В измерительном блоке 4 продольное колебание регистрируется, например, по амплитуде ускорения, которая может измеряться соответствующими датчиками ускорения на вершине башни. Зарегистрированное продольное колебание обозначается в измерительном блоке 4 буквой S.

Эта зарегистрированная величина S в контрольном блоке 6, который может характеризоваться также как блок 6 контроля превышения, непрерывно сравнивается с заранее определенной предельной величиной, обозначаемой здесь как Smax. Возможная регистрация поперечного колебания в варианте осуществления, показанном на фиг. 2, не принимается во внимание.

Если в первом контрольном блоке 6 устанавливается, что зарегистрированное продольное колебание S не превышает заранее определенной предельной величины Smax, далее ничего не происходит, и процесс логично возвращается к измерению продольного колебания в измерительном блоке 4.

Если же в контрольном блоке 6 обнаруживается, что продольное колебание S превышает предельную величину Smax, то в блоке 8 уменьшения колебаний производится уменьшение колебаний, символически обозначаемое как S-Red. Эта осуществленная в данном блоке мера по уменьшению колебаний может касаться одной или нескольких мер. Она может касаться фиксации установочного угла, замены алгоритма регулирования шага, регулировки положения по азимуту, переключения первой ветроэнергетической установки с первого режима эксплуатации на второй и/или согласования частот вращения двух соседних ветроэнергетических установок.

После проведения или инициирования по меньшей мере одной из этих мер по уменьшению колебаний в блоке 10 блокировки, который может характеризоваться также как блок ожидания, осуществляют ожидание в течение заранее определенного времени Т ожидания. После этого во втором контрольном блоке 12, который может характеризоваться как контрольный блок 12 нормализации, контролируется наличие падения зарегистрированного продольного колебания S ниже заранее определенной предельной величины Smax. Здесь вместо заранее определенной предельной величины Smax, также лежащей в основе первого контрольного блока 6, можно использовать другую, меньшую, величину, например предел SN нормализации. Хотя на блок-схеме 2 процесса измерительный блок 4 изображен в начале описываемого процесса, однако тем не менее амплитуда колебаний постоянно регистрируется и, таким образом, она регистрируется и далее, даже во время ожидания согласно символически изображенному блоку 10 ожидания. Таким образом, при контроле во втором контрольном блоке 12 присутствует актуальная величина продольного колебания S. Это наглядно представляется пунктирной линией со стрелкой в направлении от измерительного блока 4 ко второму контрольному блоку 12.

Если же второй контрольный блок 12 устанавливает, что продольное колебание S не опустилось ниже предела SN нормализации, мера по уменьшению колебаний согласно блоку 8 сначала сохраняется. В этом случае процесс, соответственно, возвращается от второго контрольного блока 12 к блоку 8 уменьшения колебаний.

Если же амплитуда колебания меньше предела SN нормализации, то процесс продолжается с блока 14 нормализации. В этом случае блок 14 нормализации, обозначенный для наглядности как Norm, завершает меру или соответственно меры, инициированные в блоке 8 уменьшения колебаний. Процесс возвращается обратно к своему началу, символизируемому как измерительный блок 4.

На фиг. 3 схематически изображен вид сверху первой ветроэнергетической установки 31 и второй ветроэнергетической установки 32. В этом смысле обе эти ветроэнергетические установки могут образовывать ветропарк 34 или по меньшей мере две из множества ветроэнергетических установок ветропарка 34.

На фиг. 3 изображена конкретная ситуация, при которой ветер 36, или направление 36 ветра, направлено на вторую ветроэнергетическую установку 32 таким образом, что, если смотреть в этом направлении 36 ветра, первая ветроэнергетическая установка 31 эксплуатируется точно за второй ветроэнергетической установкой 32.

Для наглядности и чисто схематически пунктиром показаны две винтовые линии 38, которые должны проиллюстрировать то, как ветер 36, попадающий на вторую ветроэнергетическую установку 32, изменяется этой второй ветроэнергетической установкой 32 и продолжает свой путь к первой ветроэнергетической установке 31. При этом фактически возникает также множество завихрений, а винтовые линии 38 по существу должны наглядно показать, что не только первая ветроэнергетическая установка 31 находится в ветровой тени второй ветроэнергетической установки 32, но и что изменяется качество, или характер, воздушного потока второй ветроэнергетической установкой 32 и что он, соответственно, достигает первой ветроэнергетической установки 31 измененным.

В результате могут инициироваться или усиливаться колебания на второй ветроэнергетической установке 31. Продольное колебание 40 в первой ветроэнергетической установке 31 показано двойной стрелкой.

Первая ветроэнергетическая установка 31 на фиг. 3 дополнительно очерчена пунктиром как повернутая первая ветроэнергетическая установка 41. Этот поворот, а именно поворот или регулировка, положения по азимуту, или азимутального направления, также служат только для наглядности. Фактически показанный угол является сравнительно большим, а в практическом исполнении он чаще всего устанавливается меньшим. С помощью ветроэнергетической установки 41, очерченной пунктиром, в частности с учетом наглядно очерченных винтовых линий 38, должно быть наглядно продемонстрировано, что ветер, измененный второй ветроэнергетической установкой 32, достигает ветроэнергетической установки 41 в положении, измененном по азимуту, совсем иначе. В частности, возможные завихрения достигают ветроэнергетическую установку в разное время. Это наглядно показано таким образом, что одна винтовая линия достигает первой роторной лопасти 42, обозначенной пунктиром, скорее, в то время как вторую роторную лопасть 44, изображенную пунктиром, измененный ветер достигает позднее, что должно быть наглядно показано за счет удаления от соответствующей винтовой линии 38. Чисто предусмотрительно указывается на то, что на фиг. 3 изображены только по две роторные лопасти для каждой из первой и второй ветроэнергетических установок 31 и 32, причем, однако, согласно одному из предпочтительных вариантов осуществления ветроэнергетическая установка содержит три роторные лопасти, как это и показано на фиг. 1.

Таким образом, согласно изобретению предлагается мера по уменьшению, предотвращению или прерыванию, или прекращению, сверхмощного продольного колебания ветроэнергетической установки, основанная по существу на концепции решения, предлагающего кратковременное изменение режима эксплуатации ветроэнергетической установки, причем после завершения такой меры соответствующая ветроэнергетическая установка может снова вернуться к своему прежнему режиму эксплуатации, то есть продолжить обычную работу. При этом в основу могут быть положены предельные величины продольного колебания, которые могут располагаться, например, в диапазоне 400-500 мм амплитуды колебаний вершины стальной башни и примерно в диапазоне 40-50 мм амплитуды колебаний вершины бетонной башни. Специфическая проблема обнаруживалась, когда установки располагались точно друг за другом относительно преобладающего ветра. Одна из возможностей заключается также в усилении возбуждения используемого синхронного генератора ветроэнергетической установки. Это может быть осуществлено усилением тока возбуждения или же подачей в генератор реактивной мощности, поскольку и это может иметь эффект усиления возбуждения.

1. Способ эксплуатации по меньшей мере одной ветроэнергетической установки (31), содержащий этапы

- регистрации колебания башни,

- введения меры по уменьшению колебаний, если зарегистрированное колебание башни является продольным колебанием (40) или содержит его, и амплитуда продольного колебания (40) превышает заранее определенную предельную величину, и

мера по уменьшению колебания включает

- фиксацию актуального установочного угла на актуальной величине на заранее определенный период фиксации.

2. Способ по п. 1, отличающийся тем, что мера по уменьшению колебания дополнительно включает по меньшей мере одно из:

- замены используемого алгоритма регулирования шага, в частности, таким образом, что скорость регулирования сокращается,

- регулировки положения по азимуту на заранее определенный азимутальный угол,

- переключения первой ветроэнергетической установки (31) с первого режима эксплуатации, основывающегося на первой характеристике мощности, на второй режим эксплуатации, основывающийся на второй характеристике мощности,

- согласования частоты вращения первой ветроэнергетической установки (31), если первая ветроэнергетическая установка (31) установлена в ветропарке (34) позади второй ветроэнергетической установки (32) относительно актуального направления ветра, с частотой вращения второй ветроэнергетической установки (32) таким образом, что частота вращения первой ветроэнергетической установки (31) отклоняется от частоты вращения второй ветроэнергетической установки (32) по меньшей мере на заранее определенную разность частот вращения.

3. Способ по п. 1 или 2, отличающийся тем, что заранее определенный период фиксации находится в диапазоне от 5 с до 1 мин, в частности в диапазоне 10-20 с.

4. Способ по п. 2, отличающийся тем, что азимутальный угол располагается в диапазоне 2-8°, в частности в диапазоне 4-5°.

5. Способ по п. 2, отличающийся тем, что заранее определенная разность частот вращения составляет по меньшей мере 0,2 об/мин, предпочтительно по меньшей мере 0,5 об/мин.

6. Способ по п. 2, отличающийся тем, что по меньшей мере одна первая ветроэнергетическая установка (31) имеет регулирование шага и/или является регулируемой по частоте вращения.

7. Способ по п. 2, отличающийся тем, что первая и вторая характеристики мощности предоставляют предусмотренную отдаваемую мощность в зависимости от частоты вращения, и причем величины мощности второй характеристики мощности при соответствующих одинаковых величинах частоты вращения меньше величин мощности первой характеристики мощности.

8. Способ по п. 2, отличающийся тем, что при переключении режима эксплуатации первой ветроэнергетической установки (31) с первого режима эксплуатации на второй режим эксплуатации, когда первая ветроэнергетическая установка (31) установлена позади второй ветроэнергетической установки (32) относительно актуального направления ветра, вторая ветроэнергетическая установка (32) не меняет своего режима эксплуатации, в частности первая характеристика мощности первой ветроэнергетической установки (31) соответствует номинальной характеристике мощности и/или оптимальной характеристике мощности, а вторая ветроэнергетическая установка (32) эксплуатируется в режиме эксплуатации с номинальной и/или оптимальной характеристикой мощности.

9. Способ по п. 2, отличающийся тем, что

- фиксацию актуального установочного угла и/или замену используемого алгоритма регулирования шага осуществляют в режиме эксплуатации с полной нагрузкой, а именно когда преобладающая скорость ветра равна номинальной скорости ветра или превышает ее, и/или

- регулировку положения по азимуту, переключение режима эксплуатации первой ветроэнергетической установки (31) и/или изменение частоты вращения первой ветроэнергетической установки (31) осуществляют в режиме эксплуатации с частичной нагрузкой, а именно когда преобладающая скорость ветра ниже номинальной скорости ветра.

10. Способ по п. 2, отличающийся тем, что вторую характеристику мощности смещают в области перехода из области полной нагрузки к области с частичной нагрузкой.

11. Ветроэнергетическая установка (31) для производства электрической энергии, отличающаяся тем, что она эксплуатируется способом по одному из предшествующих пунктов.

12. Ветроэнергетическая установка (31) по п. 11, отличающаяся тем, что первая ветроэнергетическая установка (31) использует синхронный генератор, возбуждаемый постоянным током, а ток возбуждения первой ветроэнергетической установки (31) изменяется на заранее определенную величину, предпочтительно увеличивается или уменьшается на 2-8%, в частности на 4-5%.

13. Ветропарк по меньшей мере с одной ветроэнергетической установкой (31) по п. 11 или 12.



 

Похожие патенты:

Использование: в области электротехники. Технический результат – обеспечение стабильной работы при максимально возможно низком отношении короткого замыкания.

Изобретение относится к области электротехники и может быть использовано для управления генератором электрической энергии, подключенным в точке сетевого подключения к электрической сети.

Изобретение относится к способу управления ветроэнергетической установкой, включающему в себя этапы, на которых: обнаруживают внутренний, выдаваемый установкой аварийный сигнал, указывающий на ее неполадку, принимают по меньшей мере один внешний, выданный вне установки аварийный сигнал, указывающий на неполадку другой установки, оценивают внутренний аварийный сигнал в зависимости от по меньшей мере одного внешнего аварийного сигнала.

Изобретение относится к электротехнике, а именно к электрическим машинам с волновой передачей. Электрическая машина с мультипликатором содержит корпус 10, статор 3, ротор 4 и волновую передачу в режиме мультипликатора с телами качения 7, причем мультипликатор размещен коаксиально внутри ротора электрической машины.

Изобретение относится к способу работы ветроэнергетической установки или ветрового парка. Предложен способ работы ветроэнергетической установки или ветрового парка и электрически соединенного с ними блока преобразования мощности в газ, при котором ветроэнергетическая установка или ветровой парк генерирует электрическую мощность и подает ее в подключенную к ветроэнергетической установке или к ветровому парку электрическую сеть.

Изобретение относится к возобновляемой энергетике, в частности к ветродвигателям со складными лопастями. Циклоидный ветродвигатель со складными лопастями содержит полый вертикальный вал с установленной внутри центральной заторможенной осью, кинематически связанной с планетарным редуктором, корпус которого посредством размещенных вокруг него горизонтальных кронштейнов и расположенных в них сателлитных валов соединен с осями лопастей, противобуревый флажковый узел и флюгерный узел самоориентации лопастей на ветер с реверсивным приводом.

Изобретение относится к ветроэнергетике. Регулятор момента и частоты вращения вала ветротурбины с лопастями, установленными с возможностью поворота на осях, размещенных на валу ветротурбины, установленном горизонтально в головке ветроагрегата.

Изобретение относится к способу управления заградительными огнями ветрового парка с помощью акустического контролирования или к ветровому парку, состоящему из одной или нескольких ветроэнергетических установок.

Изобретение относится к области нетрадиционной энергетики и может быть использовано как источник электрической и механической энергии в гидро- и ветроустановках.

Изобретение относится к ветроэнергетике. Ветроагрегат с системой ограничения мощности и частоты вращения, в котором через вал пропущена штанга с возможностью перемещения в осевом направлении, связь штанги с лопастями осуществлена через систему тяг, противоположный конец штанги имеет резьбовую нарезку с навинченной на нее конической шестерней, закрепленной на конце вала с возможностью поворота вокруг его осевой линии и связанной через зубчатое зацепление с ведущей шестерней, насаженной на установленную на валу ось, перпендикулярную осевой линии вала, на эту же ось насажен жестко связанный с ведущей шестерней фрикционный диск, образующий пары фрикционного зацепления с двумя расположенными по одну и другую стороны от него в перпендикулярных осевой линии вала плоскостях тормозными кольцами, закрепленными соосно с валом на корпусе подшипника с возможностью осевого перемещения в направлении фрикционного диска под действием исполнительных органов системы автоматического управления, на вход устройства управления которой дополнительно подаются сигналы от двух конечных выключателей, фиксирующих крайние положения штанги в осевом направлении.

Изобретение относится к ветроэнергетической установке, стволовой секции ветроэнергетической установки и способу выполнения ветроэнергетической установки. Ветроэнергетическая установка (100) с гондолой (4), генератором (12), расположенным в гондоле (4), башней (2) и подшипником (24) рыскания для регулирования ориентации гондолы (4) по ветру таким образом, что подшипник рыскания размещен ниже гондолы (4) в вертикальном смещении (26) рыскания, и гондола (4) поддерживается на подшипнике (24) рыскания над вертикальной стволовой секцией (20) такой же длины, что и смещение (26) рыскания.

Изобретение относится к области ветроэнергетики. Ветродвигатель содержит горизонтальный вал, закрепленные на нем два одинаковые по конструкции и размерам многолопастные ветроколеса: неподвижное и подвижное, лопасти подвижного ветроколеса первоначально установлены по середине лопастей неподвижного ветроколеса, повышая количество лопастей первого уровня в два раза, ступицы обоих ветроколес имеют взаимные полумуфты сцепления кулачкового типа, обеспечивая поворот подвижного ветроколеса при высоких скоростях ветра на расчетный угол для экранирования лопастей неподвижного ветроколеса, дополнительно содержит пружины растяжения и пневматические амортизаторы для снижения вибрации подвижного ветроколеса при переходе в зону экранирования лопастей неподвижного ветроколеса и уменьшения ветровой нагрузки на ветродвигатель.

Изобретение относится к гидравлической системе регулирования угла установки лопастей ветротурбины. Гидравлическая система регулирования угла установки лопастей ветротурбины с установленным горизонтально в головке ветроагрегата валом содержит пропущенную через вал штангу, одним концом системой тяг связанную с закрепленными на валу с возможностью поворота вокруг осей, перпендикулярных валу, лопастями, устройство управления.

Изобретение относится к способу управления ветроэнергетической установкой (1), содержащей генератор, предусмотренной для подачи электрической мощности в сеть (6) электроснабжения, но еще не подключенной к сети (6) электроснабжения, содержащему этапы: генерирования электрической мощности с помощью генератора и снабжения электрических элементов ветроэнергетической установки (1), генерируемой электрической мощностью, а также к ветроэнергетической установке (1) для генерирования электрической энергии из ветра и для подачи генерируемой электрической мощности в сеть (6) электроснабжения, в которой выполняется указанный способ.

Изобретение относится к способу управления ветроэнергетической установкой, включающему в себя этапы, на которых: обнаруживают внутренний, выдаваемый установкой аварийный сигнал, указывающий на ее неполадку, принимают по меньшей мере один внешний, выданный вне установки аварийный сигнал, указывающий на неполадку другой установки, оценивают внутренний аварийный сигнал в зависимости от по меньшей мере одного внешнего аварийного сигнала.

Изобретение относится к ветряным турбинам. Ветряная турбина (1) для преобразования энергии ветра в электроэнергию содержит гондолу (2), имеющую головную часть (11) и хвостовую часть (12), первичный ветровой ротор (3), установленный с возможностью вращения относительно гондолы (2) вокруг первичной оси вращения (А1) и содержащий первичную группу лопастей (4), ступицу (5) для крепления вышеупомянутых лопастей (4), выступающую из головной части (11) гондолы (2), а также вал, предназначенный для его вращения с помощью первичного ветрового ротора (3), по меньшей мере один первичный электрогенератор, содержащий по меньшей мере первичный электрический статор, неподвижно закрепленный в вышеупомянутой гондоле (2), и первичный электрический ротор, неподвижно закрепленный на вышеупомянутому валу или установленный с возможностью соединения с вышеупомянутым валом, причем первичный электрогенератор предназначен для преобразования энергии ветра, получаемой вышеупомянутой первичной группой лопастей (4), в электроэнергию.

Изобретение относится к ветроэнергетической установке (100), содержащей гондолу (104) и ротор (106), первый и/или второй микроволновый и/или радиолокационный измерительный блок (1100, 1200) для излучения микроволновых и/или радиолокационных сигналов и для регистрации отражений микроволновых и/или радиолокационных сигналов для получения данных о ветре и/или метеорологических данных или информации относительно поля ветра спереди и/или сзади ветроэнергетической установки (100), и систему управления ветроэнергетической установкой, которая управляет работой ветроэнергетической установки (100) в зависимости от данных, регистрируемых с помощью первого и/или второго измерительного блока (1100, 1200).

Изобретение относится к способу эксплуатации ветроэнергетической установки, к ветроэнергетической установке и ветряному парку из ветроэнергетических установок.

Изобретение относится к группе двухроторных ветроэнергетических установок. Каждая из двухроторных ветроэнергетических установок включает размещенные на башне ветротурбину с двумя соосными роторами на поворотной платформе, трансмиссию, системы управления углами установки лопастей и положения платформы, электрогенератор.

Изобретение относится к области ветроэнергетической техники, в частности к конструкциям ветроустановок с горизонтальной осью вращения. Конструкция ветроэнергетической установки, содержащая мачту с горизонтальной поворотной платформой, на которой установлены электрогенератор и ветротурбина с лопастями, механическую передачу вращения от вала ветротурбины к валу электрогенератора.

Изобретение относится к ветроэнергетической установке и способу эксплуатации ветроэнергетической установки. Способ эксплуатации ветроэнергетической установки (1) с ротором (6) с роторными лопастями (8) с по существу горизонтальной осью вращения для генерирования электрической энергии из энергии ветра, ветроэнергетическую установку (1) ориентируют так, что азимутальное положение ветроэнергетической установки (1) отклоняется от ориентации по ветру (16) на угол регулировки азимута, и/или угол установки роторных лопастей (8) относительно цикла вращения регулируют так, что переменные нагрузки, вызванные профилем ветра (16) по высоте, уменьшаются. Ветроэнергетическая установка (1) работает в профильной рабочей точке, отклоняющейся от нормальной рабочей точки, при этом нормальная рабочая точка, в частности в диапазоне частичной нагрузки, имеет нормальный угол установки лопасти, рассчитанный для преобладающего ветра (16), но без учета профиля ветра, и предусматривает нормальную ориентацию азимутального положения по ветру (16), профильная рабочая точка предусматривает профильное азимутальное положение, отклоняющееся от нормальной ориентации на угол регулировки азимута, и имеет профильный угол установки лопасти, отклоняющийся от нормального угла установки лопасти на угол регулировки лопасти, между углом регулировки азимута и углом регулировки лопасти выполняют взвешивание, так что величина угла регулировки азимута на весовой коэффициент азимута больше, чем величина угла регулировки лопасти, или величина угла регулировки лопасти на весовой коэффициент лопасти больше, чем величина угла регулировки азимута, причем весовой коэффициент азимута и весовой коэффициент лопасти, соответственно, больше чем 1,2, предпочтительно больше чем 1,5 и, в частности, больше чем 2. Изобретение направлено на снижение нагрузок по высоте, снижение звуковых эмиссий, увеличение производительности. 2 н. и 8 з.п. ф-лы, 4 ил.
Наверх