Способ коагуляционного выделения полисульфона

Настоящее изобретение относится к способу коагуляционного выделения полисульфона. Описан способ коагуляционного выделения полисульфона - продукта конденсации бисфенола с 4,4'-дихлордифенилсульфоном в присутствии щелочного агента в апротонном растворителе - с использованием приемов обработки водой, фильтрации от образовавшейся соли и сушки. Согласно изобретению отфильтрованный от соли 15-25%-ный раствор полимера разливают на твердую подложку и коагулируют на ней полимер обработкой путем погружения подложки с нанесенным полимером в ванну с водой или смесью воды с апротонным растворителем с последующими выдержкой при температуре 20-25°C в течение 5-15 мин, промывкой горячей водой до полного удаления растворителя и сушкой при температуре 120-130°C. Технический результат – упрощение процесса выделения полисульфона, ускорение и удешевление процесса. 2 з.п. ф-лы, 6 пр.

 

Изобретение относится к способу производства полисульфона, находящего применение в авиационной, электротехнической, электронной, медицинской и других отраслях промышленности.

Известен способ удаления высококипящего растворителя из растворов продуктов полимеризации (полисульфонов, простых и сложных полиэфиров), особенно из раствора полимера, полученного при конденсации бисфенола A с 4,4'-дихлордифенилсульфоном, с применением метода коагуляции полимера, обеспечивающий получение полисульфона, практически полностью освобожденного от растворителя, применяемого при синтезе. Способ состоит в обработке раствора полимера в высококипящем растворителе, имеющем температуру кипения не менее 100°C, низкокипящим растворителем, способным смешиваться с реакционной смесью, с последующим добавлением полученной смеси к горячему нерастворителю (вода, гликоль, эфиргликоль, трет-бутиловый спирт) и осаждением продукта. При этом точка кипения низкокипящего растворителя должна быть по крайней мере на 10°C ниже точки кипения нерастворителя. В примерах 1 и 2, касающихся получениия полисульфона в диметилсульфоксиде, реакционную смесь вливают в низкокипящий растворитель (в примере 1 - метиленхлорид, в примере 2 - хлорбензол), быстро отфильтровывают, а фильтрат по каплям подают в кипящую, интенсивно перемешиваемую воду при скорости подачи 1 капля в 15 секунд. После фильтрации воды получают порошок полимера, который сушат в вакууме при 146°C в течение 24 часов (патент США №3532677, опубл. 06.10.1970 г.).

Авторы патента СССР №629886, МПК C08G 75/20, опубл. 25.10.1978 г., предлагают «упрощенный» (по их утверждению) способ коагуляционного выделения полисульфоновой смолы, отмечая в качестве недостатков рассмотренного выше патента США «энергетические затраты» вследствие «необходимости введения нагретого осадителя, а также выпаривания растворителя и осадителя». В соответствии с формулой предмета изобретения по патенту СССР №629886 5-40%-ный раствор полисульфоновой смолы, содержащей звенья -[ArSO2]-, где

Ar=-С6Н4 -O-C6H4-, -C6H4 -S-С6Н4-, -OC6H4 -(CH3)3-ОC6H4--, в хлорбензоле предварительно диспергируют в воде при объемной доле раствора смолы 0,05-0,3 до диаметра капель 50-250 мкм, а затем обрабатывают в турбулентном поле сдвига нерастворителем, в качестве которого используют н-гексан или алифатический неполярный углеводород, содержащий 9-10 атомов углерода, при весовом соотношении хлорбензола и нерастворителя 1,25:1-0,25:1. Методика процесса, представленная в примере 1, детально иллюстрирует технологию синтеза единственного из заявленных полисульфонов, полученного на основе бисфенола A и 4,4'-дихлордифенилсульфона, выполняемую с использованием в качестве щелочного катализатора раствора едкого натра, а в качестве растворителя - смеси диметилсульфоксида и хлорбензола, с получением (после фильтрации соли и экстракции диметилсульфоксида водой) раствора полисульфона в хлорбензоле. Далее следует процесс собственно выделения полисульфона, для чего полученный в результате синтеза вязкий полимерный раствор разбавляют хлорбензолом до получения 20%-ного раствора, который вводят в диспергатор со скоростью 58,4 кг/час. Устанавливают режим работы диспергирующего устройства, обеспечивающий получение капель полимерного раствора с размером 200 мкм и поддержание дисперсной фазы на уровне не более 12%. Капли раствора смолы далее коагулируют в коагуляторе с применением н-гексана при соотношении хлорбензолтексан, равном 1:1. Коагулированную смолу декантируют от водной фазы и подвергают мокрому грохочению для удаления наружно связанных жидкостей, после чего обрабатывают дважды свежим н-гексаном при весовом соотношении н-гексана и влажного полисульфона 2,1:1 и сушат непосредственным контактом с кипящей водой или с перегретым паром при 130-140°C.

По аналогичной методике осуществляют пример 2, но только используют 15%-ный раствор полисульфона в хлорбензоле и н-гексан заменяют смесью алифатических углеводородов с числом атомов углерода в молекуле 9-10 при соотношении хлорбензола и смеси углеводородов 0,47:1.

К числу недостатков технического решения по рассмотренному патенту СССР можно отнести необходимость выполнения предварительной коагуляции в турбулентном поле сдвига (кстати, без конкретизации режима работы диспергирующего устройства для получения капель определенного размера), применение органического осадителя, усложнение аппаратурного оформления процесса; более того, большинство параметров процесса, включенных в формулу изобретения, не подтверждено примерами, что вызывает сомнение в достоверности сведений, представленных в описании изобретения, и возможности реализации заявленного в патенте технического решения в объеме, защищенном формулой. В силу изложенного и по большинству совпадающих признаков известного решения и предлагаемого за прототип принят способ по патенту США №3532677.

Технической задачей изобретения является упрощение способа коагуляционного выделения полисульфона и расширение ассортимента материалов, получаемых за счет его использования.

Технический результат изобретения, состоящий в ускорении и удешевлении процесса вследствие отказа от использования органических нерастворителей, уменьшения числа технологических стадий и снижении энергозатрат, достигается тем, что в способе коагуляционного выделения полисульфона - продукта конденсации бисфенола с 4,4'-дихлордифенилсульфоном в присутствии щелочного агента в апротонном растворителе с использованием приемов обработки водой, фильтрации от образовавшейся соли и сушки, отфильтрованный от соли 15-25%-ный раствор полимера разливают на твердую подложку и коагулируют на ней полимер путем погружения подложки с нанесенным полимером в ванну с водой или смесью воды с апротонным растворителем с последующими выдержкой при температуре 20-25°C в течение 5-15 мин, промывкой горячей водой до полного удаления растворителя и сушкой при температуре 120-130°C.

При этом в качестве бисфенола могут быть использованы соединения, выбранные из группы, включающей дифенилолпропан (который предпочтителен), гидрохинон, 4,4'-диоксидифенил, фенолфталеин или их смеси.

В качестве апротоннного растворителя предпочтительны для использования (но не исключительны) диметилформамид или диметилацетамид.

В качестве твердой подложки могут быть применены стекло, стальная лента, стеклоткань, углеродная ткань, предпочтительны стекло- и углеродная ткани.

Для коагуляции полимера может быть использована не только вода, но и ее смеси с апротонным растворителем, полученные при промывках горячей водой (предпочтительно с диметилацетамидом, при максимальной концентрации диметилацетамида в них 60%).

Предлагаемый способ позволяет получать широкий ассортимент препрегов на основе стекло- и углетканей как с односторонним, так и двухсторонним нанесением полисульфонового связующего.

Данное изобретение иллюстрируется ниже приведенными примерами.

Пример 1. 50 мл 20%-ного диметилацетамидного (ДМАА) раствора полисульфона на основе бисфенола A и дихлордифенилсульфона после его фильтрации от образовавшихся солей выливают на стеклянную пластину размером 30×30 см, которую погружают в водную ванну, выдерживают в ней 10 минут до образования твердой пленки белого цвета. Затем пленку снимают с подложки и промывают горячей водой при температуре 80-95°C 3 раза. После сушки при температуре 120-130°C в сушильном шкафу с обдувом воздухом получают выделенный полисульфон в виде пленки толщиной 250 мкм, не содержащий остатков растворителя синтеза (ДМАА).

Пример 2. Процесс ведут аналогично примеру 1, только используют раствор полисульфона 25%-ной концентрации и выдерживают в водной ванне стеклянную пластину в течение 15 мин. В результате получают пленку толщиной 750 мкм.

Пример 3. Процесс ведут как в примере 1, только используют раствор полисульфона 15%-ной концентрации и вместо стеклянной пластины - пластину из полированной стали. В результате получают пленку толщиной 220 мкм.

Пример 4. Процесс ведут как в примере 1, только вместо стеклянной пластины используют стеклоткань. После погружения в воду и выдержки в течение 5 мин получают пропитанную полисульфоном по всему объему стеклоткань.

Пример 5. Процесс ведут как в примере 4, только вместо стеклоткани используют углеродную ткань. После высаждения в воду получают пропитанную полисульфоном по всему объему углеродную ткань.

Пример 6. Процесс ведут как в примере 1, только вместо воды используют смесь диметилацетамид (20%)-вода (80%), полученную после первого выделения пленки полисульфона (т.е. после первой промывки).

Операцию промывки можно проводить многократно до достижения содержания ДМАА в смеси вода-ДМАА до 60% и использовать такую смесь для коагуляционного выделения полисульфона.

Таким образом, упрощается процесс выделения полисульфона, исключается необходимость применения нерастворителя. При этом в значительной степени снижаются энергозатраты на стадии выделения и регенерации растворителей, поскольку в предлагаемом процессе образуется простая двухкомпонентная смесь апротонный растворитель (диметилацетамид)-вода, а также исключается необходимость применения различного оборудования для диспергирования, смешения и разгонки смесей органических растворителей.

1. Способ коагуляционного выделения полисульфона - продукта конденсации бисфенола с 4,4'-дихлордифенилсульфоном в присутствии щелочного агента в апротонном растворителе - с использованием приемов обработки водой, фильтрации от образовавшейся соли и сушки, отличающийся тем, что отфильтрованный от соли 15-25%-ный раствор полимера разливают на твердую подложку и коагулируют на ней полимер обработкой путем погружения подложки с нанесенным полимером в ванну с водой или смесью воды с апротонным растворителем с последующими выдержкой при температуре 20-25°C в течение 5-15 мин, промывкой горячей водой до полного удаления растворителя и сушкой при температуре 120-130°C.

2. Способ по п. 1, отличающийся тем, что в качестве апротоннного растворителя применяют диметилформамид или диметилацетамид.

3. Способ по п. 1, отличающийся тем, что в качестве твердой подложки применяют стекло, стальную ленту, стеклоткань, углеродную ткань.



 

Похожие патенты:

Настоящее изобретение относится к ароматическим блок-сополиэфирсульфонам. Описаны блок-сополиэфирсульфоны с дихлорэтиленовыми группами в основной цепи формулы: где n=1-20; z=5-60.

Настоящее изобретение относится к применению реакции Михаэля для отверждения композиций, включающих серосодержащие полимеры. Описан аддукт на основе простого политиоэфира, включающий по меньшей мере две концевые группы, являющиеся акцепторами Михаэля, выбранный из аддукта на основе политиоэфира формулы (3), аддукта на основе политиоэфира формулы (3а) и их комбинации: где каждый R1 независимо выбран из С2-10 алкандиила, С6-8 циклоалкандиила, С6-10 алканциклоалкандиила, С5-8 гетероциклоалкандиила и -[(-CHR3-)s-X-]q-(-CHR3-)r-, где: s является целым числом в диапазоне 2-6; q является целым числом в диапазоне 1-5; r является целым числом в диапазоне 2-10; каждый R3 независимо выбран из водорода и метила и каждый X независимо выбран из -О-, -S- и -NHR-, где R выбран из водорода и метила; каждый R2 независимо выбран из С1-10 алкандиила, С6-8 циклоалкандиила, С6-14 алканциклоалкандиила и -[(-CHR3-)s-X-]q-(-CHR3-)r-, где s, q, r, R3 и X таковы, как определено для R1; m является целым числом в диапазоне 0-50; n является целым числом в диапазоне 1-60; р является целым числом в диапазоне 2-6; В представляет собой ядро z-валентного полифункционализующего соединения В(-V)z с винильными концевыми группами, где z является целым числом в диапазоне 3-6; и каждый V представляет собой группу, включающую концевую винильную группу; и каждый -V' получают по реакции -V с тиолом; и каждый R6 независимо выбран из винилкетона, винилсульфона, хинона, енамина, кетимина, альдимина и оксазолидина.

Настоящее изобретение относится к ароматическим полиэфирсульфонкетонам конструкционного и пленочного назначения. Описаны ароматические полиэфирсульфонкетоны формулы где n=1-20; z=2-100; R= .

Настоящее изобретение относится к ароматическим полиэфирсульфонкетонам конструкционного и пленочного назначения. Описаны ароматические полиэфирсульфонкетоны формулы: где n=1-20; z=2-50; R=, .

Настоящее изобретение относится к ароматическим полиэфирам конструкционного и пленочного назначения. Описаны ароматические полиэфиры формулы где n=2-20; z=2-100; R= ,.

Настоящее изобретение относится к ароматическим полиэфирсульфонкетонам. Описаны ароматические полиэфирсульфонкетоны формулы: где n=1-20; z=2-100; R= , .

Настоящее изобретение относится к ароматическим полиэфирсульфонкетонам. Описаны ароматические полиэфирсульфонкетоны формулы: где n=1-20; z=2-100; R= .

Настоящее изобретение относится к ароматическим полиэфирсульфонкетонам конструкционного и пленочного назначения. Описаны ароматические полиэфирсульфонкетоны формулы: где n=1-20; z=2-100; .

Настоящее изобретение относится к высокомолекулярным соединениям, а именно к ароматическим полиэфирам конструкционного и пленочного назначения. Описаны ароматические полиэфиры формулы: где R=, n=2-20; z=2-50.

Изобретение относится к ароматическим полиэфирсульфонкетонам. Описаны ароматические полиэфирсульфонкетоны формулы где n=1-20; z=2-100; ; .

Настоящее изобретение относится к ароматическим блок-сополиэфирсульфонам. Описаны блок-сополиэфирсульфоны с дихлорэтиленовыми группами формулы: , где n=1-20; z=5-80. Технический результат – расширение ассортимента ароматических полиэфиров, обладающих высокой тепло- и термостойкостью и высокими механическими свойствами. 1 табл., 4 пр.

Описан простой сульфонсодержащий политиоэфир, содержащий фрагмент формулы (1): , где: каждое А независимо представляет собой фрагмент формулы (2): , где: каждый R1 независимо содержит С2-10 алкандиил, С6-8 циклоалкандиил, С6-10 алканциклоалкандиил, С5-8 гетероциклоалкандиил, или -[(-CHR3-)s-X-]q-(-CHR3-)r-, где: s является целым числом от 2 до 6; q является целым числом от 1 до 5; r является целым числом от 2 до 10; каждый R3 независимо содержит водород или метил; и каждый X независимо содержит -О-, -S- и -NR5-, где R5 содержит водород или метил; и каждый R2 независимо содержит С1-10 алкандиил, С6-8 циклоалкандиил, С6-14 алканциклоалкандиил или -[(-CHR3-)s-X-]q-(-CHR3-)r-, где s, q, r, R3 и X являются такими, как указано для R1; m является целым числом от 0 до 50; n является целым числом от 1 до 60; и р является целым числом от 2 до 6. Также описаны композиции, применяемые в качестве герметика аэрокосмического назначения, содержащие указанный выше простой сульфонсодержащий политиоэфир, и отвердитель, который способен реагировать с концевыми группами простого сульфонсодержащего политиоэфира. Также описан способ получения простых сульфонсодержащих политиоэфиров. Технический результат – получение отвержденных композиций герметика, содержащих простые сульфонсодержащие политиоэфиры, обладающих лучшей термостойкостью. 7 н. и 9 з.п. ф-лы, 1 табл., 4 пр.

Настоящее изобретение относится к ароматическим блок-сополиэфирам, которые могут быть использованы в качестве конструкционных и пленочных материалов. Описаны огнестойкие блок-сополиэфирсульфонкарбонаты формулы: , где n=1-20; z=3-40; X=Н или Br. Технический результат – получение блок-сополиэфирсульфонкарбонатов, обладающих повышенными огне-, тепло- и термостойкостью, а также высокими механическими свойствами. 8 пр.

Настоящее изобретение относится к галогенсодержащим блок-сополиэфиркетонсульфонам формулы: , где n=1-20; z=3-60; X=H или Br. Технический результат – получение блок-сополиэфиркетонсульфона, обладающего повышенными показателями механических характеристик, а также показателями огне-, тепло- и термостойкости. 8 пр.
Наверх