Способ измерения расхода жидкости

Изобретение относится к измерительной технике и может быть использовано для измерения расхода жидкости в трубопроводе. Способ измерения расхода жидкости включает измерение перепада давлений на суженном участке трубопровода и на его широкой части, определение по разности давлений расхода жидкости, протекающей по трубопроводу, в отличие от прототипа, давление на суженном участке увеличивают до величины давления на широком участке трубопровода путем нагрева газа в камере дифференциального манометра, соединенной с суженным участком, причем нагрев производят электронагревателем, а расход жидкости определяют по расходу электроэнергии, используемой для нагрева газа. Технический результат - повышение чувствительности и точности измерений, являющихся следствием использования наиболее точного компенсационного метода измерений, возможность непрерывного получения данных о текущей величине расхода жидкости в режиме реального времени. 1 ил.

 

Изобретение относится к измерительной технике и может быть использовано для измерения расхода жидкости в трубопроводе.

Известен способ измерения расхода жидкости, заключающийся в измерении параметров вынужденных колебаний симметричного тела, расположенного на струне перпендикулярно потоку жидкости, при его обтекании возникает сила Магнуса, которая создает дополнительное усилие на струне подвеса, пропорциональное расходу [пат. RU №1413427, кл. G01F 1/20].

Недостатком известного способа является недостаточно широкий динамический диапазон и низкая точность измерения, обусловленная большим числом преобразований и косвенных измерений.

Наиболее близким к заявляемому является принятый в качестве прототипа способ измерения расхода вещества с помощью сужающего устройства, включающий измерение перепада давлений на сужающем устройстве при известной плотности вещества, периодически часть вещества переводят через капиллярную трубку за сужающее устройство и по изменению перепада давлений определяют величину расхода [пат. RU №1530911, кл. G01F 1/34]. Недостатком известного способа является недостаточная точность измерения, обусловленная непостоянством тестового контроля с помощью капиллярной трубки.

Задача - повышение точности измерения расхода жидкости.

Решение поставленной задачи достигается тем, что в способе измерения расхода жидкости, включающем измерение перепада давлений на суженном участке трубопровода и на его широкой части, определение по разности давлений расхода жидкости, протекающей по трубопроводу, в отличие от прототипа, давление на суженном участке увеличивают до величины давления на широком участке трубопровода путем нагрева газа в камере дифференциального манометра, соединенной с суженным участком, причем нагрев производят электронагревателем, а расход жидкости определяют по расходу электроэнергии, используемой для нагрева газа.

На рисунке представлена схема определения расхода жидкости.

В трубопроводе 1 образован суженный участок 2. К трубопроводу подсоединен дифференциальный манометр 3, содержащий камеру 4, соединенную с суженным участком трубопровода, и камеру 5, соединенную с широким участком трубопровода. Каждая камера снабжена мягкой перегородкой 6 и 7, отделяющей части камер, соединенные с трубопроводом, от заполненных газом полостей 8 и 9, которые соединяются между собой патрубком 10. Внутри патрубка 10 размещен подвижный элемент 11, выполненный, например, в виде капли магнитной жидкости. Патрубок 10 охватывает индуктивный датчик 12, который вместе с подвижным элементом 11 выполняет роль нуль-органа. Сигнал от датчика 12 подают на систему управления 13, выход которой соединен с электронагревателем 14.

Измерение расхода жидкости осуществляют следующим образом. При движении жидкости по трубопроводу 1 она проходит через суженный участок 2, в котором давление жидкости понижается в соответствии с условием неразрывности потока Бернулли. Суженный участок 2 трубопровода 1 соединен с камерой 4 дифференциального манометра 3. Широкий участок трубопровода 1 соединен с камерой 5 манометра 3. Давление камер 4 и 5 через мембраны 6 и 7 передается заполненным газом полостям 8 и 9. При равенстве давлений газа в полостях 8 и 9 подвижный элемент 11 находится в середине патрубка 10. Однако давление в полости 4 всегда меньше давления в полости 5. Для восстановления равенства давлений в полостях 8 и 9 газ в полости 8 подогревают с помощью электронагревателя 14. Нагретый газ расширяется и в полости 8 давление увеличивается. При достижении равенства давлений газа в полостях 8 и 9 подвижный элемент 11 устанавливается в середине патрубка 10, о чем индуктивный датчик 12 сигнализирует системе управления 13. Тогда система управления 13 прекращает подачу электроэнергии нагревателю 14 и подсчитывает количество электроэнергии, затраченной на достижение равновесия давлений в камерах 8 и 9 дифференциального манометра 3. По величине затраченной электроэнергии определяют расход жидкости, протекающей по трубопроводу. Таким образом осуществляют компенсационный метод измерения расхода жидкости.

По сравнению с техническими решениями аналогичного назначения предлагаемый способ обладает следующими преимуществами:

- простотой конструкции устройства, реализующего способ;

- повышенной чувствительностью и точностью измерений, являющихся следствием использования наиболее точного компенсационного метода измерений;

- возможностью непрерывного получения данных о текущей величине расхода жидкости в режиме реального времени.

Способ измерения расхода жидкости, включающий измерение перепада давлений на суженном участке трубопровода и на его широкой части, определение по разности давлений расхода жидкости, протекающей по трубопроводу, отличающийся тем, что давление на суженном участке увеличивают до величины давления на широком участке трубопровода путем нагрева газа в камере дифференциального манометра, соединенной с суженным участком, причем нагрев производят электронагревателем, а расход жидкости определяют по расходу электроэнергии, используемой для нагрева газа.



 

Похожие патенты:

Изобретение относится к области измерительной техники, предназначено для определения расхода теплоносителя. Отличительной особенностью способа определения расхода теплоносителя датчиками скорости является то, что дополнительно устанавливают по крайней мере один датчик скорости, определяют расход теплоносителя на основе частного вида профиля скорости где Dтр - диаметр трубопровода, W(r, φ) - частный вид профиля скорости, а частный вид профиля скорости определяют на основе измеренных датчиками скорости значений скоростей и общего вида профиля скорости, а общий вид профиля скорости определяют на основе теоретических представлений и предварительных модельных опытов.

Способ определения массы сжиженного газа, по которому измеряют температуру и давление в емкости, выпускают вещество из емкости и контролируют время истечения вещества из емкости через насадку и изменение давления в емкости.

Уровнемер-расходомер жидкости в баке содержит корпус, дифференциальный датчик давления, пневмогидравлический блок, включающий герметичную полость, трубку со сквозным каналом для вертикального погружения ее на дно бака с контролируемой жидкостью одним концом, а другим концом соединенную с одним из входов дифференциального датчика давления, герметичные упругие элементы, причем герметичные упругие элементы выполнены в виде мембранных коробок, часть сторон которых, в частности одна сторона, выполняется упругой, а остальные, соответственно, жесткими.

Группа изобретений относится к определению свойств многофазной технологической текучей среды. Способ определения свойств многофазной технологической текучей среды содержит этапы, на которых: пропускают многофазную текучую среду по колебательно подвижной расходомерной трубке и расходомеру переменного перепада давления; вызывают движение расходомерной трубки и определяют первое кажущееся свойство текучей среды; определяют, по меньшей мере, одно кажущееся промежуточное значение, которое представляет собой первый критерий Фруда для негазообразной фазы текучей среды и второй критерий Фруда для газообразной фазы текучей среды; определяют степень влажности текучей среды на основе преобразования между первым и вторым критериями Фруда и степенью влажности; определяют второе кажущееся свойство текучей среды с использованием расходомера переменного перепада давления; определяют фазозависимое свойство текучей среды на основе степени влажности и второго кажущегося свойства.

Автоматизированная информационная система для управления насосно-трубопроводным комплексом содержит насосные станции с приборами для измерения давления, создаваемого электроцентробежными насосами, приборами для измерения электрической мощности, потребляемой электродвигателями привода электроцентробежных насосов.

Изобретение относится к измерительным устройствам и может быть использовано в технологических трубопроводах для измерения количества газа или жидкости, в ЖКХ и производственных процессах, а также в узлах учета энергоресурсов для коммерческого расчета.

Изобретение относится к способам и устройствам для измерения объемного (массового) расхода текучей среды путем пропускания ее через измерительное устройство непрерывным потоком с измерением давления или перепада давления.

Изобретение относится к измерительной технике и предназначено для покомпонентного измерения потока нефти, который, как правило, дополнительно содержит свободный газ и воду, а также может быть использовано при измерениях газовых потоков в магистральных газопроводах, двухфазных потоков в различных областях промышленности, для замера трудно учитываемых жидкостей, например глинистые и цементные растворы.

Изобретение относится к области добычи нефти и может быть использовано при измерениях дебита продукции нефтегазодобывающих скважин. Расходомер переменного уровня состоит из сосуда с напорным и сливным трубопроводами на входе и выходе, перегородки с профилированной сливной щелью, через которую происходит истечение жидкости из входной приемной камеры в выходную полость сосуда, обеспечивающей прямую пропорциональность между расходом жидкости и высотой столба жидкости, и дифференциального манометра, измеряющего высоту столба жидкости в приемной камере перед перегородкой. Согласно изобретению его оснащают дополнительной перегородкой с профилированной сливной щелью, обеспечивающей обратную пропорциональность между расходом газа и высотой столба жидкости, и дополнительным дифференциальным манометром, измеряющим высоту столба жидкости перед этой перегородкой. Причем, в зависимости от конструкции, перегородки с соответствующими дифференциальными манометрами могут располагаться либо в одном сосуде, в двух герметично разделенных полостях, либо в двух сосудах, соединенных трубопроводом, а перегородки могут быть выполнены в виде трубы. Технический результат - расширение функциональных возможностей и соответственно повышение потребительских свойств расходомера переменного уровня и позволяет производить измерения расхода не только жидкости, но и газа. 4 ил.

Изобретение относится к определению расхода теплоносителя (воды) в технологическом канале (ТК) реакторной установки (РУ) типа РБМК-1000. Устройство содержит датчик давления, установленный в ТК блока РБМК-1000, стойку измерительно-вычислительного комплекса (ИВК), персональную ЭВМ. Датчик давления представляет собой тензопреобразователь избыточного давления на основе сапфиро-титановой мембраны, выполненный с возможностью пропорционального преобразования давления теплоносителя в электрический выходной сигнал постоянного тока. Стойка ИВК запитывает датчики давления постоянным током в 1,5 мА. Персональная ЭВМ управляет стойкой ИВК и осуществляет регистрацию выходных сигналов датчиков с записью на запоминающем носителе и последующим преобразованием данных в формат Изернет для передачи информационно-измерительной системе "СКАЛА-микро", в которой расход теплоносителя вычисляется по перепаду давления на ЗРК в ТК при использовании данных о пропускной способности ЗРК из поканальной базы данных ИИС "СКАЛА-микро". Устройство выполнено с возможностью непрерывного контроля расхода теплоносителя в технологическом канале реакторной установки типа РБМК-1000. Технический результат - повышение точности регистрации расхода теплоносителя в ТК реактора, троекратный запас по превышению давления теплоносителя проектной величины, увеличение срока службы датчиков давления. 4 ил.

Изобретение относится к технике измерения расхода любых перекачиваемых сред. Предлагаемый расходомер содержит корпус с перемычкой, повторяющей форму сечения аэродинамического крыла, причем перемычка жестко закреплена в корпусе устройства и имеет каналы сообщения ее верхней и нижней поверхности с чувствительным элементом дифференциального манометра. Шкала дифференциального манометра отградуирована в размерностях расхода. В корпусе устройства перед перемычкой жестко закреплен успокоитель потока, придающий ему ламинарную форму течения. Технический результат – повышение точности, надежности и безопасности эксплуатации расходомера за счет неподвижности перемычки, повторяющей форму сечения аэродинамического крыла, и придания потоку перекачиваемой среды ламинарной формы течения. Отсутствие подвижных элементов исключает какие-либо виды механических дефектов при работе расходомера. 2 з.п. ф-лы, 1 ил.

Изобретение относится к способу диагностики правильной работы нагревательной и/или охлаждающей системы, содержащей несколько нагрузочных контуров (6), через которые проходит поток текучей среды в качестве теплоносителя. Для диагностики изменяется степень открывания последовательно каждого нагрузочного контура (6) для изменения расхода и затем измеряется разница давления в нагрузочном контуре (6) и/или объемный поток проходящей через нагрузочный контур (6) текучей среды. Измеренные значения или по меньшей мере одно выведенное из них значение сравнивается по меньшей мере с одним заданным предельным значением системы. Изобретение касается также распределительного устройства для нагревательной и/или охлаждающей системы, которое выполняет упомянутый способ диагностики. В результате увеличивается точность диагностики. 2 н. и 9 з.п. ф-лы, 5 ил.
Наверх