Капельный холодильник-излучатель

Изобретение относится к устройствам отвода низкопотенциального тепла от систем космических аппаратов. Капельный холодильник-излучатель содержит теплоноситель с системой его хранения и подачи, генератор капель, перекачивающие насосы, трубопроводы, нагреватели элементов и коллектор капель, выполненный в виде каплеприемника. К горловине каплеприемника герметично присоединена по меньшей мере одна смачиваемая теплоносителем капиллярная эластичная трубка, второй конец которой соединен с перекачивающим насосом и снабжен вытеснительным механизмом. Коллектор капель снабжен жестким треком с прижатой к нему капиллярной эластичной трубкой. Техническим результатом изобретения является повышение надежности устройства отвода тепла. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к области космической техники, а конкретнее к устройствам отвода низкопотенциального тепла от систем космических аппаратов.

Одним из перспективных способов отвода тепла от космических аппаратов (КА) является капельный холодильник-излучатель (КХИ), состоящий из системы хранения и подачи теплоносителя, генератора капель, коллектора капель, перекачивающего насоса, трубопроводов.

Общая схема работы КХИ изложена в статье [1]. КХИ содержит зону нагрева теплоносителя капельного холодильника-излучателя в энергетической системе космического аппарата, зону преобразования жидкого теплоносителя в поток капель, летящих в свободном космическом пространстве, коллектор капель для их сбора из космического пространства и подачу в энергетическую систему.

Известно несколько способов для сбора капель КХИ. Эти способы изложены, например, в статье [2] и патентах [3, 4]. В статье [2] для сбора капель предлагается использовать большой вращающийся барабан, куда попадают капли капельного потока. За счет вращения барабана появляется центробежная сила достаточная для обеспечения подачи масла в перекачивающий насос. Такой насос достаточно неудобен, так как требует больших подвижных агрегатов.

В патентах [3, 4] описан коллектор капель, содержащий щелевые каналы; щелевые каналы, выпускают вспомогательный поток жидкости. Вспомогательный поток жидкости представляет собой плоский поток жидкости текущий вдоль твердой поверхности. Основной поток попадает на вспомогательный, вспомогательный увлекает основной поток за собой. Вспомогательный поток и увлекаемый основной поток попадают во входную часть перекачивающего насоса и создают избыточное давление на входе в перекачивающий насос. Следует сказать, что при реализации такого насоса возникнет множество трудностей, описанных в патенте [3]. Для борьбы с возникающими трудностями в патенте [3] описан целый ряд элементов. В итоге конструкция получается сложной, из-за большого количества функциональных элементов высока вероятность отказа устройства при его эксплуатации.

Наиболее близким к заявляемому изобретению является капельный холодильник-излучатель, описанный в патенте [4], содержащий теплоноситель с системой его хранения и подачи, генератор капель, перекачивающие насосы, трубопроводы, нагреватели элементов и коллектор капель, который выполнен пассивным, причем его внутренняя поверхность образована стенками одного или нескольких щелевых каналов, по которым подается теплоноситель.

Известное устройство, выбранное в качестве прототипа, также характеризуется выше упомянутыми недостатками, присущими устройству по патенту [3].

Задачей заявляемого изобретения является создание капельного холодильника-излучателя, лишенного вышеупомянутых недостатков и оснащенного подающим на вход перекачивающего насоса теплоноситель коллектором капель, конструктивное исполнение которого характеризуется простой и надежностью и исключает разбрызгивание собираемого теплоносителя.

Технический результат достигается тем, что в капельном холодильнике-излучателе, содержащем теплоноситель с системой его хранения и подачи, генератор капель, перекачивающие насосы, трубопроводы, нагреватели элементов и коллектор капель, коллектор капель выполнен в виде каплеприемника, к горловине которого герметично присоединена, по меньшей мере, одна смачиваемая теплоносителем капиллярная эластичная трубка, второй конец которой соединен с перекачивающим насосом, и снабжен вытеснительным механизмом, взаимодействующим с капиллярной эластичной трубкой и обеспечивающим выдавливание из нее теплоносителя. Кроме того, вытеснительный механизм выполнен в виде, по меньшей мере, двух нажимных элементов, выполненных с возможностью вращения относительно общей оси и взаимодействующих с капиллярной эластичной трубкой, находящейся в состоянии натяжения. Кроме того, коллектор капель снабжен жестким треком, к которому посредством вытеснительного механизма прижата капиллярная эластичная трубка.

Сущность изобретения поясняется фиг. 1, на которой схематически представлен узел коллектора капель КХИ, общий вид.

Капельный холодильник-излучатель содержит теплоноситель с системой его хранения и подачи, генератор капель, перекачивающие насосы, трубопроводы, нагреватели элементов и коллектор капель. Коллектор капель 1, поступающих на его вход, выполнен в виде каплеприемника 2, к горловине которого герметично присоединена, по меньшей мере, одна смачиваемая теплоносителем капиллярная эластичная трубка 3, второй конец которой соединен с перекачивающим насосом 4, и снабжен вытеснительным механизмом, взаимодействующим с капиллярной эластичной трубкой 3 и обеспечивающим выдавливание из нее теплоносителя. В частных случаях реализации предлагаемого устройства вытеснительный механизм выполнен в виде, по меньшей мере, двух нажимных элементов 5, например роликов или башмаков, установленных с возможностью их вращения относительно общей оси и взаимодействующих с капиллярной эластичной трубкой 3, находящейся в состоянии натяжения. Коллектор капель может быть снабжен жестким треком 6, к которому посредством вытеснительного механизма прижата капиллярная эластичная трубка 3.

Поток капель 1 теплоносителя поступает в емкость каплеприемника 2, из которого накапливаемая жидкость теплоносителя за счет капиллярного эффекта затекает в эластичную трубку 3. Капиллярная эластичная трубка 3 (в частных случаях реализации изобретения может быть использовано несколько упомянутых трубок) расположена непосредственно возле жесткого трека 6. Вытеснительный элемент, выполненный, например в виде нажимных элементов 5, выдавливает жидкость теплоносителя из трубки 3 в перекачивающий насос 4. В данном случае реализации заявляемого устройства принцип работы коллектора капель, снабженного вытеснительным механизмом, похож на принцип работы перистальтического насоса. В других случаях реализации вытеснительный механизм может быть выполнен в виде размещенного внутри трубки 3 вращающегося элемента, например винта, ускоряющего движение жидкости вдоль трубки и выдавливание ее в перекачивающий насос (принцип работы похож на винтовой насос).

Для оценки применимости заявляемого способа оценим достижимый расход через капиллярную эластичную трубку 3 за счет капиллярных сил при использовании в качестве теплоносителя вакуумного масла ФМ-1.

Сила поверхностного натяжения, создаваемая в трубке:

Fk=2πRtσ,

где σ - коэффициент поверхностного натяжения на границе раздела масло-стенка, Rt - радиус трубки, Fk - сила поверхностного натяжения.

Для оценки скорости заполнения трубки можно написать простое уравнение в предположении, что жидкость имеет скорость только внутри трубки, а снаружи от трубки имеет скорость близкую к нулю. Тогда сила поверхностного натяжения разгоняет жидкость, которая уже затекла в трубку и втягивает новую жидкость в трубку, получаем:

,

пусть l - длина трубки, заполненной жидкостью теплоносителя. Тогда:

,

,

,

.

Граничные условия в данном случае l(0)=dl/dt(0)=0

,

,

.

Таким образом, получаем, что скорость движения жидкости в капилляре постоянна и равна:

Коэффициент поверхностного натяжения ФМ1 σ=0.0365 Н/м. Плотность масла 1000 кг/м3. Оценим диаметр трубки, необходимый для достижения скорости течения масла в 10 см/с, такой скорости должно быть достаточно, так как в капельном холодильнике-излучателе предполагаемая скорость движения капель должна быть около 1 м/с.

.

Соответственно диаметр требуемой трубки будет равен 14 мм. Что вполне достижимо и реализуемо.

Источники информации

1. Конюхов Г.В., Коротеев А.А. Капельные холодильники-излучатели космических энергетических установок нового поколения // Труды МАИ. - 2006. - №. 25. - С. 3-272.

2. Mattick А.Т., Hertzberg A. Liquid droplet radiators for heat rejection in space // Journal of Energy. - 1981. - T. 5. - №. 6. - C. 387-393.

3. RU 2401778 «Капельный холодильник-излучатель», опубл. 2010.

4. RU 2247064 «Капельный холодильник-излучатель», опубл. 2005.

1. Капельный холодильник-излучатель, содержащий теплоноситель с системой его хранения и подачи, генератор капель, перекачивающие насосы, трубопроводы, нагреватели элементов и коллектор капель, отличающийся тем, что коллектор капель выполнен в виде каплеприемника, к горловине которого герметично присоединена, по меньшей мере, одна смачиваемая теплоносителем капиллярная эластичная трубка, второй конец которой соединен с перекачивающим насосом, и содержит вытеснительный механизм, взаимодействующий с капиллярной эластичной трубкой и обеспечивающий выдавливание из нее теплоносителя.

2. Капельный холодильник-излучатель по п. 1, отличающийся тем, что вытеснительный механизм выполнен в виде, по меньшей мере, двух нажимных элементов, выполненных с возможностью вращения относительно общей оси и взаимодействующих с капиллярной эластичной трубкой, находящейся в состоянии натяжения.

3. Капельный холодильник-излучатель по п. 1, отличающийся тем, что коллектор капель снабжен жестким треком, к которому посредством вытеснительного механизма прижата капиллярная эластичная трубка.



 

Похожие патенты:

Изобретение относится к устройствам отвода низкопотенциального тепла от систем космических аппаратов. Капельный холодильник-излучатель содержит теплоноситель с системой его хранения и подачи, генератор капель, перекачивающие насосы, трубопроводы, нагреватели элементов и коллектор капель.
Изобретение относится к модификации параметров космической среды, а также предназначено для экспериментальной наземной отработки в искусственной среде. Для прогрева атмосферы Марса локально нагревают марсианскую залежь природных карбонатов путем концентрирования солнечных лучей на ее поверхности.

Группа изобретений относится к конструкции и компоновке космических аппаратов (КА), преимущественно геостационарных. КА содержит модуль служебных систем (100) и модуль полезной нагрузки (200), соединённые фермой (300).

Группа изобретений относится к методам и средствам защиты бортового оборудования космических аппаратов (КА), а также экипажей пилотируемых КА (станций). Способ включает в себя металлизацию оборудования так, что агрегаты и аппаратуру (1) служебных систем КА выводят на одну шину (2), а комплекс (5) целевой и/или научной аппаратуры - на другую шину (4).

Изобретение относится к терморегулируемому бортовому оборудованию космического аппарата (КА). Отсек содержит шестиугольную платформу (многослойную панель), на которой с двух сторон размещены тепловыделяющие элементы блоков аппаратуры.

Изобретение относится к космической технике, а именно к устройствам теплообмена. Панель холодильника-излучателя содержит теплоизлучающую пластину из композиционного материала и металлические трубки для теплоносителя, размещенные между теплоизлучающей пластиной и накладками из композиционного материала.

Изобретение относится к области космической техники, а именно к устройствам отвода тепла в термодинамическом цикле космической энергетической установки. Устройство для улавливания диспергированной пелены капельного холодильника-излучателя (КХИ) содержит узел подачи и узел нагнетания рабочего тела.

Изобретение относится к космической технике и может быть использовано в конструкциях холодильников-излучателей космических аппаратов (КА) и энергетических установок.

Изобретение относится к космической технике и может использоваться в системах терморегулирования приборных отсеков. Система термостабилизации приборного отсека космического аппарата включает радиатор-излучатель и тепловые трубы.

Изобретение относится к системам терморегулирования космических аппаратов (КА). Способ заключается в том, что измеряют температуру в зонах радиационных панелей (РП) датчиками температур, изменяют температуру каждой зоны посредством терморегуляторов, разбивают период оборота КА вокруг Земли на фиксированные интервалы времени, которые определяют ориентацией КА относительно Солнца и планет.

Изобретение относится к космической технике, а именно к способу диагностики и прогнозирования срока нормального функционирования КА. В способе для КА, содержащего емкость с рабочим газом, определяют эффективную площадь выходного сечения внезапно образовавшейся течи в результате внезапного механического ударного воздействия на гермоконтейнер метеорной или техногенной частицы; момент времени образования вышеназванной течи; момент времени, когда давление газа в гермоконтейнере уменьшится до минимального допустимого значения, обеспечивающего работоспособность КА. Техническим результатом изобретения является обеспечение достоверного определения величины площади выходного сечения внезапно образовавшейся течи, диагностики и прогнозирования достоверного срока нормального функционирования КА и принятия своевременного решения о переводе КА со стационарной (рабочей) орбиты на орбиту захоронения. 2 ил.

Изобретение относится к авиационной и ракетной технике. Способ обеспечения теплового режима приборного отсека летательного аппарата заключается в охлаждении аппаратуры (2) двухконтурной системой охлаждения. Теплоотвод осуществляется во внешнем контуре путем испарения низкокипящего хладагента с отводом его паров в атмосферу. Охлаждение аппаратуры (2) приборного отсека во внутреннем контуре системы охлаждения осуществляют кондуктивной передачей тепла от приборов на испарители встроенных в вертикальные силовые сотопанели (3) вертикальных тепловых труб (4). В нижней части сотопанелей (3) размещают охлаждаемые приборы с большим адиабатическим нагревом. В направлении к верхней части сотопанелей (3) размещают приборы с меньшим адиабатическим нагревом. Конденсаторы тепловых труб охлаждают трубным теплообменником (5) внешнего испарительного контура. Изобретение улучшает термостабилизацию бортовой аппаратуры, повышает надежность и снижает энергопотребление. 2 ил.

Изобретение относится к электронике и может быть использовано для обеспечения требуемых тепловых режимов элементов радиоэлектронной аппаратуры, в частности электронных плат. Способ термостабилизации электронной аппаратуры, основанный на пропускании предварительно охлажденного или нагретого теплоносителя через микроканальный теплообменник, установленный на электронной аппаратуре, заключается в том, что теплоноситель предварительно нагревают или охлаждают блоком термостабилизации на основе термоэлектрических модулей, затем его приводят в состояние циркуляции в едином гидравлическом контуре с микроканальным теплообменником. Техническим результатом является повышение эффективности теплообмена, уменьшение массы и габаритов и значительная экономия электроэнергии на работу агрегатов системы. 3 ил.

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА). Способ изготовления СТР КА включает проверки суммарных негерметичностей жидкостного тракта и двухфазного контура (ДФК) перед заправкой их соответствующими теплоносителями. В процессе изготовления ДФК дополнительно контролируют с использованием пробного газа в вакуумной камере межполостную негерметичность между паровой полостью и жидкостной полостью капиллярного насоса, сообщив отвакуумированную жидкостную полость с течеискателем, обеспечив подачу в паровую полость пробного газа давлением, равным максимальному рабочему давлению аммиака. Перед запуском КА на орбиту с помощью специального программного обеспечения работы электрообогревателей компенсатора объема обеспечивают повышение минимального давления на входе в электронасосный агрегат (ЭНА) до определенной величины, гарантирующей с высокой надежностью бескавитационную работу ЭНА в условиях эксплуатации. Техническим результатом изобретения является повышение надежности работы СТР КА в условиях длительной эксплуатации на орбите. 2 ил.

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА). Способ контроля качества СТР КА включает слив требуемой дозы теплоносителя в процессе заправки СТР теплоносителем и в дальнейшем периодический контроль наличия требуемой массы теплоносителя в жидкостном контуре. Для этого измеряют фактическую слитую дозу теплоносителя из жидкостной полости компенсатора объема для текущего момента времени, например, по результатам измерения давления теплоносителя, температур теплоносителя в жидкостном контуре и рабочего тела в газовой полости компенсатора объема. При этом определяют также упругость насыщенного пара рабочего тела при измеренной температуре. После определяют требуемую расчетную величину слитой дозы теплоносителя для текущего момента времени. Далее для данного момента времени сравнивают между собой фактическую слитую из жидкостного контура дозу теплоносителя с расчетной дозой и судят о качестве СТР КА. Техническим результатом изобретения является повышение качества изготовления жидкостного контура СТР в результате обеспечения более высокой точности и надежности контроля качества жидкостного контура в процессе изготовления, наземных испытаний и эксплуатации КА на орбите. 2 ил.
Наверх