Способ повышения помехоустойчивости приема ofdm сигналов в каналах с памятью

Изобретение относится к технике связи и может использоваться в системах беспроводной связи. Технический результат состоит в увеличении помехоустойчивости приема в каналах с памятью, величина которой превосходит исправляющую способность защитного интервала. Для этого сигнал из передающего устройства после прохождения канала многолучевого распространения с аддитивным шумом поступает на вход приемного устройства, из аналогового входного сигнала выделяется последовательность отсчетов огибающей, из полученной последовательности удаляются отсчеты защитного интервала, оставшиеся отсчеты, характеризующие OFDM символ, после последовательно-параллельного преобразования подвергаются быстрому преобразованию Фурье, результатом которого является совокупность модулирующих символов, значения которых корректируются по фазе и амплитуде, и далее преобразуются в последовательность информационных бит, отличающийся тем, что после удаления отсчетов защитного интервала производится измерение импульсной характеристики канала по содержащимся в структуре передаваемого сигнала пилот-символам с известным информационным содержанием, и далее по измеренной импульсной характеристике осуществляется компенсация сигналов межсимвольной интерференции из последовательности отсчетов огибающей. 4 ил.

 

Способ повышения помехоустойчивости приема OFDM сигналов в каналах с памятью, относится к системам связи, использующим ортогональное частотное мультиплексирование, и может быть использован в системах мобильной связи.

Известен способ приема OFDM-радиосигнала Волков Л.Н., Немировский М.С., Шинаков Ю.С. Системы цифровой радиосвязи / Л.Н. Волков, М.С. Немировский, Ю.С. Шинаков. М.: Эко-Трендз, 2005, заключающийся в том, что сигнал из передающего устройства после прохождения канала многолучевого распространения с аддитивным шумом поступает на вход приемного устройства, из аналогового входного сигнала выделяется последовательность отсчетов огибающей, из полученной последовательности удаляются отсчеты защитного интервала, оставшиеся отсчеты, характеризующие OFDM символ, после последовательно-параллельного преобразования подвергаются быстрому преобразованию Фурье, результатом которого является совокупность модулирующих символов, которые преобразуются в последовательность информационных бит, предназначенное для устранения межсимвольной интерференции. Но данный способ не позволяет сохранить помехоустойчивость приема в каналах с памятью, величина которой превосходит исправляющую способность защитного интервала.

Самым близким к заявляемому способу по своей технической сущности является способ для уменьшения пик-фактора в системе связи OFDM. Патент №2313910, дата приоритета 09.09.2003, опубликовано 27.12.2007, МПК H04J 11/00, заключающийся в том, что сигнал из передающего устройства после прохождения канала многолучевого распространения с аддитивным шумом поступает на вход приемного устройства, из аналогового входного сигнала выделяется последовательность отсчетов огибающей, из полученной последовательности удаляются отсчеты защитного интервала, оставшиеся отсчеты, характеризующие OFDM символ, после последовательно-параллельного преобразования подвергаются быстрому преобразованию Фурье, результатом которого является совокупность модулирующих символов, значения которых корректируются по фазе и амплитуде, и далее преобразуются в последовательность информационных бит, предназначенное для уменьшения отношения пик-фактора и позволяющее повысить скорость передачи данных. Но данный способ также не позволяет сохранить помехоустойчивость приема в каналах с памятью, величина которой превосходит исправляющую способность защитного интервала.

Предлагаемое техническое решение направлено на увеличение помехоустойчивости приема в каналах с памятью, в которых любое временное рассеяние в канале приводит к существенному искажению последовательности отсчетов сигнала OFDM за счет взаимного влияния в месте приема.

Поставленная задача решается за счет того, что согласно способу повышения помехоустойчивости приема OFDM сигналов в каналах с памятью, заключающемуся в том, что сигналы из передающего устройства после прохождения канала многолучевого распространения с аддитивным шумом поступают на вход приемного устройства, из аналогового входного сигнала выделяется последовательность отсчетов огибающей, из полученной последовательности удаляются отсчеты защитного интервала, оставшиеся отсчеты, характеризующие OFDM символ, после последовательно-параллельного преобразования подвергаются быстрому преобразованию Фурье, результатом которого является совокупность модулирующих символов, преобразуемых далее в последовательность информационных бит, перед удалением отсчетов защитного интервала производится измерение импульсной характеристики канала по содержащимся в структуре передаваемого сигнала пилот-символам с известным информационным содержанием, и далее по измеренной импульсной характеристике осуществляется компенсация сигналов межсимвольной интерференции из последовательности отсчетов огибающей.

Способ повышения помехоустойчивости приема OFDM сигналов в каналах с памятью реализуется устройством, поясненным чертежами, где на фигуре 1 изображено: РЧ (радиочастотный) процессор 1, А/Ц (аналого-цифровой) преобразователь 2, блок измерения 3, компенсатор межсимвольной интерференции 4, блок удаления защитного интервала 5, Пс/Пр (последовательно-параллельный) преобразователь 6, блок БПФ (быстрого преобразования Фурье) 7, блок выделения пилотного символа 8, блок оценки канала 9, эквалайзер 10, Пр/Пс (параллельно-последовательный) преобразователь 11, блок обратного отображения символа 12, декодер 13, приемник данных 14.

Способ повышения помехоустойчивости приема OFDM сигналов в каналах с памятью реализуется устройством (фиг.1) следующим образом. Сигналы из передающего устройства после прохождения канала многолучевого распространения с аддитивным шумом поступают на антенну приемного устройства, вводятся в РЧ процессор 1, где принимаемый сигнал переносится на промежуточную частоту, далее поступает на аналого-цифровой преобразователь 2, в котором аналоговые сигналы преобразуются в цифровые отсчеты огибающей OFDM символа и поступают на блок измерения 3 импульсной характеристики канала, и на компенсатор 4 межсимвольной интерференции по содержащимся в структуре передаваемого сигнала пилот-символам с известным информационным содержимым и в компенсаторе межсимвольной интерференции 4 по измеренной импульсной характеристике осуществляется компенсация сигналов межсимвольной интерференции из последовательности отсчетов огибающей, очищенные сигналы поступают на блок удаления защитного интервала 5, затем поступают на блок 6 для последовательно-параллельного преобразования сигнала, затем в блоке БПФ 7 быстрого преобразования Фурье формируется совокупность модулирующих символов, которые корректируются по фазе и амплитуде в блоке эквалайзера 10 с помощью выделенного пилотного символа в блоке 8 и определенного в блоке оценки канала 9 коэффициента передачи канала, на каждой поднесущей скорректированные сигналы подвергаются параллельно-последовательному преобразованию в блоке 11, затем поступают на блок обратного отображения символа 12, на декодер 13, и обработанные сигналы поступают на приемник данных 14.

Способ реализуется следующим образом. Как известно [2, 3], в структуре группового сигнала, использующем технологию OFDM, всегда содержатся пилотные сигналы, информационное содержимое которых известно в месте приема и которые предназначены для оценивания характеристики канала и блоке оценки канала, где определяется коэффициент передачи канала на каждой поднесущей OFDM сигнала.

Пример структуры группового сигнала со вставкой пилот-символов приведен на фигуре 2.

Обозначим импульсную характеристику канала связи с памятью через h(t), длительность которой определяется как M⋅Δt, где

T - длительность OFDM символа,

N - число поднесущих OFDM символа,

M - количество отсчетов огибающей OFDM символа, пораженных межсимвольной интерференцией.

На передаче комплексная огибающая OFDM символа имеет вид [4]:

где - комплексная огибающая модулирующего символа,

tk - момент начала OFDM символа.

Полагая для простоты tk=0, отсчеты комплексной огибающей , взятые через интервал Δt, представим как

Если рассеяние энергии передаваемых отсчетов во времени отсутствует, то в месте приема по накопленной совокупности отсчетов с помощью ДПФ (реализуемого через БПФ) при высоких отношениях сигнал/шум решения о передаваемых символах выносится практически безошибочно. При небольшом временном рассеянии, называемом также памятью канала или явлением межсимвольной интерференции, для сохранения ортогональности поднесущих OFDM символа его длительность увеличивается на время рассеяния формированием защитных интервалов до и после OFDM символа.

Если фактическое время рассеяния в канале превосходит предполагаемое, то приемник OFDM символов становится неработоспособным даже при высоких отношениях сигнал/шум, т.к. нарушается ортогональность поднесущих в структуре OFDM сигнала и операция ДПФ не может осуществить демодуляцию, т.е. выделить из символы .

В линейном канале связи для наблюдаемого в месте приема колебания можно записать

где - вектор отсчетов огибающей OFDM символа,

- реализация аддитивной помехи.

Поскольку в приемнике OFDM сигналов реализуется квадратурная обработка, под будем понимать

,

где wC(t) и wS(t) соответственно косинусная и синусная составляющие аддитивной помехи.

Сначала будем предполагать импульсную характеристику h(t) оцененной абсолютно точно. При этом в задачу блока «компенсатор межсимвольной интерференции» входит определение истинных значений отсчетов огибающей OFDM символа, не искаженных последействием от М-1 предыдущих отсчетов огибающей. Эту задачу можно решить формируя оценки истинных значений по критерию минимума среднеквадратической ошибки оценивания. Использование этого критерия приводит к следующему правилу формирования оценок

j, k=0, 1, … N-1

Ta - интервал анализа колебания z(t) определяемый длительностью OFDM символа и временного рассеяния в канале Ta=(N+M-1)Δt

Переборными алгоритмами осуществить минимизацию в (5) невозможно, т.к. принимают не дискретные, а аналоговые значения. Если перейти к матричной записи выражения (4)

где - матрица отсчетов импульсной характеристики,

h=[h0, h1, …, hM-1]T - вектор отсчетов импульсной характеристики,

- вектор отсчетов помехи, то решение обратной задачи из (6), т.е. нахождение оценки , и по наблюдаемому z можно осуществить методом регуляризации, решая систему линейных алгебраических уравнений [4] для каждой квадратурной составляющей сигнала .

Например, для косинусной составляющей система уравнений будет иметь вид

где

,

,

α - параметр регуляризации.

Очевидно, .

Как показано в [5], оценки, формируемые из решения системы уравнений (7), могут иметь малое значение среднеквадратической ошибки оценивания, которое определяется дисперсией отсчетов аддитивной помехи и смещением, неизбежно сопровождающим данную процедуру оценивания и зависящим от выбора параметра регуляризации α. Всегда возможен выбор такого α, при котором смещение будет пренебрежимо мало, а среднеквадратическая ошибка оценивания достаточно мала для обеспечения малой вероятности ошибки при формировании решений .

Если теперь для формирования решений в приемнике использовать оценки из (7), то влияние межсимвольной интерференции, превосходящей исправляющую способность защитного интервала в структуре OFDM символа, будет устранено. Здесь и .

Проверка эффективности предлагаемого способа обработки OFDM сигналов в канале с памятью была проведена методом статистического моделирования в среде Matlab. Структурная схема проводимого эксперимента приведена на фиг. 3.

На схеме фиг. 3 отражены две ветви обработки сигнала OFDM. Верхняя ветвь соответствует традиционной обработке OFDM сигнала, когда канальный сигнал на передаче формируется через ОДПФ потока символов , а принятый поток отсчетов огибающей посредством ДПФ превращается в KAM-символы . Нижняя ветвь содержит блок «Оценивание », в котором осуществляется операция согласно (7) по формированию оценки первого отсчета огибающей на каждом сдвигаемом на величину Δt интервале анализа Ta по критерию максимального правдоподобия. Анализ помехоустойчивости в обеих ветвях обработки производился при известной и постоянной импульсной характеристике канала связи.

В качестве аддитивной помехи w(t) выступал «белый» гауссовский шум, а отношение сигнал/шум интерпретировалось как , где σ2 - дисперсия отсчетов шума.

При моделировании канала с памятью использовалась импульсная характеристика, содержащая соответственно три и шесть отсчетов: h0=1,4; h1=-0,4; h2=0,25;

h0=1,4; h1=-0,7; h2=0,5; h3=-0,35; h4=0,25; h5=0,1. В обоих случаях параметр регуляризации выбирался в виде α=0,001. Результаты моделирования представлены на фиг. 4.

Анализ кривых помехоустойчивости позволяет сделать следующие выводы:

1. Нижняя кривая характеризует потенциально достижимые результаты помехоустойчивости классического алгоритма обработки сигналов OFDM в канале без памяти с белым гауссовским шумом для 16-позиционной КАМ.

2. Верхняя кривая характеризует помехоустойчивость классического алгоритма в канале с памятью (три отсчета импульсной характеристики) в ситуации, когда не учитывается наличие защитного интервала в структуре OFDM символа, но воспроизводится взаимная интерференция отсчетов огибающей OFDM символа. Этот результат характерен для ситуации, когда защитный интервал не сохраняет ортогональность поднесущих OFDM символа из-за возникновения рассеяния, превосходящего «исправляющую» способность защитного интервала. Очевидно, в данной ситуации система становится неработоспособной.

3. Промежуточные кривые характеризуют возможности рассматриваемого алгоритма, основанного на формировании оценок отсчетов огибающей OFDM символа в канале с памятью. При вероятности ошибки 10-4 энергетический проигрыш алгоритма с предварительным оцениванием отсчетов огибающей составляет 2 дБ при рассматриваемых реализациях импульсной характеристики канала с памятью.

Теперь можно описать работу блока измерения фиг. 1, который формирует оценки отсчетов импульсной характеристики для решения задачи минимизации функционала (5).

При приеме отсчетов колебания , соответствующих интервалу времени, когда передается пилот символ, матричная запись принимаемых отсчетов z может быть сформирована в виде

Естественно, что выражения (8) и (6) абсолютно эквивалентны, однако для решения задачи оценивания матрицы отсчетов импульсной характеристики более удобна запись (8). Здесь матрицы имеют вид:

При передаче пилот-символа значения известны, и в соответствии с (2) отсчеты также известны.

Теперь задача оценивания вектора Н по критерию минимума среднеквадратической ошибки решается аналогично тому, как это делалось при решении обратной задачи из (6), т.е. с использованием метода регуляризации. При этом регуляризованные оценки вектора Н находятся из решения системы линейных алгебраических уравнений, аналогичной (7).

Аналитическая запись выражения для оценки Н имеет вид:

Реализация (10) при работе с комплексными векторами z и U также подразумевает квадратурную обработку, так, что в косинусном канале оценивается hC, а в синусном - hS. Теперь . Именно значения отсчетов h задавались при моделировании, но исходная комплексность KAM-символов предполагает использование квадратурной обработки принимаемого сигнала.

Точность оценивания согласно описанной процедуре характеризуется матрицей ковариаций

где σ2 - дисперсия аддитивной помехи.

Использование оценок (10) вместо точных значений отсчетов импульсной характеристики ухудшает помехоустойчивость приема. Полученную погрешность оценивания, характеризуемую выражением (11), можно пересчитать в отношение сигнал/шум. Так, например, погрешность оценивания, дающая «добавку» к шуму в размере 3 дБ изменяет вероятность ошибки предлагаемого способа со значения 2⋅10-4 при до значения 4⋅10-3 соответственно при (см. фиг. 4).

Таким образом, приведенный анализ подтверждает эффективность предлагаемого способа.

ЛИТЕРАТУРА

1. Устройство и способ уменьшения PAPR в системе связи OFDM: пат. 2313910 Рос. Федерация N 2006107214/09; заявл. 27.08.2006; опубл. 27.12.2007, Бюл. N36.

2. Shinsuke Hara, Ramjee Prasad. Multicarrier Techniques for 4G Mobile Communications // Artech House. 2003. 240 C.

3. Farooq K. LTE for 4G Mobile Broadband // Cambridge University Press. 2009. 492 C.

4. Волков Л.Н., Немировский M.C., Шинаков Ю.С. Системы цифровой радиосвязи // Л.Н. Волков, М.С. Немировский, Ю.С. Шинаков. М.: Эко-Трендз. 2005. 392 С.

5. Карташевский В.Г. Обработка пространственно-временных сигналов в каналах с памятью // В.Г. Карташевский. М.: Радио и связь. 2000. 272 с.

Способ повышения помехоустойчивости приема OFDM сигналов в каналах с памятью, заключающийся в том, что сигнал из передающего устройства после прохождения канала многолучевого распространения с аддитивным шумом поступает на вход приемного устройства, из аналогового входного сигнала выделяется последовательность отсчетов огибающей, из полученной последовательности удаляются отсчеты защитного интервала, оставшиеся отсчеты, характеризующие OFDM символ, после последовательно-параллельного преобразования подвергаются быстрому преобразованию Фурье, результатом которого является совокупность модулирующих символов, значения которых корректируются по фазе и амплитуде, и далее преобразуются в последовательность информационных бит, отличающийся тем, что после удаления отсчетов защитного интервала производится измерение импульсной характеристики канала по содержащимся в структуре передаваемого сигнала пилот-символам с известным информационным содержанием и далее по измеренной импульсной характеристике осуществляется компенсация сигналов межсимвольной интерференции из последовательности отсчетов огибающей.



 

Похожие патенты:

Изобретение относится к системе беспроводной связи и предназначено для более эффективного получения синхронизации для прямой связи устройство-устройство, раскрывается способ осуществления связи устройство-устройство между пользовательским оборудованием, расположенным в зоне обслуживания, и пользовательским оборудованием, расположенным вне зоны обслуживания.

Изобретение относится к технике связи и может использоваться в системах беспроводной связи. Технический результат состоит в повышении надежности связи.

Изобретение относится к беспроводной связи. Техническим результатом является необходимость в определении выполнения процедуры начального доступа в ячейке, когда унаследованные сигналы синхронизации не передаются в кластере малых ячеек.

Изобретение относится к технике связи и может использоваться в системах беспроводной связи. Технический результат состоит в повышении надежности связи.

Изобретение относится к системе беспроводной связи и более конкретно к приему информации о синхронизации для прямой связи между терминалами. Изобретение в частности описывает способ, посредством которого первое пользовательское оборудование принимает информацию о синхронизации для линии связи устройство-устройство (D2D) в пользовательском оборудовании (UE) в системе беспроводной связи.

Изобретение относится к области беспроводной связи. Изобретение предоставляет способ отображения ресурсов физического совместно используемого канала нисходящей линии связи (PUCCH), который включает в себя: в адаптивной к трафику системе дуплексной связи с временным разделением каналов (TDD), классифицирование подкадров нисходящей линии связи внутри окна пакетирования на две категории, т.е.

Изобретение относится к системе передачи с одной несущей и может быть использовано в радиоприемном устройстве. Технический результат - эффективное использование защитного интервала (GI) для повышения качества приема.

Изобретение относится к технике связи и может использоваться в системах беспроводной связи. Технический результат состоит в повышении надежности связи.

Изобретение относится к технике связи и может использоваться для передачи сигнала восходящей линии связи в системе беспроводной связи. Технический результат состоит в повышении пропускной способности.

Изобретение относится к беспроводной связи и может быть использовано для подавления помехового сигнала из принятого сигнала. Способ осуществляется на узле сети для помощи первому беспроводному терминалу в подавлении помехового сигнала из принятого сигнала в сети беспроводной связи.

Изобретение относится к области вычислительной техники и средствам отображения видеоинформации. Технический результат заключается в обеспечении возможности отображения видеоинформации мобильного вычислительного устройства на устройстве отображения, сопряженным с мобильным вычислительным устройством. Технический результат достигается за счет того, что с помощью мобильного вычислительного устройства передают видеосигнал, содержащий видеоинформацию, сгенерированную с помощью приложения, исполняемого на упомянутом мобильном вычислительном устройстве, и/или операционной системы, исполняемой на упомянутом мобильном вычислительном устройстве на целевой экран, через парное соединение между упомянутым мобильным вычислительным устройством и упомянутым целевым экраном, при этом: устанавливают парное соединение через интерфейс проводной или беспроводной связи, причем мобильное вычислительное устройство характеризуется тем, что выполнено с возможностью обеспечения инициирования/взаимодействия приложения в ответ на движения или жесты, выполняемые с помощью указанного мобильного вычислительного устройства, и упомянутый видеосигнал выполнен с возможностью вызова выполнения упомянутым целевым экраном отображения упомянутой видеоинформации. 3 н. и 22 з.п. ф-лы, 29 ил.

Изобретение относится к радиосвязи и предназначено для назначения последовательности Задова-Чу или последовательности GCL. Технический результат - уменьшение объема вычислений и степени интеграции схемы корреляции в частотной области на приемной стороне без ухудшения характеристик обнаружения последовательности. Для этого в системе, где множество различных последовательностей Задова-Чу или последовательностей GCL назначаются одной соте, количество арифметических операций и степень интеграции схемы корреляции на приемном конце могут быть уменьшены. Согласно этим способу и устройству на ST201 счетчик (a) и количество (p) текущих назначений последовательности инициализируются, и на ST202 определяется, совпадает ли количество (p) текущих назначений последовательности с количеством (K) назначений одной соте. На ST203 определяется, является ли количество (K) назначений одной соте нечетным или четным. Если K является четным на ST204-ST206, номера последовательностей (r=a и r=N-a), которые в настоящее время не назначены, объединяются и затем назначаются. Если K является нечетным на ST207-ST212, для последовательностей, которым нельзя подобрать пару, назначается один из номеров последовательностей (r=a и r=N-a), которые в настоящее время не назначены. 4 н. и 5 з.п. ф-лы, 17 ил.

Изобретение относится к области техники выделения ресурсов в сетях проекта партнерства третьего поколения (3GPP) и предназначено для устранения коллизии выделения ресурсов. Изобретение раскрывает в частности передачу базовой станицей (eNodeB) в оборудование пользователя (UE) сети 3GPP значения смещения, выбранного из множества значений смещения в информации управления нисходящим каналом передачи. eNodeB передает по улучшенному физическому каналу управления нисходящим каналом передачи (ePDCCH), индикацию значения смещения, выбираемого из множества значений смещения, содержащего значения смещения как -2, -1, 0 и 2, передает по ePDCCH один или больше улучшенных элементов управления каналом (еССЕ) в ePDCCH; и идентифицирует сигнал в ресурсе восходящего канала передачи физического канала управления восходящего канала передачи (PUCCH), выделенного на основе, по меньшей мере частично, индекса первого еССЕ из одного или больше еССЕ и выбранного значения смещения. 3 н. и 20 з.п. ф-лы, 6 ил.

Способ передачи информации многочастотными сигналами относится к технике электрической связи и может быть использован в системах связи. Достигаемый технический результат - повышение коэффициента полезного действия (КПД) усилителя мощности, уменьшение внеполосного излучения. Способ передачи информации многочастотными сигналами характеризуется последовательным выполнением действий: преобразования последовательности информационных символов в комбинацию модулирующих символов, формирования многочастотного сигнала в виде суммы ортогональных парциальных сигналов различных частот, каждый из которых модулирован по фазе соответствующим модулирующим символом, масштабирования суммарного сигнала путем его умножения на коэффициент масштабирования, ограничения масштабированного сигнала и усиления мощности, при этом коэффициент масштабирования задают таким, что коэффициенты ряда Фурье ограниченного сигнала удовлетворяют заданным критериям качества системы связи. 3 з.п. ф-лы, 12 ил., 2 табл.

Изобретение относится к беспроводной связи. Технический результат заключается в увеличении эффективности передачи. Базовая станция передает мобильной станции управляющую информацию, указывающую, следует ли передать один индикатор качества канала (CQI) для каждого блока поднесущих в частотном диапазоне связи или один CQI для нескольких блоков поднесущих, и принимает от мобильной станции CQI в соответствии с управляющей информацией. 2 н. и 17 з.п. ф-лы, 22 ил.

Изобретение относится к системе беспроводной связи и может быть использовано при приеме сигнала нисходящей линии связи. Способ подавления помех для UE (пользовательского оборудования), имеющего возможности подавления помех в системе беспроводной связи заключается в том, что принимают информацию о соседней соте для подавления помех и осуществляют подавление сигнала помехи, передаваемого из соседней соты, с использованием принятой информации о соседней соте, причем информация о соседней соте принимается, когда соседняя сота имеет такую же длину циклического префикса (CP), что и обслуживающая сота UE, синхронизирована по подкадрам с обслуживающей сотой, и соседняя сота имеет такую же полосу передачи, что и обслуживающая сота, а информация о соседней соте включает в себя количество антенных портов для характерного для соты опорного сигнала (CRS), используемого соседней сотой, и конфигурацию подкадра одночастотной сети многоадресной/широковещательной передачи (MBSFN), используемую соседней сотой. Технический результат – повышение эффективности подавления помех. 2 н. и 9 з.п. ф-лы, 8 ил., 9 табл.

Изобретение относится к технике связи и может использоваться в системах беспроводной связи. Технический результат состоит в повышении надежности связи. Для этого предложенные варианты изобретения позволяют выбирать сигнал обнаружения (DS), используемый для идентификации узла eNB для терминала UE, принимающего сигнал DS. Этот сигнал DS позволяет терминалу UE убедиться в факте присутствия и/или определить идентификатор ячейки узла eNB. Сигнал DS содержит несколько других сигналов, таких как первичный синхросигнал (PSS), вторичный синхросигнал (SSS), специфичный для ячейки опорный сигнал (CRS) и/или опорный сигнал информации о состоянии канала (CSI-RS). Событие сигнала обнаружения (DS) содержит несколько субкадров, в которых передают выбранные сигналы, имеющие сигнал DS. Подбор сигналов, выбранных для сигнала DS, их характеристики и свойства позволяют терминалу UE декодировать идентификатор ячейки. Событие сигнала обнаружения (DS) происходит с заданной периодичностью. 3 н. и 17 з.п. ф-лы, 12 ил., 1 табл.

Изобретение относится к области беспроводной связи и предназначено для поддержания хорошего качества сигнала между беспроводным устройством и сетевым узлом за счет оказания содействия сетевым узлом в подавлении помех беспроводному устройству. Способ, выполняемый сетевым узлом (115А) для в подавлении помех беспроводному устройству (110С), включает в себя ассоциирование информации о последовательности опорного сигнала демодуляции (DMRS) по меньшей мере с одним параметром передачи, который применяется к DMRS информации о последовательности. Указание ассоциации DRMS информации о последовательности по меньшей мере с одним параметром передачи передается на беспроводное устройство (110С) для использования при выполнении подавления помех мешающего сигнала от первой точки (115А или 115В) передачи. 6 н. и 50 з.п. ф-лы, 5 ил.

Изобретение относится к технике связи и может использоваться в системах беспроводной связи. Технический результат состоит в повышении пропускной способности передачи. Для этого способ для передачи данных от беспроводной LAN во множество STA содержит: этап, на котором точка доступа AP генерирует данные протокола PPDU в формате MIMO-OFDMA; и этап, на котором AP передает PPDU в формате MIMO-OFDMA во множество станций STA, причем PPDU в формате MIMO-OFDMA содержит множество PPDU в формате субканала, которые синхронизированы по времени, и множество PPDU в формате субканала передается соответственно во множество STA через множество соответствующих полос частот субканалов, и число полей обучения для MIMO-передачи, которые включены в состав соответствующего множества PPDU в формате субканала, может быть идентичным. 2 н. и 8 з.п. ф-лы, 12 ил., 7 табл.

Изобретение относится к технике связи и может использоваться для приема конфигурации, применимой для обнаружения, которое может использоваться в сценарии небольших сот. Технический результат состоит в повышении точности приема информации. Для этого UE выполнено с возможностью приема конфигурации измерений для сигнала обнаружения, при этом сигнал обнаружения включает в себя CRS, PSS и SSS. Обнаружение дополнительно может включать в себя опорный сигнал информации состояния канала (CSI-RS) в зависимости от конфигурации CSI-RS. Конфигурация измерений может включать в себя, по меньшей мере, один набор конфигурационных элементов. UE выполняет измерение для сигналов обнаружения на основе принимаемой конфигурации. Дополнительно UE принимает конфигурацию опорных сигналов информации состояния канала (CSI-RS), включающую в себя, по меньшей мере, один набор конфигурационных CSI-RS-элементов, используемых для CSI-RS с нулевой мощностью, при этом CSI-RS-конфигурация включает в себя, по меньшей мере, один набор конфигурационных CSI-RS-элементов, каждый набор конфигурационных CSI-RS-элементов включает в себя информацию CSI-RS-интервала и информацию CSI-RS-смещения. 2 н. и 12 з.п. ф-лы, 19 ил., 11 табл.
Наверх